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Nonalcoholic fatty liver disease (NAFLD) includes a series of hepatic

manifestations, starting with liver steatosis and potentially evolving towards

nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis or even hepatocellular

carcinoma (HCC). Its incidence is increasing worldwide. Several factors

including metabolic dysfunction, oxidative stress, lipotoxicity contribute to

the liver inflammation. Several immune cell-mediated inflammatory

processes are involved in NAFLD in which T cells play a crucial part in the

progression of the disease. In this review, we focus on the role of different

subsets of both conventional and unconventional T cells in pathogenesis of

NAFLD. Factors regarding inflammation and potential therapeutic approaches

targeting immune cells in NASH are also discussed.

KEYWORDS

nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH),
hepatocellular carcinoma (HCC), CD4+ T cells, CD8+ T cells
Introduction

As the prevalence of obesity, diabetes, and metabolic syndrome is becoming higher,

the incidence of NAFLD is rapidly rising worldwide (1–4), the global prevalence of which

is approximately 25% (1), ranging from 13% in Africa (1) to 42% in southeast Asia (3).

NAFLD covers a spectrum of diseases involving nonalcoholic fatty liver (NAFL), which is

simple steatosis and tends to have a better prognosis, and NASH, which is characterized

by hepatocellular injury and fibrosis, subsequently evolving to cirrhosis and

hepatocellular carcinoma (HCC) (5–7). The major cause for liver transplantation has

already become NASH in the developed countries (8). NASH-related HCC accounts for

10% to 34% of the known etiologies of HCC (9), and tends to be diagnosed at a later stage

which is associated with a worse survival rate than HCC related to viral hepatitis (10).

However, current therapies for NASH are limited to losing weight and exercising (11),

and no drugs are currently approved for treating NASH (12).
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The pathogenesis of NAFLD has not been fully elucidated

but a “multi-hit” hypothesis is widely accepted. It begins with

lipid accumulation in hepatocytes. Subsequent oxidative stress,

increased release of pro-inflammatory cytokines and free fatty

acid from adipocytes which causes lipotoxicity collectively drive

the progression of liver steatosis and inflammation (13, 14). The

liver is a critical immune organ, in which T lymphocyte subsets

are important immune-regulated cells. Immune system

dysfunction contributes to development and progression of

NAFLD (15). It is widely believed that innate immunity

particularly macrophages play a key part in promoting liver

inflammation in NAFLD. Activation of resident KCs and

recruitment of monocytes both contribute to NASH through

production of ROS, nitric oxide and cytokines such as TNF, IL-

1b, IL-6 and TGF-b (16). There is also crosstalk between

macrophages and T cells. APCs which include macrophages

are indispensable in the activation of T cells to initiate immune

responses while macrophages can also be activated and polarized

by cytokines secreted by T cells such as IFN-g, IL-4 and IL-13

(17). As the role of macrophages has already been reviewed (16,

18) and given the increasing importance of T cells in NAFLD,

here we review the inflammation related factors and recent

evidence supporting the influence of different T cell subsets on

the pathogenesis of NASH and NASH-driven HCC. In addition,

we discuss possibilities of interfering with T cell mediated

responses as a potential approach for treating NASH.
Inflammation-related factors
in NAFLD

Inflammation is tightly associated with the evolution of

NAFLD. Several factors including metabolic dysfunction,

oxidative stress, lipotoxicity have been verified to induce

inflammation in NAFLD. Several evidence has demonstrated

that T cells involve in NAFLD through interacting with factors

mentioned above.
Metabolic dysfunction

Insulin resistance (IR) in insulin-sensitive tissues has been

considered as a critical determinant of development and

progression of NAFLD (19). This view is consistent with the

fact that the severity of NAFLD is related with systemic IR (19)

and patients with type 2 diabetes mellitus (T2DM) exhibit higher

incidence of NAFLD (20). IR may cause fatty liver through

persistent activation of hormone-sensitive lipase after a meal

thus inducing adipocyte lipolysis which results in increased free

fatty acids (FFAs) in serum (21). Stem cell growth factor-beta

(SCGF-b) is associated with the severity of IR in a CRP-

dependent manner in male patients with obesity (22).

Infiltration of specific subset of T cells contribute to IR in
Frontiers in Endocrinology 02
white adipose tissue, thus inducing the exacerbation of

NASH (23).

Meanwhile, dysfunction of adipose tissue (AT) featured with

recruitment of proinflammatory cells (especially macrophages)

in visceral AT (VAT) has been verified as a central part in the

development of NASH. Mechanically, activated macrophages

may secrete cytokines to induce lipolysis, accelerate the delivery

of nonesterified fatty acid to the liver and promote the

movement of inflammatory molecules toward liver, thus

inducing hepatic lesions (24). Chronic inflammation state

mediated by polarized macrophages has been associated with

IR (25). When treated with high-fat diet, mice develop IR,

hepatic lesions and recruitment of macrophages in AT. What’s

more, Fabbrini E et al. has revealed that specific subsets of T cells

accumulate in AT from metabolically abnormal insulin-resistant

obese individuals and lead to IR in vitro through production

of cytokines.
Oxidative stress

Oxidative stress is critical in the pathogenesis of NAFLD. In

most patients with NAFLD/NASH the levels or activities of

biomarkers of oxidative stress show an increasing trend while a

decreased concentrations or activities of antioxidant are

observed in liver sample (26). KCs and HSCs have been

verified to produce ROS dependent of NADPH oxidase (27)

(28).Increased ROS generation has been associated with

promotion of cell death, inflammation and fibrosis in liver

(14). Meanwhile, immune response triggered by oxidative

stress has been proven to facilitate hepatic inflammation in

experimental NASH dependent of Th-1 activation of CD4+ T-

lymphocytes (29). Also, oxidative stress results in an increased

level of hepatic leptin which contributes to accumulation of

CD8+CD57+ cytotoxic T cells thus playing a vital role in NASH

(30). Obesity-related oxidative stress leads to the recruitment of

T cells accompanying NASH, fibrosis along with HCC through

inactivation of STAT-1 and STAT-3 phosphatase T cell protein

tyrosine phosphatase (TCPTP) and activation of STAT-1 and

STAT-3 signaling (31). Abnormal accumulation of ROS induces

changes in IR and in lipid metabolism which further contribute

to aggravation of NAFLD (26).
Lipotoxicity

Lipotoxicity is one of the major mechanisms resulting in the

development of NASH. Accumulation of triglyceride (TG)

which used to be considered as a trigger of inflammation and

fibrosis in NAFLD. However, this view has been challenged by

convincing researches pinpointing that TG functions as a

protective factor against lipotoxicity (32, 33). In MCD-diet fed

mice, restricting hepatocyte triglyceride biosynthesis can
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significantly alleviate hepatic steatosis, but fail to inhibit the

progression of lobular inflammation and fibrosis in liver (33).

What’s more, accumulation of TG is inadequate to induce

IR (34).

Saturated fatty acids (SFAs) especially palmitic acid can

trigger liver lipotoxicity mainly through impairing IR (35),

GSK-3b-dependent hepatocyte lipoapoptosis (36). Lipotoxic

intermediates involve in lipoapoptosis induced by SFAs (37).

Lysophosphatidylcholine (LPC) and palmitic acid can trigger the

release of extracellular vesicles (EVs) from hepatocytes which

further promotes the recruitment of macrophages (38, 39).

Meanwhile, fatty acids may participate in liver fibrosis in

patients with NASH through modifying T-cell profiles (40).

SFAs and monounsaturated fatty acids (MUFAs) alter

endogenous antigen presentation to hepatic NKT cells and

lead to NKT cell depletion, resulting in further upregulation of

inflammatory signaling, IR, and hepatic steatosis (41).

Excess free cholesterol can accumulate in hepatocytes, HSCs,

KCs and lead to oxidative stress, dysfunction of mitochondria,

apoptosis which result in inflammation, fibrosis and a rising

incidence of HCC (14, 42).

T cells are lymphocytes which recognize antigen through T

cell receptors (TCRs) which are highly variable. Conventional T

cells include CD4+ T cells and CD8+ T cells, with expression of

different TCR co-receptors. Liver inflammation are dominated

by CD4+ T cells in the early stage, with a subsequent CD8+ T cell

response (29). In addition to the classical T cell subsets, there are

innate-like T cells which include the natural killer T (NKT),

gamma delta (gd) T, and mucosal-associated invariant T (MAIT)

cells. The unconventional T cells are recognized as innate

immune cells but also show features of adaptive immune cells,

the role of which in the pathogenesis of NASH should not be

ignored either (43).
Role of CD4+T cells

CD4+ T cells can protect the liver from infections but also act

a pivotal part in hepatocellular injury and autoimmunity (44).

Th1, Th2, Th17, Th22 and regulatory T (Treg) cells are

functionally different subsets of CD4+ T cells which express

distinct cytokines (45). Dysregulation of CD4+ T cell function is

emerging as a critical pathological factor in the development

of NAFLD.
Th1 cells in NASH

Th1 cells are characterized by their ability to produce IFN-g,
which activates STAT4 and STAT1 in effector cells to exhibit

pro-inflammatory effects (46).

There is an increase of hepatic Th1 cells in a NASH model

(47). Mice with IFN-g-deficiency show less liver steatosis and
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relieved fibrosis compared with wild-type (WT) ones (48). The

proportion of Th1 cells in both the peripheral blood and hepatic

tissues of NAFLD and NASH patients is elevated compared with

healthy controls (49, 50), although the number of Th1 cells does

not differ between NAFLD and NASH patients (49). Meanwhile,

genes encoding cytokines involved in the T cell activation

towards a Th1 phenotype are notably increased in NASH

compared with NAFLD patients (51). Moreover, the

percentage of Th1 cells producing IFN-g is positively

associated with insulin resistance in obese patients, indicated

by an increase of the circulating level of leptin, insulin and

HOMA-IR values (52). The proportion of Th1 cells in in visceral

rather than subcutaneous adipose is also reported to be

significantly correlated with plasma CRP, suggesting the

involvement of Th1 cells in obesity-driven inflammation (53).

IFN-g can induce hepatocyte apoptosis and cell cycle arrest

(54). It can also induce the expression of chemokines such as

CCL-20 and their receptors on hepatocytes (55), activate Kupffer

cells (56), thus playing a pathogenic role in the liver. Another

IFN-g-induced chemokine CXCL10 can recruit T cells which

express CXCR3. Serum CXCL10 levels are elevated in NASH

patients while CXCR3 deficiency or deletion of CXCL10 limits

liver inflammation, injury and fibrosis (57), and thus the

pathogenesis of NASH is reduced in mice (58).Therefore, the

effect of IFN-g deficiency on NASH is partially attributed to the

suppressed CXCL10-CXCR3 signaling (Figure 1).
Th2 cells in NASH

Th2 cells are thought to counteract tissue-damaging

inflammation, and promote the resolution of inflammation

and restoration of tissue homeostasis (59). Th2 cells mainly

produce IL-4, IL-5 and IL-13, which activate STAT5 and STAT6

(60). Th2 cells in peripheral blood of NAFLD patients are

increased compared with healthy controls (49), while no

differences in number of Th2 cells in peripheral blood or the

liver have been observed between NASH patients and NAFLD

patients or controls (50, 61).

Although Th2 cells may play an anti-inflammatory part in

NAFLD (47), it still promotes liver fibrosis in NAFLD, especially

under the influence of IL-13. Levels of circulating IL-13 and the

expression of IL-13RA2 in the liver are both elevated in NASH

patients (62). In a rodent NASH model, liver fibrosis is impeded

when IL-13RA2+ cells including HSCs are targeted by cytotoxin

(62). IL-13 signaling has also been reported to induce lipogenesis

and bile-dependent steatosis (63).The production of IL-4, IL-5

and IL-13 can be promoted by IL-33 (64), treatment with which

can promote liver fibrosis but also restrict lipid storage in

hepatocytes and result in slightly decreased liver injury in a

NASH mouse model (65). Therefore, the exact role of Th2

cells in NASH remains unclear and requires further

investigation (Figure 1).
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Th17 and Th22 cells in NASH

Th17 cells are often recognized as proinflammatory cells,

which mainly produce IL-17, IL-22 and IL-23 (43). Th22 cells

are characterized as IL-22 producing cells without production of

IL-17 (66).

The number of Th17 cells is higher in individuals affected by

NASH compared with healthy controls (23, 49, 67) and will

decrease 12 months after bariatric surgery (49). Increased

infiltration of Th17 cells is observed in the liver of NASH

patients compared with NAFLD patients, indicating that Th17

cells may help distinguish NAFLD from NASH (49). While

nonsteatotic (CCl4-damaged) hepatocytes seem to lack

responses to IL-17 signaling, steatotic (metabolically injured)

hepatocytes are strongly responsive to IL-17A, which results in

upregulation of its receptor IL-17RA, increased secretion of
Frontiers in Endocrinology 04
cytokines including IL-6, TNF, CXCL1, and increased

synthesis of cholesterol or fatty acids (68). Multiple models

have shown that IL-17A can increase hepatic DNA injury,

steatosis and fibrosis (23, 69). Mice with deficiency of IL-17A,

IL-17F or their receptor IL-17RA exhibit attenuated liver

steatosis and injury (69, 70). The application of a monoclonal

antibody against IL-17 also significantly reduces lipid

accumulation in the liver (71), and attenuates liver fibrosis (23,

47, 71, 72).

Th17-induced hepatic inflammation is mediated by an

infiltration of macrophages via IL-17-dependent upregulation

of CXCL10 (70, 71). The application of an anti-IL-17

monoclonal antibodies remarkably inhibits the activation of

Kupffer cells, and reduces pro-inflammatory cytokine levels

(71). Likewise, it has been showed that IL-17 exacerbates the

lipotoxic effect of FFAs in a JNK-dependent manner (47). IL-
FIGURE 1

Role of CD4+ T cell. Different sets of CD4+ T cells including Th1, Th2, Th17, Th22, Treg cells involve in the regulation of NASH and NASH-
induced HCC mainly through secretion of cytokines and interaction with other cells. Th1 cells are featured with secretion of IFN-g, which can
further induce apoptosis and cell cycle arrest of hepatocyte, activation of kupffer cells (KCs), production of CXCL20 and chemotaxis of CXCR3+

T cells in a CXCL10-dependent manner, thus accelerating the evolution of NASH. The exact role of Th2 cells releasing IL-4/13/15 in NASH
remains controversial, on one hand, they play an anti-inflammatory part in NASH, on the other hand, they aggravate fibrosis in NASH. Moreover,
there still have some debate over the effect of Th17 cells on NASH. Th17 cells can secret IL-17 which result in recruitment of macrophages via
releasement of CXCL10, activation of HSC, upregulation of pro-fibrotic genes and lipotoxic effect of FFAs in a JNK-dependent way, thus
facilitating the development of NASH. However, several researches have demonstrated that functional blockade of IL-17 enhances NAFLD. Th22
cells characterized by release of IL-22 have been verified as a protective factor of NASH. Th22 cells can suppress lipotoxicity and inflammation
through PI3K/Akt and STAT3 pathway respectively. What’s more, MT, an anti-oxidant enzyme, can be upregulated by Th22 cells which further
restrains hepatic oxidative stress and inflammatory function of hepatocyte-derived extra cellular vesicles. Meanwhile, Th22 cells involve in
upregulation of anti-apoptosis genes and downregulation of genes associated with lipid biosynthesis. Treg cells play a complex role in NASH,
they can not only promote fibrosis through release of TGF-b, but also inhibit fibrosis via secretion of IL-10. Treg cells lead to exacerbation of
NASH-induced HCC through suppression of tumor-infiltrating CD8+ T cells and Th1 cells. Th1 cells have been identified as anti-tumor cells
through release of IFN-g, meanwhile Th17 cells have been recognized as pro-tumor cells in NASH-induced HCC. However, a recent study
indicated that a predominant Th1 inflammatory pattern contributes to HCC while shifting to a Th17 inflammatory pattern inhibits tumor
progression. The exact role of each subset of CD4+ T cells in NASH and NASH-induced HCC need further investigation.
frontiersin.org

https://doi.org/10.3389/fendo.2022.1051076
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Mao et al. 10.3389/fendo.2022.1051076
17A can also activate HSCs (73) and increase the expression of

genes including COL1A1 and ACTA2 (74), consequently

exerting a pro-fibrotic effect (Figure 1).

IL-17 also plays a critical part in atherosclerosis, which is a

more dangerous co-morbidity of NAFLD. It has been reported

that IL-17 promotes the development of atherosclerotic plaque

via increasing the expression of CXCL-1 and adhesion of

macrophages to arteries while blocking IL-17 significantly

reduces formation of plaque (75), indicating its pro-

atherosclerotic effect. IL-17 can also induce secretion of

eotaxin by smooth muscle cells, which has a positive

correlation with IMT, a marker of atherosclerosis (76).

Conversely, IL-22 may play an inhibitory and protective part

in the progression of NAFLD. Administration of recombinant

IL-22 significantly attenuates liver injury and steatohepatitis in

animal NASH models, possibly through a STAT3-mediated

mechanism (77, 78). IL-22 can also attenuate lipotoxicity

induced by palmitate to inhibit JNK in a PI3K/AKT-

dependent manner (47). However, the effect of IL-22 is not

apparent in the presence of IL-17, as phosphatase and tensin

homologue (PTEN), the PI3K-AKT antagonist, can be

upregulated by IL-17 (47). IL-22 can also upregulate

metallothionein (MT), an antioxidant enzyme, to block hepatic

oxidative stress and suppress the inflammatory function of

hepatocyte-derived extra cellular vesicles, thereby attenuating

liver injury and inflammation (79). Besides, IL-22 can upregulate

the expression of genes related to anti-apoptosis, including bcl2

and bax, and suppress the expression of scd1, which involves in

lipid biosynthesis (80) (Figure 1).

Although IL-17 is commonly believed to play a pro-

inflammatory, pro-fibrotic and pro-atherosclerotic role in

NAFLD-related diseases, several studies have reported an

opposite effect, in which functional blockade of IL-17

enhances hepatic steatosis (69, 70) (Figure 1) and accelerates

the development of atherosclerosis. IL-22 is also widely

considered to contribute to atherosclerosis by regulating

macrophages and proliferation and migration of VSMCs (81).

Moreover, IL-22 therapy increases risk of HCC by activating

STAT3, which limits its clinical application (82). In conclusion,

the effect of IL-17 and IL-22 is uncertain and remains to be

further investigated.
Treg cells in NASH

CD4+ CD25+ FOXP3+ Treg cells act a pivotal part in

establishing immune tolerance and modulating immune

homeostasis (83). Treg cells secret IL-10, TGF-b, and IL-35,

thus exerting an immunosuppressive effect (84). TGF-b and IL-2

induced STAT5 is essential for their differentiation (85), which

can also be regulated by neutrophil extracellular traps (NETs),

suggesting that there is interaction between adaptive and innate

immunity (86).
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Decreased numbers of hepatic Treg cells have been observed

in animal models of NAFLD (87–89). Depletion of Treg cells in a

NASH mouse model exacerbates disease (90), and aggravates

obesity and IR (91, 92), whereas reconstitution of Treg cells can

attenuate liver inflammation (88). In addition, NAFLD patients

have lower number of circulating and hepatic Treg cells than

controls, which decreased more significantly in individuals

affected by NASH (49).

The production of oxidative stress, TNF-a and interferon I

by KCs and DCs promotes apoptosis of Treg cells (88, 90). This

leads to progression of NAFLD to NASH, especially with the

exposure to LPS, which can be endogenously produced by the

gut microbiota or delivered to the liver (88, 93). Furthermore,

adoptive transfer of Treg cells reduces TNF-a signaling induced

by HFD and hepatotoxicity caused by LPS (88). Moreover, Treg

cells appear to be more susceptible to oxidative stress,

consequently altering the ratio of Th17 to Treg cells. A higher

ratio of Th17/Treg cells is associated with the severity of liver

injury, inflammation, fibrosis, and can help distinguish NASH

from NAFLD (88, 94). The function and differentiation of

effector T cells and Treg cells can also be regulated by KLF10,

which is a TGF-b1-responsive transcription factor (95). In a

NASH mouse model, there is a significant decrease of KLF10

expression in effector T cells and Treg cells (96). Accumulation

of Treg cells is impaired in mice with KLF10 deficiency, which is

associated with IR and NAFLD (96). MIG/CXCL9 can also

regulate the differentiation of Treg cells through the JNK

pathway and increase the proliferation of Th17 cells, leading

to aggravation of NASH (97). Therefore, the imbalance of Th17/

Treg cells should be further investigated to provide a non-

invasive tool of severity assessment and a potential

therapeutic target.

Treg cells are also considered to exert antifibrotic effects, in

part owing to their secretion of IL-10 (98) while depletion of

Treg cells exacerbates liver fibrosis with marked changes in IL-10

production (99) (Figure 1).

Previously adoptive Tregs transfer was considered as a

potential therapy for NASH patients (100). But adoptive Tregs

transfer exacerbates hepatic steatosis while depleting Tregs may

attenuate steatosis in HFD-fed mice (101). Besides, as Treg cells

secrete TGF-b, it is widely recognized to be profibrotic in the

development of hepatic steatosis and fibrosis (85, 102, 103).

These conflicting findings may attribute to the different NASH

models used in researches or the opposite function Treg cells

have in different stages of NASH (104) (Figure 1).
CD4+ T cells in NASH-induced HCC

CD4+ T cells are thought to have immune surveillance and

antitumor effects, which have been found to recognize tumor

cells and initiate their lysis (105, 106). CD4+ T cells can also

prevent tumorigenesis in models of DEN-induced HCC (107)
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and mediate elimination of precancerous hepatocytes (108).

However, the effect of CD4+ T cells on NASH-driven HCC

needs further investigation.

Although mesenteric lymph node CD4+ T cells have been

shown to migrate to the liver and promote hepatic

inflammation, a decrease of CD4+ T cells in the liver has been

reported in NASH models (89), thereby increasing the risk of

NASH-to-HCC transition. CD4+ T cells are highly susceptible to

fatty acid enrichment, especially the linoleic acid, while an

accumulation of linoleic acid is observed in the NAFLD liver

(89, 109). Linoleic acid impairs mitochondrial function in CD4+

T cells, which leads to increased ROS production, caspases

activation, and subsequently cell death. Although the numbers

are reduced, intrahepatic CD4+ T cells are activated and produce

IFN-g, exerting an antitumor effect in NAFLD (89). It is also

reported that reduced hepatic CD4+ T cells impair the efficacy of

the immunotherapy while the administration of N-

Acetylcysteine (NAC) can restore CD4+ T cells and the

antitumor efficacy (110). However, it is advisable to further

investigate the effect of linoleic acid on different subsets of CD4+

T cells and their role in HCC transition, given their

counteracting functions in NAFLD.

Distinct hepatic immunological patterns contribute to the

progression or suppression of HCC. A three-dimensional

analysis of immune pattern of NAFLD-related HCC shows

that a CD8+ > CD4+, Th1 > Th17 > Th2 pattern is related

with tumor progression, while an equilibrium Th1 = Th17 = Th2

pattern in female and a semi-equilibrium Th1 = Th17 > Th2

pattern are associated with remission from HCC (111). It is

indicated that a predominant Th1 inflammatory pattern

contributes to HCC while shifting to a Th17 inflammatory

pattern inhibits tumor progression. However, Th1 cells are

widely considered to be anti-tumor and associated with a

prolonged overall survival(OS) (112, 113), and an increase of

Th17 cells which support cancer development has already been

reported, showing the opposite effects (23, 114) (Figure 1).

Nutrient overload causes DNA damage through recruitment of

Th17 cells and increased production of IL-17A by upregulating

hepatic unconventional prefoldin RPB5 interactor (URI) (23).

Blocking the IL-17A signaling, which can accelerate NASH

development, attenuates liver injury and prevents development

of HCC (23).

Moreover, Treg cells which increase in peripheral blood and

tumor tissues in HCC individuals (115) have been reported to

contribute to initiation and progression of cancer in NASH by

inhibiting the proliferation and function of Th1 cells which have

an effect of cancer immunosurveillance (86). Moreover, Treg

cells are thought to be pro-tumorigenic through inhibition of

tumor-infiltrating CD8+ T-cells (86). Therefore, researchers

believe that a decreased ratio of effector CD4+ T cells to Treg

cells represent a worse prognosis for HCC (116) (Figure 1).

Controversial results regarding the effects of CD4+ T cells in

NASH-driven HCC may attribute to distinct immune cell
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subsets. It also emphasizes that animal models should be

improved to closely mimic human disease (117).
Role of CD8+ T cells

CD8+ T cells in NASH

CD8+ T cells can not only be pro-inflammatory cells to

accelerate the development of NASH but also function as

immune surveillance cells to restrain NASH. Several factors

have been verified to influence the abundance, activity or

function of CD8+ T cells to regulate pathophysiology of

NASH. Changes in CD8+ T cells have been revealed in both

patients suffering from NASH and animal models of NASH.

Through transcriptional network analysis, increase of CD8+ T

cells in blood or liver has been verified in patients with NASH

and an experimental model of NASH driven by diet (118).

Increased number of CD8+ T cells secreting interferon-gamma

(IFN-g), IL-17A and IL-17F are observed in both hepatic

microenvironment and peripheral blood in patients suffering

from NASH and experimental mice model of NAFLD (50, 61,

70). What’s more, CD8+ T cells have been recognized as the

dominant intrahepatic immune cells and can activate HSCs in

obese model of NASH rather than lean model (119). In patients

with NAFLD and HCC, upregulation of receptor for advanced

glycation end products (RAGE) on CD8+ T cells is revealed

which can be a potential biomarker and therapeutic target (120).

CD8+ T cells is of great significance in regulating the

progression of NASH through various mechanisms. CD8+

tissue-resident memory T (Trm) cells, maintained by tissue IL-

15, can recruit HSCs in a CCR5-dependent manner and further

result in FasL-Fas-mediated apoptosis of activated HSCs which

can alleviate and delay the exacerbation of liver fibrosis in mice

with NASH (121). When treated with metabolic stimuli

(including acetate and extracellular ATP), CXCR6+ CD8+ T

cells function as auto-aggressive cells in a way independent of

MHC-class-I, which is induced by increased calcium influx and

leads to the upregulation of FasL and apoptosis of hepatocytes

thus promoting NASH (122–124). In choline-deficient high-fat

diet fed mice, CD8+ T cells and NKT cells are found to aggravate

the progression of NASH via interactions with hepatocytes,

during the process of which CD8+ T cells participate in liver

damage in a LTbR independent manner (125). CD8+ T cells can

produce perforin, a regulator of liver inflammation, which

restrains the development of NASH. Mechanistically, perforin

exhibits cytotoxic toward bone marrow-derived M1 monocytes

and macrophages and induces apoptosis of CD8+ T cells which

restrains the production of pro-inflammatory cytokines in

MCD-fed mice (126). In an IFN-I dependent pathway,

pathogenicity CD8+ T cells which result in glucose

dysregulat ion through aggravat ing hepatic IR and

gluconeogenesis are upregulated, thus leading to the
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development of NAFLD. Cytokines like IFN-g, TNF-a produced

by pathogenicity CD8+ T cells probably involve in the process

(127). In antigen peptide transporter 1 (TAP1(-/-)) mice which

restrict the generation of CD8+ T cells, chronic intake of fructose

doesn’t result in the development of IR or NAFLD and exhibits a

delay in the expression of NAFLD-related genes. This finding

supports that CD8+ T cells involve in the onset and evolvement

of NAFLD (128). What’s more, leptin may trigger macrophages

and hepatocytes death in a pyroptotic manner dependent of

CD8+ T lymphocytes in NAFLD progression (129) (Figure 2).

Regulation of abundance, activities or function of CD8+ T

cells is related to evolvement of NASH. Differential regulation of

inhibitory T Cell receptors PD1 and 2B4 on CD8+ T cells has

been associated with immune tolerance required by liver in

NASH. In mice treated with western diet, PD1 is upregulated on

liver and peripheral CD8+ T cells, 2B4 is augmented specifically

in liver rather than periphery on CD8+ T cells. Upregulation of

PD1 on CD8+ T cells restricts proliferation and degranulation of

CD8+ T cells, meanwhile, increased 2B4 on CD8+ T cells leads to

reduced proliferation rate and decreased secretion of

inflammatory cytokines like IFN-g and TNF-a, thus relieving

liver damage (130) (Figure 2). In patients with NASH,

suppression of CD8+ T cells induced by polymorphonuclear

neutrophils (PMNs) which probably leads to impaired immune-

surveillance of liver damage, and further facilitates the

development of NASH (131). However, dendritic cells restrain

the aggravation of NASH partly through limiting the

accumulation of CD8+ T cells (132). In a NASH mice model,

knocking down of mineralocorticoid receptor (MR)

downregulates CD25 activation marker on the surface of CD8+

T cells which alleviates NASH (133). In MCD-induced NASH,

recruitment of CD8+ T cells is verified, however, the level of

activated CD8+ T cell is maintained demonstrating that effector

T cells do not play an irreplaceable role in hepatic inflammation

in this model (29). When treated with FFA, the expression of

PD-L1 which can limit CD8+ T cells’ damage toward

hepatocytes is upregulate through ROS/ZNF24 pathway, thus

rescuing FFA induced injury of hepatocytes (134).

Recently, studies have revealed accumulation and activation of

macrophages can be triggered by activated CD8+ T cells in adipose

inflammation, meanwhile, CD8-independent adipose inflammation

is associated with systemic metabolism (135, 136). Considering the

tight connection between NASH and adipose inflammation, it

probably be a new insight into pathogenesis of NASH.

In a whole, the exact role of CD8+ T cells under diverse

circumstances in NASH and its interaction with other cells and

cytokines need thorough and critical researches to crystallize.

The mechanism underlying regulation of CD8+ T cells in NASH

deserve further investigation.
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CD8+ Cytotoxic T cells in NASH-induced
HCC

CD8+ cytotoxic T cells (Tc cells) are the main killers of

pathogens and cancer cells (137). In an MHC-I dependent

manner, they can recognize antigens and further induce

cytotoxic process in infected and cancer cells through

production of cytokines, secretion of cytotoxic agents

(perforins and granzymes), direct contact with cells (43).

The exact role of Tc cells in NASH-related HCC remains

controversial. Several studies have demonstrated that Tc cells can

accelerate NASH-related HCC. Activated Tc cells are verified to

augment in NASH-related HCC in mice model fed by CD-HFD

(125). Enrichment of signatures regarding T cells, cytotoxic cells,

and macrophages has been found in part of patients with NASH-

related HCC (138). The recruitment and activation of Tc cells may

partly attribute to STAT-1 or STAT-3 signaling which can

promote the expression of T cell chemokines including CXCL9

(31). However, in obesity, STAT-3 signaling can induce HCC in a

way independent of recruitment of T cells and evolution of NASH

and fibrosis (31). Preventive depletion of CD8+ T cell in mice

suffering from NASH can significantly inhibit the incidence of

HCC, suggesting that with defective immune surveillance

functions, hepatic CD8+ T cells accelerate HCC in mice with

NASH (139). What’s more, CD8+ T cells and NK cells probably

lead to the activation of LTbR and canonical NF-kB signaling in

hepatocytes which facilitates the transition of NASH to HCC.

Ablation of CD8+ T cells can alleviate liver damage and reduce

HCC prevalence (125) (Figure 2).

However, Tc cells also function as a critical part of

immunity surveillance which restrain the growth of cancer

cells (140) (Figure 2), inactivation and impairment of Tc cells

has been associated with development of HCC. Compared to

HCC induced by HBV/HCV, HCC driven by NASH shows a

weaker immune response to tumor specific antigen (TAA)

owing to the fact that CD8+ T cells with strong expression of

CTLA-4 is high (141). Tc cells can not only eradicate

established tumors but also restrain the early development of

cancer (114). Prolonged inflammation and fibrosis in NAFLD

can result in the enhancement of immunoglobulin-A-

producing (IgA+) cells expressing PD-L1 and IL-10 in the

liver which can directly inhibit Tc cells in liver, in turn, lead

to the development of HCC (114). Antigen-specific CD8+ T

lymphocytes are impaired by accumulated macrophages in the

liver environment thus inducing the development of NAFLD-

related HCC (142).
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CD8+ memory cells in NASH-induced
HCC

Once the infected or malignant cells are cleared, most Tc

cells undergo apoptosis, leaving behind memory cells. When

secondary exposure to antigens, CD8+ memory cells are able to

proliferate promptly, gain effector function rapidly and localize

to peripheral sites of infection (143).

Recently, several researches have revealed the complex role

of CD8+ Trm T cells, a unique subset of memory T cells which

persist in tissues, in NASH-induced HCC (144). In Ncoa5+/-

mouse model of HCC, preneoplastic livers of which are similar

to livers of NASH, CD8+ Trm cells functioning as pro-tumor

cells augment (145). However, as mentioned above, CD8+ Trm

cells protect against fibrosis in NASH (121), which may further

restrain the transition from NASH to HCC (Figure 2).
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There still have some debates against the role of CD8+ T

lymphocytes on the transition from NASH to HCC, owing to the

fact that CD8+ T lymphocytes may participate in multiple stages

in the process and animal models used in diverse experiments

are not exactly the same. An in-depth investigation is needed

which may better guide immune regulatory interventions in

patients with HCC.

Also, abnormal CD8+ T cells have been associated with

insensitivity of patients suffering from NASH-induced HCC to

immunotherapy. In a mice model of NASH-related HCC,

abundance of CD8+PD1+ T cells augments, however, anti-PD1

immunotherapy fails to restrain the progression of HCC and

even results in a significant increase in the incidence of HCC

(139). Mechanically, CD8+PD1+ T cells featured with an

upregulation of effector and exhaustion markers and a

decreased proliferative capability are deficient in immune-
FIGURE 2

Role of CD8+ T cell. CD8+ T cells expressing various receptors on the cell surface play a complex role in the evolvement of NASH and NASH-
induced HCC. Breaking down of the balance between damage and repairment functions of CD8+ T cells may result in the exacerbation of
diseases. CD8+ Trm cells induce the recruitment of HSC in a CCR5-dependent manner and further lead to apoptosis of HSC through FasL-Fas
thus inhibiting fibrosis in NASH. CD8+ T cells play an anti-inflammatory part in NASH through secretion of perforin which can not only induce
cytotoxic reaction in M1 monocytes and macrophages but also promote apoptosis of CD8+ T cells producing pro-inflammatory cytokines.
Upregulation of PD1 on CD8+ T cells restricts proliferation and degranulation of CD8+ T cells, meanwhile, increased 2B4 on CD8+ T cells leads
to reduced proliferation rate and decreased secretion of inflammatory cytokines, thus relieving liver damage. However, CD8+ T cells have been
reported as a promoter of NASH. Mechanically, CD8+ T cells can induce pyroptotic-like cell death in macrophages and hepatocytes, result in
impaired insulin signaling through release of IFN-g/TNF-a, and lead to liver damage in a LTbR-independent manner. Moreover, CXCR6+CD8+ T
cells accelerate apoptosis of hepatocytes dependent of FasL-Fas which facilitate NASH. CD8+ Tc cells, mainly effector cells of CD8+ T cells, can
not only function as immune surveillance cells to suppress NASH-induce HCC but also act as pro-tumor cells through interacting with NKT
cells to activate LTbR, NF-kB pathways and inducing exacerbation of tissue damage. CD8+ Trm cells, a kind of CD8+ memory cells, have been
verified as pro-tumor cells in NASH-induced HCC. However, evidence has shown that CD8+ Trm cells can restrict the evolution of fibrosis in
NASH which probably limits the transition of NASH into HCC.
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surveillance functions and instead cause tissue damage which

can be partially restrained through PD-1 signaling (139, 146).

Meanwhile, it has been found that patients with NASH-driven

HCC are less sensitive to anti-PD1 or anti-PDL1 treatment in

comparison to patients with other etiologies (139). Impaired

response to immunotherapy in NASH-driven HCC is associated

with reduced motility and abnormal metabolic functions of

CD8+ T cells rather than infiltration of CD8+ T cells and

concentration of effector CD8+ T cells in tumor tissue (147,

148). Further researches need to be done to explore the reason

why NASH-induced HCC is less sensitive to immunotherapy,

which can not only broaden our horizons in the mechanism by

which NASH promotes HCC but also help us to find targeted

population of immunotherapy in HCC and investigate the

feasibility of combined therapy in NASH-induced HCC.
Roles of unconventional T cells

NKT cells

Numerous NKT cells, a kind of innate-like cells, locate in

liver sinusoids, expressing surface markers expressed by NK cells

as well as TCR. NKT cells recognize lipid antigens dependent of

CD1d (149). NKT cells are crucial to maintain the balance of

immune system between inflammation and tolerance (150).

Researches have revealed that NKT cells restrain the

aggravation of NAFLD (151). Depletion of NKT cells is

uncovered in patient with NAFLD and diet-induced NAFLD

mice (150, 151). High-fat diet induces increased pro-

inflammatory KCs which further promote over-activation and

cell death of NKT cells, thus leading to the deficiency of NKT

cells in the progression of NAFLD (152). Tim-3+/Gal-9 pathway

contributes to the depletion and secondary proliferation of NKT

cells in diet-induced NAFLD (153). Mice lacking NKT cells

exhibit higher rate of weight gain and liver steatosis which

suggests that NKT cells involve in restricting obesity and

metabolic dysfunction triggered by diet (154). CXCR6, a

promotor of NKT cell recruitment, can restrict inflammation

in NAFLD (155). Hepatic cholesterol accumulation selectively

inhibits antitumor immunosurveillance of NKT cells in a diet-

associated NAFLD-HCC mice model through lipid peroxide

accumulation and deficient cytotoxicity in a SREBP2-dependent

manner (156) (Figure 3).

However, conflicting concept exhibiting NKT cells facilitate

NAFLD has been supported by several evidence. Infiltration of

NKT cells has been proven in HFHC-induced progressive

NASH (157), furthermore, NKT cells augment in liver and

blood of patients with moderate to severe steatosis (158).

NAFLD relies on iNKT cells in CDAA-fed mice, a growing
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number of CXCR3+IFN-g+T-bet+IL-17A+ iNKT cells is

uncovered in NASH patients (159). During convalescence of

NASH, cytotoxic NKT cells decrease (160). NKT cells can

promote proinflammatory environment and steatosis via

secretion of (TNF)-related apoptosis-inducing ligand (TRAIL)

and LIGHT, respectively (125, 161). What’s more, NKT cells are

associated with NASH-related fibrosis. NKT cells are found to

accumulate in cirrhotic livers. Activation of Hedgehog (Hh)

pathway can induce recruitment of NKT cells in liver (162).

Deficiency of NF-kB1 favors the recruitment of NKT cells

through upregulation of IL-15, a cytokine regulating NKT cell

survival and maturation (163). Hepatic NKT cells can activate

HSCs to promote fibrosis through production of osteopontin

(OPN) and Hh ligands (29, 164). Plasma concentrations of OPN

are positively related to severity of liver fibrosis which may be a

potential marker of NASH fibrosis (164) (Figure 3).
MALT cells

MALT cells, are identified as CD3+CD4-CD161hiVa7.2+

lymphocytes with a restricted species of b chain (mainly Vb 6

and Vb 20) (165, 166). The immunological surveillance

function of MALT cells can be triggered by metabolites of

vitamin B, an antigen presented by MR1 (167). The effector

memory phenotype of MALT cells, responds to antigen

relying on TCR and cytokine independent of TCR (166).

The effect of MALT cells may attribute to production of

proinflammatory cytokines containing IL-17, IFN-g (168,

169) and releasement of cytotoxic factors like granzyme B

and perforin (166).

MALT cells form 40% of intrahepatic T cells and involve in

NAFLD-related diseases (166, 170). In patients with NAFLD,

circulating MALT cells decrease and intrahepatic MALT cells

increase. Functions of circulating MALT cells including rising

secretion of IL-4 and reduced production of IFN-g change.

What’s more, activated MALT cells can induce differentiation

of monocytes/macrophages into anti-inflammatory M2

phenotype. Taken together, MALT cells alleviate inflammation

in NAFLD (171). However, it has been highlighted that MALT

cells play a pro-inflammatory and pro-fibrotic role in NAFLD.

MALT cells accumulate in liver fibrotic septa in patients

suffering from NAFLD-related cirrhosis and exhibit a pro-

inflammatory phenotype with increased IL-17+ T cells.

Meanwhile, MALT cells can contract with hepatic fibrogenic

cells and enhance the accumulation of hepatic fibrogenic cells in

an MR-dependent manner to facilitate fibrosis. Meanwhile,

MALT cells involve in promoting the transformation of

hepatic fibrogenic cells to pro-inflammatory phenotype via

TNF-g thus accelerating inflammation (172) (Figure 3).
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gdT cells

gdT cells are characterized by a TCR g chain and d chain, and
MHC-mediated antigen presentation is not required for their

recognition of antigen (173). After antigen recognition, gdT cells

can produce IL-17 and IFN-g, exert cytotoxic effect on target

cells, and activate other immune cells (174). Moreover, some

studies suggest that gdT cells secrete even more IL-17 than

classic Th17 cells in both adipose tissue and the liver (175, 176).

gdT cells are thought to promote the progression of NAFLD.

In NASH mouse models, a marked elevation of gdT cells in both

adipose tissue and liver has been verified, which is associated with

development of NAFLD (176). The microbiota controls the

number of gdT cells in the liver dependent of lipid antigen

CD1d (177) and CCR2 can increase the infiltration of gd T cells

(177). Mice lacking gdT cells exhibit a significant attenuation in

steatohepatitis after HFD treatment. And transfer of IL-17A-/-

rather than WT hepatic gdT cells display reduced NASH in mice

with gdT cells deficiency, indicating that gd T cells may contribute

to NASH progression through IL-17 secretion (176). However, the
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pathogenic effect of gdT cells probably is independent of IL-17

(177). gdT cells can also facilitate fibrosis progression by activating

HSC and Kupffer cells through production of IL-17

(73) (Figure 3).

Therapeutic approaches

There are currently no clinically approved therapies for

NASH (178). But considering the influence of T cells in the

pathogenesis of NASH, therapies modulating them can

conceivably prevent the progression of disease. The possible

targets include recruitment of T cells into the liver, TCR

signaling, proinflammatory cytokines secreted by T cells,

survival and proliferation of specific T cell subsets. Various

potential therapies have been tested in clinical trials.

Monocytes and T cells express CCR2 and CCR5, so

cenicriviroc (CVC) which is a dual CCR2 and CCR5 antagonist

can limit their infiltration in the liver and has been shown to limit

fibrosis in NASH mice (179–181). However, results of the phase

III study showed a lack of efficacy (12). Thus, to more efficiently
FIGURE 3

Role of unconventional T cell. Unconventional T cells like NKT, MALT, gdT cells participate in the development of NAFLD. gdT cells have been
proven to facilitate the development of NAFLD through secretion of IL-17 and IFN-g which can lead to cytotoxic activity on target cells. What’s
more, IL-17 released by gdT cells can induce activation of hepatic stellate cells (HSCs) and KCs thus promoting fibrosis in NASH. However,
conflicting results regarding the role of NKT and MALT cells in NAFLD have been exhibit. NKT cells have been reported as protective factors of
NASH, mechanically, they can not only restrain diet-induced obesity and metabolic dysfunction but also limit inflammation. However, NKT cells
can induce pro-inflammatory environment and steatosis dependent of TRAIL and LIGHT respectively. Meanwhile, fibrosis is accelerated partly
attributed to release of Hh ligands/OPN by NKT cells. On one hand, MALT cells induce the differentiation of monocytes and macrophages into
anti-inflammatory phenotype thus inhibiting development of NASH. On the other hand, MALT cells can not only induce the accumulation of
hepatic fibrogenic cells which further result in fibrosis, but also promote inflammation through differentiation of hepatic fibrogenic cells into
pro-inflammatory phenotype dependent of TNF-g and release of IL-17. Last but not the least, NKT cells functioning as immune surveillance cells
are crucial in suppressing NASH-induced HCC.
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limit NASH, CVC might be used with the combination of other

agents blocking T cell recruitment (182). In NASH-driven HCC,

although CCL2/CCR2 has a dual role on immune cells which can

drive the infiltration of both MDSCs and CD4+ Th1, CD8+ cells

(183), a pre-clinical study has demonstrated that a CCR2

antagonist which can block immunosuppression mediated by

tumor-infiltrating macrophage and increase CD8+ T cells

exhibits an anti-tumor role in HCC, with a more significant

effect combined with low-dose sorafenib (184, 185).

Vedolizumab, the antibody against a4b7, which has already been
approved for treating IBD, can block the binding of CD4+ T cells to

MAdCAM-1 and result in inhibition of the pathogenic recruitment of

CD4+ T cells and attenuate hepatic inflammation and fibrosis in a

NASHmodel (186). The anti-MAdCAM-1 antibody is also in clinical

trials (104). Either of them is a potential therapy for NASH.

T cells recognize antigens through TCR, which is associated with

the CD3 molecule (187). A clinical trial of the mouse anti‐CD3 mAb

OKT3 in NASH patients demonstrates that OKT3 can promote Treg

cells with an increase in their numbers and secretion of anti‐

inflammatory cytokines, indicating that OKT3 has the potential to

inhibit the inflammatory process (188). What’s more, oral

administration of OKT3 does not show immunosuppressive effects

as it is not absorbed systemically, which is safer to use.

The stimulation of adenosine A2a receptor (A2aR) has been

reported to reduce recruitment of Th1 and Th17 cells through

the inhibition of CCL20 and CXCL10 expression and increase

suppressive ability of Treg cells. Immunolipotoxicity induced by

IL-17 is also prevented by A2aR activation via modulation of

PTEN/PI3-kinase-Akt signaling (189). TGF-b which is a main

profibrotic factor also decreases after the treatment. Taken

together, A2aR stimulation is a hopeful therapeutic approach.

CXCL10 is identified as a key gene in NAFLD progression

using a minimum depth random forest algorithm (190). The

anti-CXCL10 antibody can reduce lipid accumulation and

infiltration of inflammatory cells, consequently preventing

steatohepatitis and reducing hepatic fibrosis. However,

CXCR3–/– mice exhibit more severe liver injury as CXCL9

exerts an anti-fibrotic effect. So treatment need to be highly

specific for the CXCL10 (191). TNF-a secreted by T cells plays a

pro-inflammatory role. The anti-TNF-a drug thalidomide and

the neutralization of TNF-a by Infliximab both show decreased

inflammation and fibrosis in NASH models (192, 193). TGF-b
secreted by T cells mediates the activation of HSCs and is a key

pro-fibrogenic cytokine (194). The anti-fibrotic TGF-b inhibitor

Galunisertib can inhibit SMAD2 phosphorylation and block

collagens deposition (195). Thus, the development of reagents

to regulate the CXCL10/CXCR3 pathway, TNF-a and TGF-b
may be useful therapeutic strategies to attenuate liver fibrosis.

Linoleic acid can upregulate carnitine palmitoyltransferase

(CPT) gene which induces apoptosis of CD4+ T cells and

promotes progression of HCC. Peroxisome proliferator-

activated receptor alpha (PPAR-a) has been found to

upregulate expression of CPT genes (196), but the exact role
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of PPAR-a in HCC is conflicting (197). Thus, CPT is a more

ideal target and in vivo targeting of CPT blocks HCC

development in NAFLD. Theaphenon E (TE), the green tea

extract, significantly decreases the compensatory proliferation

because of liver injury which promotes tumorgenesis, and

increases survival of CD4+ T cell in HFD mice. The effect of

TE may attribute to its inhibition of accumulation of linoleic acid

in the liver (198). Oral administration of curcumin which is a

polyphenol exerting antioxidant and anti-inflammatory effects,

is proved to prevent HFD-induced liver injury, intrahepatic

accumulation of CD4+ T cells and the pro-inflammatory

effects on macrophages induced by linoleic acid (199).

Several studies also address the possibility of interfering with

T cell-mediated responses as a novel approach for treating NASH,

such as PR-957 which can hinder endothelial MHC-II antigen

presentation to CD4+ T cells (200), lycopene,which can suppress

the recruitment of T cells as well as activation of M1macrophages

(201), and koumine which can reduce the percentages of Th1 and

Th17 cells and increase Th2 and Treg cells in the liver (202).

In conclusion, approaches targeting T cells is promising for

future therapies.
Conclusions and perspectives

NAFLD is a complicated disease caused by multifactor. Basic

and clinical researches have both suggested that innate and

adaptive immune activation plays a pivotal part in triggering

and exacerbating hepatic inflammation in NAFLD, while

persistent inflammation results in liver injury. We have

described here how different T cell subsets exert diverse effects

on liver inflammation and fibrosis, as well as the progression of

NASH to HCC. However, current findings are conflicting

regarding the exact roles T cells play in NAFLD. Our

understanding is fragmented and requires further

investigation. Mouse models of NASH need to be improved to

closely mimic the human condition. Comparing the immune

landscape in NASH patients with different mouse models could

help to suggest a more superior preclinical model. Moreover,

crosstalk between different immune cells and also between

immune cells and HSCs also need to be considered. Although

current knowledge indicates that there are opportunities to

design new potential therapies or to improve current

treatments regulating T cells and their responses, the clinical

efficacy still remains to be demonstrated in more clinical settings.

Considering that IL-17 can be produced by a variety of T cell

subsets such as Th17, MALT and gdT cells and its critical role in

NAFLD, the therapeutic potential of targeting IL-17 can be

evaluated as a research goal in future. Indeed, antagonists of IL-

17 have already been approved for the treatment of several

autoimmune diseases such as IBD and RA (43). In addition,

drugs such as statin, vitamin D, probiotics and retinoic acid,

which can restore the balance of Th17/Treg cells, have already
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shown the potential to alleviate NASH (203). The imbalance of

Th17/Treg cells, as an emerging biomarker for disease

assessment and outcome prediction, may become a promising

target and requires further exploration.
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Glossary

NAFLD nonalcoholic fatty liver disease

NASH nonalcoholic steatohepatitis

HCC hepatocellular carcinoma

CD cluster of differentiation

NAFL nonalcoholic fatty liver

IR insulin resistance

T2DM type 2 diabetes mellitus

FFA free fatty acid

SCGF-b stem cell growth factor-beta

AT adipose tissue

VAT visceral adipose tissue

KC kupffer cells

HSC hepatic stellate cell

ROS reactive oxygen species

NADPH nicotinamide adenine dinucleotide phosphate

Th helper T

STAT signal transducing activator of transcription

TCPTP T cell protein tyrosine phosphatase

TG triglyceride

MCD methionine- and cystine deficient diet

SFA saturated fatty acid

GSK-3b glycogen synthase kinase-3b

LPC lysophosphatidylcholine

EV extracellular vesicle

MUFA monounsaturated fatty acid

ER endoplasmic reticulum

TCR T cell receptor

NKT natural killer T

gdT gamma delta T

MALT mucosal-associated invariant T

Treg regulatory T

IFN Interferon

WT wild-type

HOMA-IR homeostasis model assessment-Insulin resistance

CRP C-reactive protein

CCL chemotactic cytokine

CXCL chemokine (C-X-C motif) ligand

CXCR chemokine (C-X-C motif) receptor

IL i8nterleukin

IL-R interleukin receptor

TNF tumor necrosis factor

IMT intima-media thickness

JNK c-Jun NH-terminal kinase

PI3K phosphoinositide-3 kinase

PTEN phosphatase and tensin homologue

MT metallothionein

VSMC vascular smooth muscle cell

(Continued)
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FOXP3 forkhead box protein 3

TGF transforming growth factor

NET neutrophil extracellular trap

DC dendritic cell

LPS lipopolysaccharide

HFD high-fat diet

KLF10 kruppel-like factor 10

MIG monokine Induced by Interferon-gamma

DEN diethylnitrosamine

NAC N-Acetylcysteine

URI unconventional prefoldin RPB5 interactor

OS overall survival

RAGE receptor for advanced glycation product

Trm tissue -resident memory T

CCR chemokine receptor

FasL factor related apoptosis ligand

Fas factor related apoptosis

MHC major histocompatibility complex

LTbR lymphotoxin beta receptor

TAP antigen peptide transporter

PD1 programmed cell death protein 1

PMN polymorphonuclear neutrophil

MR mineralocorticoid receptor

PD-L1 programmed cell death 1 ligand 1

ZNF24 zinc finger protein 24

Tc cells cytotoxic T cells

CD-HFD choline deficiency- high-fat diet

NF-kB nuclear factor kappa-B

HBV hepatitis B virus

HCV hepatitis C virus

TAA tumor-associated antigen

eTregs effector regulatory T cells

CTLA cytolytic T lymphocyte-associated antigen

IgA+ immunoglobulin-A-producing

TAM tumor-associated macrophage

NRG Neuregulin

Ncoa5 nuclear receptor coactivator 5

NK natural killer

Tim-3 T cell immunoglobulin and mucin domain-containing protein 3

Gal-9 galectin-9

SREBP2 cholesterol regulatory element binding protein 2

iNKT invariant natural killer T

CDAA choline-deficient L-amino-defined diet

TRAIL tumor necrosis factor-related apoptosis-inducing ligand

LIGHT herpevirus entry mediator ligand

Hh hedgehog

OPN osteopontin

MR1 major histocompatibility complex class I-related

CVC cenicriviroc

MDSC myeloid-derived suppressor cells

MAdCAM-1 mucosal addressin cell adhesion molecule-1
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mAb monoclonal antibody

A2aR adenosine A2a receptor

SMAD2 mothers against decapentaplegic homolog 2

CPT carnitine palmitoyltransferase

TE theaphenon E

IBD inflammatory bowel disease

RA rheumatoid arthritis
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