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Albinism in the largest extant
amphibian: A metabolic,
endocrine, or immune problem?
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Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute
of Biology, Chinese Academy of Sciences (CAS), Chengdu, China
Background: Pigment regression is an intriguing phenomenon that can be

caused by disorders in melanin metabolism or endocrine regulation, or by

autoimmune disorders. Albino animals serve as excellent models for the study

of the genetic determination of morphology, particularly the evolution of and

molecular mechanisms underlying chromatophore-related diseases in animals

and humans.

Material and Methods: The artificial culture of Andrias davidianus, the largest

extant amphibian, is flourishing in China due to the great ecological and

economic value of this animal. Approximately 0.1% of individuals express an

albino phenotype accompanied by delayed somatic growth and mortality at

early developmental stages. In this study, brain and skin transcriptomics were

conducted to study the underlying molecular basis of the phenotype.

Results: The results indicated decreased transcription of genes of melanin

synthesis. Interestingly, MHC I isotypes and immune-related pathways

accounted for the primary transcriptional differences between groups,

suggesting that the albino phenotype represents a systematic immune

problem to a far greater extent than a pigmentation defect. Albino individuals

exhibited shifted transcription of MHC I isotypes, and the albino-specific

isotype was characterized by increased charges and decreased space in the

antigen- binding pocket, implying a drastic change in antigen specificity and a

potential risk of autoimmune disorders.

Conclusion: These results suggest an association between the albino

phenotype and MHC I variants in A. davidianus, which could serve as a

convenient model for vitiligo or other autoimmune diseases.
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Introduction

Pigment regression due to genetic factors is commonly

observed in vertebrates (1, 2). This can appear as a

morphological trait of an entire population or species adapted

to specific environments (e.g., darkness in caves or soil layers) (3,

4). More often, hypopigmentation is a minority feature

appearing in members of a population or species carrying

allele variants (5, 6). Typical examples are the pigmentary

disorders occurring in humans, such as vitiligo, piebaldism,

and albinism. This raises the question as to which internal

factors regulate the pigment cells and pigmentation processes

and thus govern hypopigmentation phenomena in vertebrates.

From a mechanistic perspective, hypopigmentation is always

associated with mutations in genes that either participate in

melanin synthesis (e.g., tyrosinase and melanosomal

transmembrane protein) (4, 5) or are responsible for signal

regulation in melanin synthesis and melanophore proliferation

(e.g., melanocortin receptors and agouti) (3, 7). In the latter type

of depigmented morphs, hypopigmentation is accompanied by

additional physiological outcomes due to the potential crosstalk

between regulation pathways (8, 9). Pigmentation is linked to the

levels of many endocrine factors and the activation of related

signal transduction pathways, including the melanocyte-

stimulating hormones (MSHs), adrenocorticotropic hormone,

steroid hormones, and prostaglandins (10). Among these

factors, alpha-MSH is the best described; its precursor,

proopiomelanocortin, is synthesized in the brain and pituitary

primordium (11). Additionally, hypopigmentation can

alternatively arise as a result of genetic variation in cellular

processes indirectly related to melanin systems. One typical

example of this type of case is vitiligo (12), an autoimmune

skin disease characterized by patches of depigmentation caused

by the destruction of melanophores (13). This disease is linked to

genetic polymorphism of the MHC regions (14–17).

Depigmented animals are excellent models for investigation

of the genetic determination of the corresponding

morphological traits, and studies of such animals may provide

evolutionary and mechanistic insights into animal and human

chromatophore-related diseases (e.g., vitiligo, albinism, and

melanoma). Although recent investigations have deepened our

understanding of these diseases, many questions surrounding

their initiation and progression remain to be answered (13), and

proper animal models are important as a means of studying their

pathogenesis and facilitating the discovery and evaluation of

therapeutic interventions (18). The Chinese giant salamander

(Cryptobranchidae: Andrias davidianus) is the largest extant

amphibian species (19). Its ancestors diverged from other

amphibians over 170 million years ago during the Jurassic

Period (20), making it one of the oldest families on the

amphibian tree of life. The artificial culture of A. davidianus is
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flourishing in China due to the great ecological and economic

value of this animal. In practice, approximately 0.1% of

individuals of the species express an albino phenotype of the

entire body (Figure 1A), characterized by semitransparent skin

with reduced skin pigmentation (Figures 1B, C). These albino

individuals always suffer additionally from other physiological

problems. For example, they grow more slowly than their typical

siblings and do not live through their first year. The genetic basis

of their albino phenotype has potential significance in the

aquaculture breeding of A. davidianus and in the development

of disease models. In this study, the gene transcriptional profiles

of the dorsal and tail skin and brain are compared between

albino and typical individuals to provide insight into the

molecular basis of depigmentat ion and associated

physiological abnormalities.
Methods and materials

Sample collection

Artificially-bred A. davidianus were collected from a farm

located in Hongya, Sichuan Province, China (103°10′05′′E, 29°
52′36′′N). Fertilized eggs of this species take approximately 70

days to develop to the stage at which formation of the fifth digit

in the hindlimb occurs (stage 46 according to the chronological

table suggested by Shi and Boucaut (21)) (22). These larvae take

more than 300 days to complete their metamorphosis

(characterized by disappearance of the gills) after hatching at

15 °C. In this study, albino and typical individuals (n = 7 per

group) were collected approximately 70–80 days after hatching.

All the larvae were at stage 46 (21) when they were collected. The

albino phenotype appeared sporadically across clutches, and

thus the seven albino individuals all had different parents.

Correspondingly, the typical individuals were randomly

collected from different clutches. Their body weight, body

length, head width, tail length, head length, orbital distance,

nasal distance, and eye diameters were measured. After having

been euthanized with MS-222, the larvae were dissected to

collect the dorsal skin, the tail skin, and the brain. All samples

were stored at -80 °C.
Transcriptome analysis

Transcriptome measurements were obtained from the brain

and the dorsal and tail skin of six albino and three typical

individuals. The brain transcriptome was included as the brain is

a central organ in the regulation of pigmentation in amphibians.

Previously-described protocols were followed for RNA

extraction, purification, cDNA library construction, filtration,
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assembly, annotation, and gene expression quantification (23).

RNA-seq was performed on an Illumina HiSeq 4000 platform by

Annoroad (Beijing); paired-end reads were generated. A

previously-reported multi-organ whole-length transcriptome

was used as the reference genome for transcript identification,

annotation, and gene expression quantification (24), and FPKM

values were calculated for each unigene (see gene expression

matrix in Table S1). This approach may improve the accuracy

and reliability of the transcriptional quantification in

comparison to a de novo assembly approach. Differently

expressed genes (DEGs) were identified by Student’s t test, and

functional enrichment analyses were conducted by querying

DEGs against the KEGG database (based on KOBAS 3.0, with

default parameters) (25).
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Sequence comparison and
phylogenetic analyses

Sequences of targeted genes were retrieved from Genbank or

from our transcriptome database. Sequence alignment was

performed using Clustal X2, and further edits were made

using GeneDoc. A maximum likelihood tree was constructed

using MEGA7 with default parameters.
Prediction of 3D protein models

3D models of MHC class I proteins were predicted on the

SWISS-MODEL server (https://www.swissmodel.expasy.org/)
FIGURE 1

Morphological and transcriptional differences between A'lbino and typical A davidianus. (A, B) Appearance of albino individuals. (C) Comparison
of dorsal skin pigment. (D, E) Differences between groups in overall length (D) and head width (E). (F) Transcriptome sampling scheme. (G)
PCoA scatter plot presenting the similarity in transcriptional profiles between samples. Dorsal and tail skin tissues with the same labels are
samples from the same individuals. ‘A’ and ‘B’ in the labels denote ‘Albino’ and ‘typical’, respectively. Note that dorsal and tail skins from the
same individuals are always associated with more similar transcriptomes, indicating a high degree of technical stability in our RNA-seq data. (H)
Statistics on DEGs in different tissues. (I) Transcriptional variations of genes in melanin synthesis. Asterisks denote significant differences between
groups (at a threshold of p < 0.05, Student’s t test).
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with “marsupial MHC I (7edo.2.A)” as the model. Analysis of 3D

models was performed using Swiss- Pdb Viewer.
Statistical analysis

Basic statistical analyses were conducted using IBM SPSS

22.0 (SPSS Inc., Chicago, USA). Kolmogorov–Smirnov tests

were conducted to assess the deviation of the data from

normal distribution. Inter-group differences in body length

and width were analyzed via ANCOVA with body weight as a

covariate. Inter-group differences in other body traits (using

relative values) were analyzed via Student’s t test. Dissimilarity

in transcriptomes was operationalized using the Bray–Curtis

distance, which was calculated using the vegdist function of the

R package Vegan. Subsequently, PERMANOVA (using the

Adonis function of the Vegan package) was employed to

identify differences in transcriptomes between the groups, and

PCoA was conducted to present the differences between groups.

Graphs were generated using GraphPad Prism 5 or the R

package ggplot2 (26).
Results

The albino individuals had comparable body width to typical

individuals with similar body weight, but their bodies were

smaller in length, resulting in a stockier overall body shape

(Figures 1D, E, S1). Their relative tail length, head length, orbital

distance, and eye diameters were comparable to those of typical

individuals; however, their nasal distance was much smaller

(Figure S1). Transcriptomics was conducted for the dorsal and

tail skin samples, as well as the brain (Figure 1F). As expected,

the two types of skin tissue shared similar transcriptional

profiles, which were quite distinct from that of the brain

(Figure 1G). PERMANOVA results suggested that there was a

significant inter-group difference in brain transcriptome, while

the transcriptional differences between groups in the skin

samples were less significant (Figure S2). In total, 1,023, 1,183,

and 840 DEGs between the groups were identified in the brain,

dorsal skin, and tail skin, respectively, among which 299 DEGs

were shared by the two skin tissue types (Figure 1H).

Three genes involved in melanin synthesis (namely,

tyrosinase, tyrosinase B, and dopachrome tautomerase) were

identified among the DEGs; these exhibited decreased

transcription in the skin of albino individuals (Figure 1I).

Interestingly, however, melanin synthesis did not account for

the most prominent transcriptional changes in the albino larvae.

Instead, an MHC class I gene was highlighted as exhibiting the

highest degree of fold changes (in the albino vs. the typical

group) in all three types of tissue (fold changes = 2,000, 144, and

340 in the brain, dorsal skin, and tail skin, respectively;

Figures 2A, B). Correspondingly, KEGG enrichment analysis
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based on brain DEGs (at a threshold of p < 0.05) highlighted

changes in immune-related processes (e.g., autophagy,

endocytosis, and Fc gamma R-mediated phagocytosis), signal

transduction (e.g., the AMPK signaling pathway and adrenergic

signaling in cardiomyocytes), and metabolic pathways (e.g.,

thermogenesis and oxidative phosphorylation) (Figure 2C).

The skin DEGs (meeting the threshold of p < 0.05 in both

tissue types) highlighted changes in the autoimmune and cancer

pathways, e.g., rheumatoid arthritis and bladder cancer

(Figure 2D). Furthermore, several signaling pathways (e.g.,

adrenergic signaling in cardiomyocytes and the estrogen

signaling pathway) were also enriched by DEGs, implying the

potential presence of endocrine disorders in the albino larvae.

A total of eight MHC class I isotypes (labeled ISO 1–8) were

identified in the whole-length transcriptome of A. davidianus

(Figures 3A, S3). Isotypes ISO 1–3 and ISO 4–5 belong to

different subclasses, whose members have been reported

previously, while isotypes ISO 6–8 belong to new subclasses.

ISO 1 is the dominating isotype expressed in the tissues of typical

individuals. In albino individuals, the transcription of this

isotype and b2 microglobulin (B2M), components of MHC I,

exhibited dramatic downregulation. Meanwhile, they also

exhibited notably increased transcription of ISO 2 and ISO 3

(Figure 3B). The sequence variances between ISO 1 and ISO 2–3

were mainly distributed in the a1 and a2 functional domains,

which are responsible for antigen binding (Figures 3C, D).

Within these domains, six neutral amino acid residues were

replaced by charged ones in ISO 2/3. These substitutions

increased the charges and reduced the amount of space in the

antigen-binding pocket.
Discussion

Our results suggest that the albino phenotype is associated

with shorter body length and reduced relative nasal distance in A.

davidianus. As the relative tail and head lengths are unchanged,

the shorter body length can most likely be attributed to a

systematic problem with growth. The biological significance of

nasal distance has not been fully understood in animals, but it is a

common morphological trait used in amphibian taxonomy, as it

reflects the anatomic feature of the skull bone. These

morphological changes may be explained by skeletal dysplasias,

a class of disorders characterized by orthopedic complications and

varying degrees of dwarfism or short stature (27). The

morphological abnormalities observed in the albino phenotype

in A. davidianus are not restricted to pigmentation problems.

Similar morphological abnormalities have not been reported in

white and albino Ambystoma mexicanum, which can grow and

breed normally (28). The white phenotype of A. mexicanum is

linked to genetic mutations preventing the differentiation and

migration of all types of chromatophores, while the albino

phenotype is due to the dysfunction of enzymes responsible for
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melanin synthesis (29, 30). Albino A. davidianus larvae do retain

some melanophore and melanin throughout the entire body,

particularly in the tail, whereas white and albino A. mexicanum

are almost devoid of melanin. This suggests that different

mechanisms should be expected to underlie the depigmentation

phenomenon in A. davidianus and A. mexicanum.

The decreased transcription of tyrosinases and dopachrome

tautomerase observed in the skin could explain the reduced

pigmentation in albino A. davidianus (Figure 1). Interestingly,

the transcriptional change in the brain was even more

prominent than that occurring in the skin samples (Figure S2),

although the latter contains the largest amount of melanin. In

both the brain and the skin tissues, the transcription of an MHC

class I gene accounted for the largest fold changes in albino

individuals (Figures 2A, B). MHC class I molecules occur on all

nucleated cells and present intracellular peptides to killer T cells

in order to mediate cellular immunity, including the cytotoxic

effect, phagocytosis, and inflammation. MHC class I gene
Frontiers in Endocrinology 05
variants are highly polymorphic, and their profiles and

expression levels play an important role in autoimmune

disorders, infectious diseases, and immunosurveillance (31,

32). In albino A. davidianus, the changes in the transcriptional

profiles of MHC class I isotypes are consistent with the

enrichment of DEGs in autophagy, phagocytosis, autoimmune,

and cancer pathways in the brain and skin (Figures 2C, D).

Functional enrichment based on DEGs also suggests the

potential presence of endocrine disorders in albino individuals.

However, this may be a result of autoimmune problems, despite

the fact that we cannot exclude the potential role of the

endocrine system in causing pigment regression, growth

retardation, and increased mortality in albino A. davidianus.

Overall, our results suggest that the albino phenotype

encompasses far more than a pigmentation defect; rather, it

represents a systematic problem associated with the immune

system. This could explain the concomitant physiological

defects, such as malformation, delayed growth, and mortality
D

A B

C

FIGURE 2

Identification of crucial DEGs and cellular processes. (A) The DEGs representing the greatest fold change in the brain. (B) Fold changes in DEGs
(p < 0.05) in the dorsal (horizontal axis) and tail (vertical axis) skins. Red dots denote DEGs shared by all three tissue types; blue dots denote
DEGs shared by the two skin tissue types. Note that most DEGs exhibit consistent trends in variation (i.e., an increase or decrease) between the
two types of skin tissue, indicating the reliability of the DEGs. (C, D) Functional analysis based on DEGs in the brain (C) or those shared by the
skin samples (D). Only the top 30 significant items are displayed (q < 0.01).
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at early development (33), as immune activity can be linked to

growth and development performance through both resource

allocation (34) and crosstalk between regulation pathways (35).

The association between MHC class I and depigmentation has

been well established in vitiligo, which is visible in the form of white

spots and affects ∼1% of the world’s human population. Mounting

strands of evidence support the theory that vitiligo is linked to

genetic changes in MHC gene regions (14–17). High-risk MHC

class I alleles can present many autoantigens, including some

melanocyte proteins, and thus induce autoimmune responses
Frontiers in Endocrinology 06
against melanocytes (36). In addition to the change in antigen

specificity produced by variations in coding regions, the altered

expression of MHC class I and II genes, caused by genetic variation

in adjacent transcriptional regulatory regions, plays an even more

important role in the activation of autoimmune responses (37–39).

Albino A. davidianus is characterized by an inverse transcriptional

change to MHC I isotypes 1 and 2/3. The albino-specific MHC I

isotypes 2 and 3 exhibit increased charges and decreased space in

their antigen- binding pockets, implying a drastic change in their

antigen specificity. Accordingly, this transcriptional shift in MHC I
FIGURE 3

Sequence and expression analysis of MHC class I genes. (A) Maximum likelihood tree for MHC class I genes (see the sequences in Table S2). Red
items denote MHC class I isotypes identified in this study; black items denote the known MHC class I genes of A davidianus and closely related
species. (B) Transcriptional levels of MHC class I isotypes and B2M. Asterisks denote significant differences between groups (at a threshold of p <
0.05, Student’s t test). (C) Amino acid substitutions in the antigen- binding regions of MHC class I isotypes. Red and blue characters represent
negative and positive charges. (D) 3D structure of MHC class I isotypes. The sites of amino acid substitution are highlighted by electron clouds
(blue: positive residues; red: negative residues). Red arrows denote antigen- binding pockets. Note the reduced space and increased charges in
the antigen- binding pockets of isotypes 2 and 3.
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isotypes may explain the depigmentation occurring in albino

individuals. This suggests that the albino A. davidianus, which

has uncovered skin and is readily accessible due to large-scale

farming, constitutes a potential animal model for study of the

pathogenesis of and therapeutic interventions for vitiligo or other

autoimmune diseases.

On this basis, further investigations may focus on the

molecular mechanisms underlying the associations between

MHC I isotypes and morphological and physiological defects:

for example, examining how the expression of MHC I isotypes 2

and 3 affects the autoimmune response and apoptosis in different

tissue and cell types. Moreover, it is also important to study the

genetic structure, polymorphism, and diversity of the MHC

regions of A. davidianus at the population level, and to

identify the regulatory regions that determine the expression

profile of different MHC I isotypes.

Conclusions

Approximately 0.1% of A. davidianus individuals express an

albino phenotype accompanied by delayed somatic growth and

mortality at early developmental stages. Transcriptional analysis

indicated decreased transcription of genes involved in melanin

synthesis in the skin in such individuals; however, MHC I genes

accounted for the most notable transcriptional changes in the

brain and skin. In combination with the enrichment of autophagy,

phagocytosis, autoimmune, and cancer pathways by DEGs, our

results suggest that the albino phenotype represents a systematic

immune problem rather than disorders in melanin synthesis or

endocrine regulation of pigmentation. Moreover, albino

individuals exhibited shifted transcription of MHC I isotypes,

and the albino-specific isotype was characterized by increased

charges and decreased space in the antigen- binding pocket,

implying a drastic change in antigen specificity and the

potential risk of autoimmune disorders. Overall, these results

suggest an association between the albino phenotype and MHC

I variants in A. davidianus, which lends it potential as an animal

model for vitiligo or other autoimmune diseases.
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