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Long non-coding RNAs (lncRNAs) have been comprehensively implicated in

various cellular functions by mediating transcriptional or post-transcriptional

activities. MALAT1 is involved in the differentiation, proliferation, and apoptosis

of multiple cell lines, including BMSCs, osteoblasts, osteoclasts, and

chondrocytes. Interestingly, MALAT1 may interact with RNAs or proteins,

regulating cellular processes. Recently, MALAT1 has been reported to be

associated with the development of bone and cartilage diseases by

orchestrating the signaling network. The involvement of MALAT1 in the

pathological development of bone and cartilage diseases makes it available

to be a potential biomarker for clinical diagnosis or prognosis. Although the

potential mechanisms of MALAT1 in mediating the cellular processes of bone

and cartilage diseases are still needed for further elucidation, MALAT1 shows

great promise for drug development.
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Introduction

Non-coding RNAs (ncRNAs) are commonly divided into four groups, including long

ncRNAs (lncRNAs), microRNAs (miRNAs), circular RNAs, and pseudogenes.

Biologically, ncRNAs have been implicated in the gene expression regulation at the

levels of transcription and post-transcription. LncRNAs, usually more than 200

nucleotides in length, have been demonstrated to be associated with the pathogenesis

and progression of various diseases. Due to alternative cleavage and/or pre-mRNA

splicing and polyadenylation, many different isoforms can be produced from the same

locus by lncRNAs (1). This may lead to generation of multiple and diverse lncRNAs.

However, most of lncRNAs are expressed at a low level and restricted to specific sub-cell

localizations/cell lines/developmental stages/physiological conditions (2). It can be

postulated that lncRNAs are remarkably involved in the physiological and

pathological processes.
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Metastasis‐associated lung adenocarcinoma transcript‐1

(MALAT1, also known as NEAT2 or HCN), encoded on the

chromosome 11q13.1 in human and 19qA in mouse, is a highly

conserved lncRNA that is retained in the nucleus and

abundantly expressed in various cells (3). Evolutionally,

MALAT1 shows about 50% conservation in overall sequence

and more than 80% conservation in the triple-helix transcript at

3’ end (4). The expression of MALAT1 is high, and this might be

related to the strong activity of the promoter and the stability of

the transcribed RNA (5). MALAT1, a well-studied lncRNA in

human disease, has been implicated in cell differentiation,

proliferation, and death. For example, co-culture of prostate

cancer PC3 cells and osteoblasts may up regulate the expression

of MALAT1 in PC3 cells, and co-culture with SOSTKO

osteoblasts may further enhance MALAT1 expression,

promoting bone metastasis (6).

Bone undergoes constant modeling and remodeling to

maintain homeostasis, which requires multiple regulations in

cell differentiation, proliferation, and apoptosis. Disturbance of

bone homeostasis may lead to the pathogenesis and progression

of bone diseases, such as osteoporosis (OP), osteoarthritis (OA),

and rheumatoid arthritis (RA) (7, 8). LncRNAs have been

reported to epigenetically regulate the differentiation of

mesenchymal stromal cells (MSCs) and the development of

diseases (9). It has been reported that the expression of

MALAT1 in patients with OP is significantly lower than that

in healthy people (10). Bone mineral density (BMD) is a

diagnostic factor for OP, and genome-wide association study

have identified that the intronic variants at MALAT1 gene locus

are associated with low BMD in the Qatari population (11).

MALAT1 promotes ossification of the posterior longitudinal

ligament (OPLL) by enhancing the transcriptional expression of

connexin 43 (Cx43) indirectly and sponging miR-1. Deletion of

MALAT1 expression may lead to inhibition of Cx43 expression,

osteogenesis, proliferation, and inflammation in OPLL

fibroblasts (12). The critical roles of MALAT1 in bone diseases

have been demonstrated, and this article provides a review on

this field.
The biological activities of MALAT1

The biological functions of MALAT1
in splicing

Nuclear speckles, consisting of RNAs and proteins, are the

organelles with self-assembly, governing some specific steps

involved in gene expression, such as transcription, splicing,

mRNA export. Most of the splicing and transcription are

performed at the periphery sites of the speckles, and RNA

maturation is modulated at the central sites (13). It has been

reported that MALAT1 is abundantly nuclear distribution and

located at the periphery sites of the speckles. A study shows that
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MALAT1 is not essential for the formation of nuclear speckles,

and MALAT1 deficiency does not produce any effects on the

number, size, distribution, assembly, and structural maintenance

of nuclear speckles (14). However, it is demonstrated that

depletion of MALAT1 may induce an appropriate 50%

reduction of SON expression, which is a scaffold protein in the

nuclear speckle. This may, at least partially, result in a decrease

in nuclear speckle size in MALAT1-knockout cells (15).

Interestingly, MALAT1 tends to interact with many pre-

mRNA splicing factors, such as SON1, SRSF1, hnRNPH1, and

hnRNPC, which are accumulated in the nuclear speckles. Thus,

pre-mRNA splicing can be alternatively regulated by the

expression of MALAT1 (16). In addition, MALAT1 may

regulate the expression of COL1A1 at the RNA level.

Specifically, depletion of MALAT1 can lead to aberrant

splicing and decreased distributing sites of COL1A1 RNA (15).

Genome-wide transcriptome study shows that MALAT

promotes cell proliferation by regulating the pre-mRNA

splicing of cell cycle-mediated transcription factor B-MYB in

human diploid fibroblasts (17). Dissociation of MALAT1 with

the nuclear speckles may also produce negative effects on the

transcriptional regulation of target genes (18) (Figure 1).
The biological functions of MALAT1 in
transcription

MALAT1 has been shown to account for a high percentage

of the chromatin fraction and be actively associated with

transcriptional gene expression. In MCF-7 cells, MALAT1 can

preferably interact with the active genomic sites. For example,

MALAT1 physically binds to CTCF sites and increases the

activity of the promoters (19). Spatially proximal to the target

binding sites may increase the binding affinity to lncRNAs than

distant binding sites. MALAT1, locates at the upstream (60 Kb

approximately) of LTPB3 promoter, can be recruited to the

promoter of LTPB3 with higher scores, indicating either RNA-

DNA or RNA-protein-DNA interaction (19). Chromatin

immunoprecipitation (ChIP) has been employed to identify

that MALAT1 can regulate the gene expression of EEF1A1 in

MDA-MB231 and SKRB3 cells by binding to the regulatory

elements in the promoter. Knockdown of MALAT1 expression

may abolish cell proliferation and invasion (20). Clinically,

highly expression of MALAT1 is positively correlated with

poor overall survival in patients with phase III and IV GC.

However, no statistical difference is observed in patients with

phase I and II GC (21). The association between MALAT1 and

EZH2 may provide a novel therapeutic strategy for management

of many cancers, such as GC and prostate cancer (22). MALAT1,

acts as a chromatin associated RNA, binds to the target genomic

sequences by proximity ligation. By employing new

technologies, such as mapping RNA-genome interactions

(MARGI) and global RNA interaction with DNA by deep
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sequencing (GRID-seq), a large body of genomic loci for

MALAT1 binding has been explored (23, 24). The diagnostic

and prognostic effects of MALAT1 in patients with pancreatic

cancer have been evaluated by Gene Expression Omnibus,

Oncomine, and The Cancer Genome Atlas databases. CCND1,

MAPK8, VEGFA, FOS, CDH1, and HSP90AA1 have been

identified as the target genes of MALAT1 in patients with

pancreatic cancer (25) (Figure 1).
The biological functions of MALAT1 as a
protein interactor

The regulatory activity of MALAT1 at the transcriptional level

has been demonstrated by binding to the specific sites in the

chromatin/genome or interacting with the transcriptional factors

or co-activators. In mice diabetic kidney, high glucose-increased

expression of MALAT1 is positively related to the levels of serum

creatinine and urinary albumin. Further study shows that

MALAT1 down regulates the expression of SIRT1 by

competitively binding to Foxo1 and disrupting the interaction

between SIRT1 and Foxo1 in HK-2 cells (26). In lung transplant

ischemia-reperfusion (LTIR) rats, enhanced expression of

MALAT1 may up regulate IL-8 expression by recruiting p300,

ameliorating inflammatory responses. Silencing of MALAT1

expression can reversely inhibit inflammatory injury in LTIR

rats (27). MALAT1 may associate with EZH2, a subunit

catalyzing the trimethylation modification in histone 3 Lys27

(H3K27me3), to inhibit the expression of tumor suppressor

PCH10 and increase migration and invasion in gastric cancer

(GC) cells (21). MALAT1/EZH2 can also negatively inhibits

KEAP1 transcriptional expression, leading to up regulation of

NRF2 expression in multiple myeloma cells (28). In a high
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throughput experiment, 127 potential proteins are identified as

the interacting targets of MALAT1. Further study shows that

MALAT1 may competitively interact with DBC1, resulting in

SIRT1 release, p53 deacetylation, cell proliferation, and inhibition

of cell apoptosis (29). The roles of MALAT1 in cancer cells have

been reviewed (30). Knockdown or overexpression of MALAT1

under different pathophysiological conditions exhibits substantial

transcriptional changes (Figure 1).
The biological functions of MALAT1 as a
competing endogenous RNA

A large body of studies report MALAT1 as a miRNA sponge

or a ceRNA in various cell lines. In high glucose-treated HK-2

cells, up regulated expression of MALAT1 significantly inhibits

cell viability, increases apoptosis, and promotes the productions of

IL-1b, IL-6, and TNFa by sponging miR-16b-5p, which targets to

degrade TLR4. Knockdown of MALAT1 expression alleviates

high glucose-induced injury in HK-2 cells, protecting against

diabetic nephropathy (31). In human liver tissues, the up

regulation of MALAT1 expression is associated with the

progression of nonalcoholic fatty liver disease (NAFLD). In fatty

acid-treated hepatocytes in vitro, knockdown expression of

MALAT1 ameliorates the inhibitory activity against miR-206,

which degrades ARNT. As a transcriptional factor, ARNT can

bind to and inhibit the promoter activity of PPARg. Thus,
MALAT1/miR-206/PPARg can be a therapeutic target against

NAFLD (32). Similarly, MALAT1 acts as a sponge to inhibit miR-

181a, which is up regulated in angiotensin II-treated

cardiomyocytes. Decreased expression of MALAT1 promotes

miR-181a-induced cardiac hypertrophy by decreasing the

expression of HMGB2 (33). By sequestering miRNAs, MALAT1
FIGURE 1

The roles of MALAT1 in bone and cartilage diseases. The regulatory activities of MALAT1 in osteogenic differentiation can be performed by
mediating splicing and transcription and acting as a protein interactor or ceRNA.
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may directly/indirectly regulate the pathophysiological processes

of many diseases, providing a potential target for clinically

therapeutic management (Figure 1).
The roles of MALAT1 in osteoporosis

The regulatory mechanism of MALAT1 in
osteogenic differentiation

Osteogenic differentiation of bone marrow-derived MSCs

(BMSCs) is critical for the formation of bone. Both osteoblasts

and osteoclasts are differentiated from BMSCs. The complex

regulatory mechanisms orchestrate the processes of osteogenic

differentiation (Figure 1). It has been reviewed that many

signaling pathways, such as Wnt/b-catenin, TGF-b1/Smad2/3,

BMP, and PI3K/AKT, have been involved in the regulation of

osteogenic differentiation (34). The importance of lncRNAs in

gene regulation at the epigenetic, transcriptional, and post-

transcriptional levels has been identified in the stages of

osteogenic differentiation. These regulations include histone

modification, transcriptional interference, nuclear and

cytoplasmic trafficking, genomic imprinting, and X-

chromosome inactivation (35). One study has been shown that

89 lncRNAs from the constructed lncRNA-miRNA-mRNA

network are differentially expressed after osteogenic

differentiation, mediating the expression of Wnt/b-catenin,
TGF-b1/Smad2/3, and PI3K/AKT signaling pathways in dental

pulp stem cells (36). Furthermore, the lncRNAs-transcription

factor (TF) feedback loops are identified. Specifically, lncRNAs

and TFs may compose feedback loops to mediate osteoblast

differentiation, due to that TFs can directly mediate the

differentiation activity by binding to the DNA-regulatory

elements of lncRNAs (37).

MALAT1 has been considered as a biomarker in OP and is

related to osteogenic differentiation (38). During the culture

period of human MSCs, the osteogenic differentiation is

developed from day 1 to 14. MALAT1 promotes the
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expression of osterix (Osx) and increase osteogenic

differentiation by sponging miR-143 in human BMSCs (39).

MALAT1 has been reported to increase RUNX2-regulated

osteogenic differentiation of adipose-derived MSC (ADSCs) by

specifically sponging miR-30 (40). In osteogenic hBMSCs, the

expression of MALAT1 and Osx is up regulated, and the

expression of miR-96 is down regulated (41). Co-culture of

BMSCs-derived exosome and human osteoblasts increases

SATB2-mediated osteoblast differentiation and proliferation by

enhancing MALAT1 expression and attenuating miR-34c

expression. Up regulation of MALAT1 expression can

ameliorate the pathological changes of OP in ovariectomized

(OVX) mice (42).

Simultaneously, the expression of MALAT1 is significantly

increased. Knockdown of MALAT1 expression can attenuate

osteogenic differentiation by mediating has-miR-214-3p/BMP2

axis (43) (Table 1). In microgravity-treated MC3T3-E1 cells, the

expression of MALAT1 is down regulated, accompanied by

decreased expression of alkaline phosphatase (ALP), Col1a1,

and BMP4. In human aortic valve interstitial cells (hAVICs),

MALAT1 functions as a positive mediator in osteogenic

differentiation through Smad4 by suppressing the expression

of miR-204 (Table 1), as indicated by increased expression of

ALP and osteocalcin (OCN) and mineralization (44).

Overexpression of MALAT1 can promote osteogenic

differentiation by regulating the activity of miR-127/AKT3

axis, alleviating OP (38). Consistently, the expression of

MALAT1 is up regulated after osteogenic differentiation of

BMSCs and down regulated after osteoclast differentiation of

mononuclear macrophages. Knockdown of MALAT1

expression suppresses osteogenic differentiation and facilitates

osteoclast differentiation by mediating miR-124-3p/IGF2BP1

axis (Table 1). Overexpressed MALAT1 stimulates the activity

of Wnt/b-catenin signaling pathway, ameliorating bone injury in

mice (10).

In a study, the expression of MALAT1 in rat OP models is

down regulated. However, it is also shown that MALAT1 can

induce inhibition of osteogenic differentiation by increasing the
TABLE 1 MALAT1 promotes osteogenic differentiation by activating transcriptional factors (TFs) through interacting with miRNAs.

Cell types miRNAs TFs Osteogenic effects Ref.

hMSCs has-miR-214-3p BMP2 Runx2↑, ALP↑, Alizarin Red S↑ (43)

hBMSCs miR-143 Osx ALP↑, OCN↑, OPN↑, Alizarin Red S↑ (39)

ADSCs miR-30 Runx2 ALP↑, OCN↑, OPN↑, Osx↑ (40)

hBMSCs miR-96 Osx ALP↑, Alizarin Red S↑ (41)

hAVICs miR-204 Smad4 ALP↑, OCN↑, Alizarin Red S↑ (44)

hPLSCs miR-155-5p ETS1 Runx2↑, ALP↑, OCN↑, Alizarin Red S↑, collagen-1↑ (45)

hBMSCs miR-34c SATB2 ALP↑, Alizarin Red S↑, Runx2↑, ATF4↑, Hoxa2↓ (42)

BMSCs miR-124-3p IGF2BP1 ALP↑, Alizarin Red S↑, Wnt/b-catenin↑ (10)

MC3T3-E1 cells miR-217 AKT3 ALP↑, BMP4↑, Col1a1↑, Spp1↑ (38)
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activity of p38 MAPK and ERK1/2 signaling pathways in BMSCs

(46). This conclusion seems to be contradictory, due to the

confusion by the different cell lines and experimental conditions.

It has been reported that p38 MAPK is essential for bone

formation and homeostasis in stem cells (47). Activation of

p38 MAPK and ERK1/2 pathways increases the expression of

RUNX2 and Osx, leading to enhancement of osteogenic

differentiation (48, 49). MALAT1 deletion may ameliorate

RANKL-induced inhibition of cell growth and arrest of cell

cycle in hFOB 1.19 osteoblast cells (50). Consistently, MALAT1

overexpression is associated with OPG down regulation and

RANKL up regulation, respectively, promoting osteoclast

processes in ultra-high molecular weight polyethylene

(UHMWPE)-treated hFOB 1.19 cells. Potentially, MALAT1

may increase the expression of VEGF by sponging miR-22-5p,

promoting the onset of osteolysis (51).
The clinical potentials of MALAT1
against OP

Osteogenic differentiation of MSCs may promote bone

regeneration, which involves multiple-step- and multiple-

gene-mediated processes that are implicated in the recovery

of bone diseases, such as OP and bone fracture. By using RNA-

seq technology, 1524 differential expressed lncRNAs have

been identified in osteo-inductive groups compared with the

control group. The potential lncRNA-miRNA-mRNA

network in rat BMMSCs has been explored (52). Many

lncRNAs, such as MALAT1, H19, and HOTAIR, have been

summarized to be associated with bone regeneration and

balance of bone formation and resorption (53). Several

reviews focusing on the contribution of MALAT1 to

osteogenesis and endochondral ossification have been

explored (54). In the exosomes from BMSCs in patients with

postmenopausal OP, 148 lncRNAs are up regulated, and 138

are down regulated. Analysis of constructed lncRNA-miRNA-

mRNA network indicates that these differential expression of

lncRNAs may potentially associate with Wnt/b-catenin, PI3K/
AKT, and MAPK signaling pathways (55). A total of 1878

differential expressed lncRNAs from patients with steroid-

induced osteonecrosis of the femoral head have been detected

using microarray and bioinformatics. MALAT1 is one of the

ceRNA relating to abnormal osteogenic differentiation of

BMSCs (56).

In steroid-induced avascular necrosis of the femoral head,

the expression of MALAT1 is decreased. MALAT1

overexpression or miR-214 inhibition can ameliorate

dexamethasone (DEX)-induced inhibition of osteogenic

differentiation of BMSCs (57). The expression of MALAT1 in
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pre-osteoblast MC3T3-E1 cells can be down regulated by DEX,

which has been demonstrated to inhibit osteoblast proliferation

and promote osteoblast apoptosis (58). More specifically, forced

expression of MALAT1 can abrogate DEX-induced viability

repression and cell apoptosis by suppressing Ppm1e expression

and activating AMPK signaling in OB-6 and hFOB1.19

osteoblast cells (59). Promoted osteoblast differentiation,

inhibited osteoclast function, and balanced metabolism are

important for the treatment of osteoporosis (OP). However, in

rats with OP tibial fracture, the expression of MALAT1 is

increased. Knockdown of MALAT1 expression can enhance

osteogenic differentiation of BMSCs by increasing the

expression of miR-144-3p (60). This discrepancy might be

associated with different cell lines and culture conditions. Bone

repair processes include bone resorption by activating

osteoclastogenesis and bone formation by activating

osteogenesis and neovascularization. Endothelial progenitor

cells (EPCs)-derived exosomes can promote the migration and

osteoclasts differentiation by increasing the expression of

MALAT1, providing a therapeutic strategy for bone repair.

Specifically, MALAT1 can increase the expression of ITGB1 by

sponging miR-124 in EPC-derived exosomes (61).

In RAW 264.7 cells, co-culture of MCF-7 cells may activate

osteoclastogenesis. Denosumab, an inhibitor of receptor

activator of NF-kB ligand (RANKL), has been reported to

inhibit MCF-7 cell-induced osteoclastogenesis by decreasing

the expression of MALAT1 (62). In human periodontal

ligament stem cells (hPLSCs), MALAT1 increases ALP

activity and mineralization, enhances RUNX2, collagen I, and

OCN expression, and promotes osteogenic differentiation by

mediating miR-155-5p/ETS1 signaling, providing a strategy for

treatment of periodontitis (45) (Table 1). Bisphosphonates

(BPs), have been used for treating bone lesions, including

those associated with multiple myeloma (MM). However, it

is reported that BPs may potentially produce adverse effects,

such as osteonecrosis of the jaw (63). The altered profile of

lncRNAs in MM patients with osteonecrosis induced by BPs

indicates that the down regulated expression of MALAT1 is

assumed to be related to increased osteoclastogenesis in bone

lesions (64). Angiogenesis contributes to bone regeneration by

connecting with osteocytes. The expression of MALAT1,

VEGF, and SP1 are increased in osteogenic medium-

stimulated MC3T3-E1 cells. Knockdown of MALAT1

expression inhibits angiogenesis and bone regeneration, as

shown by decreased proliferation, migration, and capillary

tube formation of human umbilical vein endothelial cells (65).

Collectively, the expression of MALAT1 in OP is decreased,

and enhanced expression of MALAT1 may promote osteogenic

differentiation and osteoblast proliferation and inhibit osteoclast

differentiation and osteoblast cell death.
frontiersin.org

https://doi.org/10.3389/fendo.2022.1054827
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhang et al. 10.3389/fendo.2022.1054827
The roles of MALAT1 in
osteoarthritis

Osteoarthritis (OA) is marked by chronic inflammation,

chondrocyte apoptosis, extracellular matrix (ECM)

degradation, and articular cartilage destruction, resulting in

joint pain and disability. Chondrocytes, the unique cell type in

cartilage, maintain the micro-environmental homeostasis. In

addition, the synthesis and degradation of ECM are balanced

by chondrocytes, which are orchestrated by network of signaling

pathways. To provide effective prevention and treatment of OA,

it is essential to understand the complex pathogenesis and

pathophysiological processes. It has been demonstrated that

lncRNAs are closely associated with the pathogenesis and

progression of OA (66). Bioinformatics analysis reveals that

3007 lncRNAs are up regulated and 1707 lncRNAs are down

regulated in OA chondrocytes. Additionally, 530 lncRNAs have

been found to regulate their target genes expression by

interacting with TF SP1 (67). Under IL-1b stimulation, 125

differentially expressed lncRNAs are identified and act as

important regulator in the inflammatory responses in OA

cartilage (68). MSCs with the capability of self-renew may

promote tissue repairment. Injection of MSCs into the

articular cavity can significantly impede the degradation of

cartilage and improve joint biological functions (69).

Extracellular vesicles (EVs) secreted from MSCs have been

reported to ameliorate the pathological alternations and

inflammation in cartilage. Specifically, EVs with MALAT1

overexpression inhibit the expression of MMP-13, IL-6, and

caspase-3 in IL-1b-treated C28/I2 cells, promoting chondrocyte

p ro l i f e r a t i on and mig r a t i on and compromi s in g

inflammation (70).

In patients with OA, the expression of MALAT1 is

increased. In LPS-treated rat chondrocytes, silenced expression

of MALAT1 increases Collagen II expression and decreases

MMP-13, IL-6, and COX-2 expression, protecting ECM

against LPS-induced degradation. Mechanically, MALAT1

plays a critical role in LPS-induced pathological changes in

chondrocytes by activation PI3K/AKT/mTOR signaling

pathway via sponging miR-146a (71). Similarly, MALAT1 also

promotes ECM degradation by activating the expression of a

disintegrin and metalloproteinase with thrombospondin motifs-

5 (ADAMTS-5) by binding to miR-145 in human primary

chondrocytes in vivo and in vitro. Knockdown of MALAT1

expression may contribute to cell viability and the stability of

ECM in IL-1b-treated chondrocytes (72). MALAT1 may activate

the expression of NF-kB signaling by interacting with miR-9,

increasing the productions of IL-6, MMP-13, and caspase-3 in

mice chondrocytes. Resveratrol has been demonstrated to bind

to the promoter of MALAT1 and inhibit its transcriptional

expression, therefore inhibiting NF-kB signaling-mediated
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inflammation, ECM degradat ion, and chondrocyte

apoptosis (73).

Conversely, excessive proliferation may contribute to the

pathological alternations of OA. A study shows that MALAT1

may enhance cell proliferation, inhibit cell apoptosis, and

ameliorate the degradation of ECM in IL-1b-treated human

chondrocytes by stimulating AKT3 expression via sponging

miR-150-5p (74). Consistently, MALAT1 knockdown can

suppress the proliferation of human OA chondrocytes by

binding to miR-127-5p, accompanied by decreased expression

of PI3K/AKT signaling-related factors and OPN (75). In IL-1b-
treated rat chondrocytes, the expression of MALAT1 is down

regulated. PcDNA3.1-MALAT1 transfection may increase the

viability of chondrocyte and the expression of collagen II and

decrease the apoptotic ratio of chondrocytes and the expression

of MMP-13 by inhibiting the activity of p-JNK signaling (76).

Pathological changes in OA subchondral bone tissues are

also associated with the early alternations of OA. Trabecular

thickening can be developed before the initiation of cartilage

degeneration (77). MALAT1 expression in subchondral bone of

early OA patients is enhanced, and it is induced by inflammatory

stress. Depletion of MALAT1 may result in increased

production of PGE2 without affecting OPG synthesis (78). In

early stage of OA, synovitis is active. OA patients with synovitis

have been found the radiographic signs in cartilage degradation,

indicating a potential role of synovitis in accelerating the

pathological changes of OA (79). In obese patients with OA,

higher expression levels of inflammatory cytokines IL- 6 and

CXCL8 in synovial fibroblasts are observed. RNA-seq assays

identify that MALAT1 expression is significantly up regulated.

Knockdown of MALAT1 expression may compromise the

increased expression of inflammatory cytokines and inhibit the

proliferation of synovial fibroblasts (80).

Collectively, BMSCs-derived MALAT1 expression contributes

to inhibition of inflammation. In OA chondrocytes, the expression

of MALAT1 is up regulated and associated with increased

inflammation and cell excessive proliferation. Knockdown of

MALAT1 in OA chondrocytes may become a potentially

therapeutic strategy for clinic management of OA.
The roles of MALAT1 in
intervertebral disc degeneration

Intervertebral disc degeneration (IDD), an aging disease

with degenerative characteristics, is often associated with low

back pain in clinic. Intervertebral disc (IVD) consists of the

nucleus pulposus (NP), annulus fibrosus (AF), and cartilage

endplates (CEPs). The pathological changes in NP cells

contribute a key role to the development of IDD (81).

Differentially expressed lncRNAs from the NP cells of IDD
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patients have been shown the importance for the pathogenesis

and progression of IDD (82). It has been demonstrated that the

expression of MALAT1 in NP cells from degenerative IVD is

down regulated. Overexpressed MALAT1 may decrease the

production of IL-1 and IL6 and inhibit the expression of

caspase-3, inhibiting inflammatory responses and cell

apoptosis (83). Consistently, down regulated expression of

MALAT1 is statistically correlated with decreased production

of collagen II and aggrecan in rats with IDD. MALAT1

overexpression exhibits the protective activity against the

biological actions produced by IL-1b in NP cells via inhibiting

the expression of miR-503 and the activation of MAPK signaling

pathways (84).

CEPs control the transport and distribution of nutrients in

IVDs. Injury in CEPs has been reported to promote IDD

development. Diabetes mellitus (DM) contributes the

degeneration of CEPs, due to the detrimental effects of high

glucose on CEPs by inducing oxidative stress, mitochondrial

dysfunctions, and cell apoptosis (85). Controversially, the

expression of MALAT1 in high glucose-treated CEP cells is up

regulated. Deletion of MALAT1 may decrease CEP cells

apoptosis by attenuating the phosphorylation levels of p38

MAPK (86). More efforts are still needed to clearly elucidate

the relationship between MALAT1 and diabetic patients

with IDD.
The roles of MALAT1 in
rheumatoid arthritis

Rheumatoid arthritis (RA), an autoimmune disease, is

marked by chronic inflammation and joint destruction. Till

now, no effective and reliable biomarkers for prognosis

prediction or therapeutic evaluation are available for RA. The

etiological studies suggest that many factors, such as genetic

susceptibility, aberrant metabolism, and dysregulated immune

actions, are included in the pathogenesis and progression of RA

(87). Differentially expressed lncRNAs have been demonstrated

to contribute to the development of some auto-immune diseases,

such as RA (88). Activation of inflammatory and immune

responses and increased angiogenesis in synovial cells have

been reported to promote the pathogenesis of RA (89, 90).

These biological effects are also involved in the regulation of

MALAT1 as discussed above. It is reasonable to postulate that

MALAT1 is implicated in RA development.

MALAT1, MEG3, and NEAT1 have been identified as the

key potential lncRNAs involved in certain physiological and

pathological activity in RA patients. Specifically, the expression

of MALAT1 in the peripheral blood mono-nuclear cells

(PBMCs), plasma, and synovial fluid of RA patients is

significantly up regulated (91). In the fibroblast-like

synoviocytes (FLS) derived from RA patients, deletion of
Frontiers in Endocrinology 07
MALAT1 can decrease cell apoptosis and activate PI3K/AKT

signaling pathway. Quercetin may exhibit the protective activity

against MALAT1-induced pathological changes in RA FLS (92).

It has been reported that MALAT1 can be considered as a

potential biomarker for RA diagnosis, due to being statistically

correlating with the expression of HSPA5 (GRP78) and MMD

(PAQR1) in patients with RA (93). However, the single

nucleotide polymorphism of MALAT1 gene is reported to be

not correlated with the susceptibility of RA (94).
The roles of MALAT1 in juvenile
idiopathic arthritis

Juvenile idiopathic arthritis (JIA), a chronic rheumatic

disease in children associating with chronic inflammation and

inappropriate immune activation, starts before 18 years of age

and lasts at least 6 months, according to the updated

classification criteria (95). Drugs available for children with

JIA are rather limited (96). LncRNAs have been shown to

regulate immune abnormalities and the development of JIA.

For example, lncRNA RP11-340f14.6 can bind to the neighbor

P2X7R and increase its expression in patients with JIA. In

addition, RP11-340f14.6 up regulates the differentiation of

Th17 and down regulates Treg distribution in a P2X7R-

independent manner (97). In patients with systemic JIA, the

expression of MALAT1 is significantly up regulated, and the

productions of IL-6/-17/-1b, TNFa, and MMP-8/-9 in the

plasma are also increased. Knockdown of MALAT1 expression

may reverse the abnormal levels of these cytokines. MALAT1

ameliorates the progression of systemic JIA by activating JAK/

STAT signaling pathway through sponging miR-150-5p (98).
The roles of MALAT1 in ankylosing
spondylitis

Ankylosing spondylitis (AS), a chronic immune-mediated

inflammatory disease featured as bone erosion and

syndesmophyte formation, mainly occurs in the axial skeleton

and the sacroiliac joints. Bone destruction may be related to

activation of RANKL system and inactivation of Wnt/b-catenin
pathway (99). In addition, many immunocytes, such as Th1/

Th2/Th22 cells, dendritic cells, and T/B lymphocytes, have been

reported to be aberrantly activated (100). However, the

molecular mechanisms underlying the pathogenesis and

progression of AS remain unclear, and the clinical therapeutic

management of AS is dissatisfying. Evidence shows that

lncRNAs play a pivotal role in AS development (101). The

expression of MALAT1 is up regulated in cartilage tissue and

chondrocytes isolated from AS patients. Decreased expression of

MALAT1 enhances cell viability and inhibits pyroptosis by
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suppressing GSDMD expression and increasing miR-558

expression in AS chondrocytes (102).
The roles of MALAT1 in
gouty arthritis

Hyperuricemia-induced gouty arthritis (GA) is marked by

the deposition of monosodium urate (MSU) crystal in joints and

activation of immune inflammation. MSU can be recognized by

macrophages, and the system of NF-kB/RANKL is activated.

Increased tophus in the joint cavity constantly destroys the bone

surface and induces osteoclast differentiation by activating

RANKL system (103). Urate-lowering is the critical strategy to

therapeutic management of hyperuricemia and gouty. However,

adverse effects of current available drugs greatly limit their

applications (104). LncRNA has been implicated in the

pathogenesis of inflammatory arthritis, such as GA (105).

Differentially expressed lncRNAs in patients with GA have

been reported, and the predicted regulatory pathways are

mainly focusing on inflammation and osteoclast differentiation

(106). In MSU-treated THP-1 macrophages, MALAT1

expression is up regulated, and the productions of IL-1b,
TNFa, caspase-1, and NLRP3 are also enhanced. The total

glucosides extracted from paeony (TGP) may significantly

ameliorate the abnormal expression of these factors.

Overexpression of MALAT1 can abolish the suppressive

activity of TGP on MSU-induced inflammation by mediating

miR-876-5p/NLRP3 axis in THP-1 macrophages (107).

Targeting MALAT1 may become a potential strategy for

therapeutically treating GA.
Conclusion

Extensive evidence shows that lncRNAs have been

implicated in the various genomic processes, affecting cell

physiological and pathological functions. MALAT1, a well-

studied lncRNA, plays a key role in bone and cartilage diseases

by regulating the biological processes of osteogenic

differentiation, proliferation, and apoptosis. MALAT1 is

abundantly located at nuclear speckles, which mediate the

transcription, splicing, and mRNA export. Specifically, there is

a facilitatory effect for MALAT1 to interact with the targets, such
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as mRNA or TFs. The interactions between MALAT1/protein

and MALAT1/RNA are the essential ways for MALAT1 to

regulate the activity in bone and cartilage diseases, including

OP, OA, IDD, RA, JIA, AS, and GA. Particularly, MALAT1 may

promote osteogenic differentiation in MSCs. It is interesting that

decreased expression of MALAT1 is associated with the

pathological changes in OA chondrocytes. Conversely,

MALAT1 exhibits a stimulating effect on the pathological

development of RA, JIA, AS, and GA. However, the molecular

mechanisms of MALAT1 in regulating the pathogenesis and

progression of bone and cartilage diseases remain largely

unclear. More efforts are still needed.
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