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Oocyte-specific disruption of
adrenomedullin 2 gene
enhances ovarian follicle
growth after superovulation

Chia Lin Chang*†, Wei-Che Lo †, Ta-Hsien Lee, Jia-Yi Sung
and Yen Ju Sung

Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center,
Chang Gung University, Taoyuan, Taiwan
Background: Adrenomedullin 2 (ADM2), adrenomedullin (ADM), and calcitonin

gene-related peptides (a- and b-CGRPs) signal through heterodimeric

calcitonin receptor-like receptor/receptor activity-modifying protein 1, 2 and

3 (CLR/RAMP1, 2 and 3) complexes. These peptides are important regulators of

neurotransmission, vasotone, cardiovascular development, and metabolic

homeostasis. In rodents, ADM is essential for regulating embryo implantation,

fetal–placental development, and hemodynamic adaptation during pregnancy.

On the other hand, ADM2 was shown to affect vascular lumen enlargement,

and cumulus cell-oocyte complex (COC) communication in rodent and bovine

ovarian follicles. To investigate whether oocyte-derived ADM2 plays a

physiological role in regulating ovarian folliculogenesis, we generated mice

with oocyte-specific disruption of the Adm2 gene using a LoxP-flanked Adm2

transgene (Adm2 loxP/loxP) and crossed them with Zp3-Cre mice which carry

a zona pellucida 3 (Zp3) promoter-Cre recombinase transgene.

Results: While heterozygous Adm2 +/-/Zp3-Cre and homozygous Adm2

-/-/Zp3-Cre mice were fertile, Adm2 disruption in oocytes significantly

increased the number of ovulated oocytes following a superovulation

treatment. Oocyte-specific Adm2 disruption also significantly impaired the

developmental capacity of fertilized eggs and decreased the size of the corpus

luteum following superovulation, perhaps due to a reduction of ovarian cyclin

D2-associated signaling.

Conclusions: The disruption of intrafollicular ADM2 signaling leads to follicular

dysfunction. These data suggested that oocyte-derived ADM2 plays a

facilitative role in the regulation of hormonal response and follicle growth

independent of the closely related ADM and CGRP peptides, albeit in a subtle

manner.
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Introduction

Adrenomedullin 2/intermedin (ADM2/IMD) belongs to a

peptide family that includes adrenomedullin (ADM), calcitonin

gene-related peptides (a- and b-CGRPs), calcitonin, and amylin

(1–5). ADM, ADM2, and CGRPs are structurally similar and

signal through receptor complexes consisting of calcitonin

receptor-like receptor (CLR) and one of the three receptor

activity-modifying proteins (RAMP1, 2 and 3) (1, 2, 5–7).

While CGRPs and ADM mainly signal through CLR/RAMP1

and CLR/RAMP2, respectively (6, 8), ADM2 is a mild agonist

with no distinct preference for the three CLR/RAMP receptors (1).

CGRPs are important for the regulation of nociception,

hyperalgesia, and allodynia (9, 10), and excessive CGRP release

is associated with migraine and joint pain (11, 12). On the other

hand, ADM is essential for the regulation of vasotone and

endothelial barrier integrity as well as the proliferation of blood

and lymphatic endothelial cells (5, 13–31). Mice deficient in Adm,

Clr, or Ramp2 gene die in uterowith cardiovascular abnormalities.

Heterozygous Adm+/- mice are hypertensive/obese and have

increased mortality under stress conditions (32–34). On the

other hand, Adm2 was recently shown to be important for the

regulation of vascular lumen enlargement in mice (35). Of

interest, the ADM2 transcript was shown to be preferentially

expressed in rodent and human oocytes (1, 36). In addition, we

have shown that ADM2 facilitates cell-cell interactions in

cumulus-oocyte complexes (COCs) by improving the expression

of cell cycle progression genes such as cyclin D2 (37, 38). Likewise,

in bovine follicles, ADM2 was shown to act as a secretory factor

controlling COCs conformation (39) and improve oocyte
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competence and embryo quality (40). Only embryos from

COCs treated with ADM2 could develop into stage-6 grade I

blastocysts while blockage of ADM2 signaling inhibited normal

COC formation. However, whether the endogenous oocyte-

derived ADM2 is essential for the regulation of folliculogenesis

remains to be vetted. The various roles attributed to oocyte-

derived ADM2 may be mediated by endogenous ADM or CGRPs

which act through the same receptors.

To investigate the physiological role of oocyte-derived ADM2,

we generated mice with oocyte-specific disruption of the Adm2

gene using a LoxP-flanked Adm2 transgene (Adm2 loxP/loxP;

Figure 1) and a zona pellucida 3 (Zp3) promoter-Cre

recombinase transgene. Analysis of the reproductive physiology

of these mice showed that intrafollicular ADM2 signaling plays a

niche role in the regulation of folliculogenesis independent of the

closely related ADM and CGRPs (41). Further studies of the role

of ADM2 signaling during folliculogenesis may facilitate our

ability to improve follicle development in infertile patients.
Materials and methods

Construction of the Adm2 loxP/loxP

transgene

The Adm2 loxP/loxP transgene, as illustrated in Figure 1, was

engineered to have the Adm2 exon 3 flanked by a pair of LoxP

sequences. The transgene was electroporated into murine

embryonic stem (ES) cells, and positive clones were identified

by medium selection and PCR amplification analyses. Positive
FIGURE 1

Design of the Adm2 loxP/loxP transgene. The nucleotide numbers indicate the relative positions of subcloning sites, exons, and restrictive enzyme
cleavage sites. Probes 1 and 2 for the detection of the transgene are indicated by red horizontal bars. The Neo and Amp selection genes are
labeled. The exon I, II, and III of the Adm2 gene are labeled as E1, E2, and E3, respectively. The transgene also has an EGFP tag for transgene
detection. The I-Ceul site was used to linearize the plasmid.
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ES clones with correct homologous recombination were

identified by Southern blotting of genomic DNAs.

ES cell pellets were routinely dissolved in 0.5 ml lysis buffer in

24-well plates, mixed with 10 ml Proteinase K (10 mg/ml), and

digested at 55C for 12 hr. The DNA solution was extracted with

phenol twice, followed by extraction with chloroform. DNA

samples were precipitated with isopropanol. After centrifugation,

the DNA pellets were washed with 70% alcohol, dried, and

dissolved in the TE buffer. The selected clone was injected into

blastocysts from the C57BL/6 strain mice to generate chimeric

embryos at the transgenic mouse core facility of the National

Taiwan University.
Generation and characterization of
transgenic mice with Adm2 loxP/loxP and
Zp3-Cre transgenes

Chimeric mice were bred to obtain heterozygous lines, and

homozygous animals were generated via selected breeding of

heterozygous animals. The genotypes of animals were screened

by PCR amplification of genomic DNA using probes that were

designed to differentiate the Adm2 loxP/loxP transgene from the

wild-type sequence (Figure 1). All animals were managed in full

compliance with the requirements of the Animal Welfare Act

and in accord with the guidelines of the Committee on Care and

Use of Laboratory Animals.

In transgenic mice, the Zp3-Cre transgene is specifically

expressed in oocytes of developing follicles starting on day 5

after birth (42), and has been used to investigate the role of oocyte-

expressed gap junction Cx43 (43), Mgat1 (44), terminal galactose

or N-acetylglucosamine (45, 46), beta-catenin (47), Msy2 (48),

furin (49), Cdx2 (50), and focal adhesion kinase (51). By crossing

the Adm2 loxP/loxP transgenic mice with Zp3-Cre mice (C57BL/6-

Tg(Zp3-cre)93Knw/J; https://www.jax.org/strain/003651), we

obtained mice with oocyte-specific Adm2 gene disruption prior

to the first meiotic division (i.e., heterozygous Adm2 +/-/Zp3-Cre

and homozygous Adm2 -/-/Zp3-Cre mice).
Breeding and characterization of the
Zp3-Cre/Adm2 loxP/loxP transgenic mice

Mice were bred and housed at the Transgenic Mouse Models

Core Facility, National Research Program for GenomicMedicine,

Taipei. Mice were maintained in a controlled environment of 20-

22C under SPF conditions, with a 12/12 hr light/dark cycle, and a

50-70% humidity. Both Adm2 loxP/loxP and Zp3-Cre mice had a

C57BL/6 genomic background, and animals with the Adm2+/

+/Zp3-Cre (wild-type), Adm2+/-/Zp3-Cre (heterozygous), or

Adm2-/-/Zp3-Cre (homozygous) genotypes were retained for

functional characterization. Specific TaqMan primers that target

Adm2 exon 3 sequences were used to differentiate the wild-type
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and transgene transcripts. Probes were labeled with the reporter

fluorochrome 6-carboxyfluorescein (FAM) at the 5’-end and the

quencher fluorochrome 6-carboxy-tetramethyl-rhodamine

(TAMRA) at the 3’-end. Real-time PCR was conducted using a

LightCycler® 480 System (F. Hoffmann-La Roche Ltd,

Basel, Switzerland).
Analysis of morphogenesis and gene
expression

Once the homozygous Adm2 loxP/loxP mice were established,

we expanded the colony for the analysis of general physiology.

Because Adm2 is expressed in diverse vascular beds, major

internal organs were visually examined for signs of

abnormalities during the autopsy. To evaluate the expression

of Adm2 in tissues, select organ samples, including kidney and

ovary, were collected for qPCR analysis. Mouse Adm2 cDNA

and the transgene construct were used as the controls.
Fertility testing

To study the effects of the transgene on fertility, 7- to 8-

week-old female wild-type, heterozygous, and homozygous mice

were mated with 10- to 12-week-old males over a 20-week

period. The number of pups and litter was recorded.
Superovulation, fertilization, and embryo
development in vitro

To study the effect of Adm2 deficiency on ovarian

folliculogenesis and ovulation under pharmacological conditions,

immature 26-day-old female mice were intraperitoneally injected

with 5 IU of pregnant mare’s serum gonadotropin (PMSG; Sigma-

Aldrich® Brand, Merck KGaA, Darmstadt, Germany) to induce

follicular growth. Animals were then injected with 5 IU human

chorionic gonadotropin (hCG) at 44 hr after PMSG stimulation to

induce ovulation, followed by mating with wild-type males. At 46

hr after hCG injection, embryos (i.e., Embryo 1.5 day) and

unfertilized eggs were retrieved from oviducts surgically and

cultured with M16/PBS medium (Sigma-Aldrich® Brand, Merck

KGaA, Darmstadt, Germany) in a 5% CO2 incubator at 37C with

95% humidity for 2 days. The numbers of multi-cell embryos and

blastocysts were recorded.
Histology and immunohistochemistry of
ovarian sections

To evaluate follicle development following gonadotropin

stimulation, ovarian tissues collected after PMSG or
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superovulation treatment were fixed in Bouin’s solution and

embedded in paraffin (52), and serially sectioned at 5 mm
thickness. Sections were stained with H&E for morphological

evaluation. Ovarian follicles at different developmental stages

were classified according to their size and their tertiary topology:

primary, oocytes were covered with a single layer of cuboidal

granulosa cells; secondary, with multiple layers of granulosa

cells, but without an antrum (100-140 mm); early antral, 140–200

mm follicles with an antrum; large antral, >200 mm in diameter

and with a distinct cumulus cell layer surrounding the oocyte.

The corpus luteum was recognized based on its distinctive

histological characteristics. The size of an individual corpus

luteum was quantified by calculating the sum of length and

width divided by 2. The length was defined as the longest

diameter of a corpus luteum, and the width was the

measurement perpendicular to that of the length.

For immunohistochemical analysis of cyclin D2 protein,

which normally promotes G1 progression by activating cyclin-

dependent kinase-4 in growing follicles, we obtained ovarian

tissues at 44 hr after PMSG stimulation. Antigen retrieval was

performed in 0.01 M sodium citrate in a microwave for 10 min.

After quenching with 3% H2O2, ovarian sections were washed in

Tris-buffered saline (TBS) and incubated with a primary antibody

against cyclin D2 (AB3087; Abcam Plc., Cambridge, UK) at 4C

overnight, followed by a reaction with secondary antibodies.

Nonspecific binding was blocked by incubating slides in TBS

containing 0.1% Triton X-100 and 10% goat serum. An avidin-

biotin peroxidase complex method was used to visualize the

antigen antibody complex with the Dako Liquid DAB

Chromogen System (Sigma-Aldrich® Brand, Merck KGaA,

Darmstadt, Germany) (38). The signal intensity for cyclin D2
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was captured with a Zeiss microscope system. The

immunohistochemical staining was quantified using the

HistoQuest and Image J software (StrataQuest analysis Apps,

TissueGnostics GmbH, Vienna, Austria; Western Pacific

Division, Taipei, Taiwan), and the relative signal of individual

ovarian sections was calculated by subtracting the observed signal

with negative control (i.e., without primary antibody treatment).
Statistical analysis

Statistical analysis was conducted by one-way ANOVA or t-

test, and the significance was accepted at p < 0.01.
Results

Disruption of the Adm2 gene in oocytes
has no obvious effects on fecundity

We generated mice with conditional knockout of Adm2 in

developing oocytes using anAdm2 loxP/loxP transgene and theZp3-

Cre transgenic mice (Figure 1; Supplementary Figure 1) (42).

Analysis of breeding records showed wild-type (Adm2+/+/Zp3-

Cre), heterozygous (Adm2+/-/Zp3-Cre), and homozygous

(Adm2-/-/Zp3-Cre) mice were fertile. The fecundity was similar

among genotype groups (Figure 2). Autopsies of adult mice

showed there is no gross change of major organs in transgenic

mice. Analysis of Adm2mRNA expression in ovaries and kidneys

showed that the wild-type Adm2 transcript is absent in

homozygous animals (Supplementary Figure 2).
FIGURE 2

Effects of oocyte-specific Adm2 disruption on the fecundity of female mice. The average litter size of wild-type (Adm2++/Zp3-Cre), heterozygous
(Adm2+/-/Zp3-Cre), and homozygous (Adm2-/-/Zp3-Cre) mice are represented by vertical bars (mean ± SEM). The crosses included those between
wild-type males (M, +/+), and wild-type (F, +/+, N=16), heterozygous (F, +/-, N=7) or homozygous (F, -/-, N=7) females as well as those between
homozygous males (M, -/-), and heterozygous (F, +/-, N=18) or homozygous (F, -/-, N=11) females. The litter size ranged from 4.9 ± 0.56 in
crosses between homozygous males and homozygous females to 6.9 ± 0.67 in crosses between wild-type males and heterozygous females.
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Disruption of the Adm2 gene in oocytes
enhances ovarian follicle growth
following gonadotropin stimulation

While Adm2 disruption in oocytes did not have an obvious

effect on fecundity, we reasoned the function of oocyte-derived

ADM2 may be masked by endogenous ADM or CGRP peptides

under physiological conditions. The potential role of oocyte-

derived ADM2 may be revealed when animals are subjected to

pharmacological stimulation. Accordingly, we induced

synchronized ovulation in female mice using a standard

superovulation regimen andmated themwith wild-typemales (53).

Gonadotropin treatment led to superovulation in all animals

(Figure 3A). The number of unfertilized eggs and multiple-cell

embryos in oviducts of wild-type, heterozygous, and homozygous

mice were 39.6 ± 2.1, 52.4 ± 3.2, and 52.5 ± 8.5, respectively. The

number of ovulated oocytes of heterozygous animals (N=18) was

significantly higher than that of wild-type mice (N=16). Likewise,

the homozygous animals (N=8) had a higher number of ovulated

oocytes compared to wild-type animals, and the difference was at

the border of significance (p = .08).

Analysis of the developmental status of fertilized eggs

showed that the number of 2- and 4-cell embryos from

heterozygous animals (30.1 ± 2.6) was significantly higher

than those of homozygous (17.6± 4.0) and wild-type (21.9 ±

1.7) animals (Figure 3A). However, the fertilization rate of

oocytes from homozygous mice (39.8 ± 11.0%) was lower than

were those of wild-type (55.1 ± 3.0%) and heterozygous (57.7 ±

3.4%) animals (Figure 3B).
Frontiers in Endocrinology 05
Oocytes of homozygous mice had
impaired developmental capacity

Analysis of cultured embryos at E3.5 day showed that the

average number of fertilized eggs that reached the blastocyst

stage was significantly different among genotypes (Figure 4A;

wild type: 16.3 ± 1.9; heterozygous: 19.3 ± 2.2; and homozygous:

3.6 ± 1.3). The number of blastocysts from homozygous mice

was significantly lower than those of heterozygous or wild-type

animals. Most fertilized eggs from homozygous animals were

arrested at early stages of development.

The ratio of ovulated eggs that reached the blastocyst stage

for wild-type, heterozygous, and homozygous animals was 41.1

± 3.0%, 37.9 ± 3.7%, and 9.6 ± 3.7%, respectively. The ratio of

fertilized eggs that reached the blastocyst stage for wild-type,

heterozygous, and homozygous animals was 69.3 ± 2.9%, 66.4 ±

5.2%, and 19.2 ± 6.1%, respectively. Therefore, the blastocyst

formation rate of homozygous mice was significantly lower than

those of wild-type and heterozygous mice (Figure 4B).
Adm2 disruption in oocytes reduces
cyclin D2 expression in tertiary follicles
and the size of corpus luteum

To investigate how Adm2 disruption may enhance

folliculogenesis/oogenesis, we analyzed cyclin D2 expression in

ovaries after treatment with pregnant mare ’s serum

gonadotropin (PMSG) (38). Immunohistochemical analysis of
A B

FIGURE 3

Effects of oocyte-specific Adm2 disruption on ovulation rate following superovulation. (A) The numbers of ovulated oocytes and fertilized eggs of
wild-type (Adm2+/+/Zp3-Cre, N=16), heterozygous (Adm2+/-/Zp3-Cre, N=18), and homozygous (Adm2 -/-/Zp3-Cre, N=8) mice are represented
by blue and red vertical bars, respectively (mean ± SEM). Ovulated oocytes were collected at 46 hr after hCG injection. The homozygous animals
had a higher number of ovulated oocytes compared to wild-type mice, and the difference was at the border of significance (p = .08). (B) The
fertilization rate of ovulated eggs (mean ± SEM). The fertilization rate ranged from 39.8 ± 11.0% in homozygous females to 57.4 ± 3.4% in
heterozygous females. *, significantly different from the wild-type at p <0.01.
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ovarian sections of mice that were primed with PMSG for 44 hr

showed that cyclin D2 is abundantly expressed in large follicles

of wild-type animals (Figures 5A–D). Quantitative analysis of

DAB staining showed cyclin D2 expression is lower in

heterozygous and homozygous animals, and the difference

between wild-type and homozygous mice is significant

(Figure 5E). The difference in DAB staining between wild-type

and heterozygous animals was at the border of significance

(p = 0.03).

In addition, we noticed that the ovaries of homozygous

animals exhibit distinct morphological characteristics after

superovulation (Figure 6A). Histological analysis showed the

average size of corpora lutea of homozygous animals was

significantly smaller than that of wild-type animals (Figure 6B).
Discussion

Studies of transgenic mice showed that oocyte-specific Adm2

disruption enhances ovarian hormonal responses and follicle

growth following superovulation treatment. However, the

developmental capacity of ovulated eggs and the size of the

corpus luteum of homozygous animals were significantly

reduced. Together, these data suggested that (1) oocyte-derived

ADM2 plays a niche role in regulating ovarian folliculogenesis

independent of ADM- and CGRP-mediated CLR/RAMP

signaling, and (2) disruption of intrafollicular ADM2 signaling

enhances hormonal response to gonadotropins and causes

follicular growth dysfunction.

CGRP-CLR/RAMP1 signaling is important for the

regulation of nociception and hyperalgesia (9, 10), whereas
Frontiers in Endocrinology 06
ADM-CLR/RAMP2 signaling is essential for maintaining

endothelial barrier integrity as well as blood and lymphatic

vessel development (5, 13–23, 54). On the other hand, CLR/

RAMP3 signaling participates in the regulation of

postmenopausal obesity and metabolic disorders as well as

cardiac lymphatic vessel development (54, 55). Because ADM2

shares receptors with ADM and CGRPs and because ADM2 has

a relatively mild receptor-activation activity, the physiological

role of ADM2 is less understood. Using transgenic mice, ADM2

was recently shown to be important for the regulation of vascular

lumen enlargement (35). In the ovary, ADM and CGRPs are

mainly expressed in growing follicles and corpora lutea, and

nerve endings, respectively (1, 56–60). Like ADM, ADM2

expression is localized in granulosa cells, blood vessels,

cumulous oophorus, and corpus luteum (38, 61). Importantly,

Adm2 is also highly expressed in oocytes (1, 36), and we have

shown that ADM2 is important for maintaining the integrity of

cumulus-oocyte complex (COC) in vitro and normal cyclin D2

expression in follicles (38). Consistent with these observations,

blockage of ADM2 signaling impaired follicle growth in vitro

and ovulation in gonadotropin-primed rats, perhaps due to the

inhibition of estradiol-mediated signaling pathways (39, 61).

Despite these observations, whether oocyte-derived ADM2 is

essential for normal folliculogenesis physiologically remains to

be determined.

The observation that oocyte-specific Adm2 disruption did

not affect fertility under physiological conditions is consistent

with a recent report of mice with global deficiency of Adm2 (35).

The lack of effects on fecundity could be attributed to the

presence of redundant free-flowing ADM or CGRPs in vivo.

Importantly, we showed that ADM2’s role in coordinating
A B

FIGURE 4

Effects of oocyte-specific Adm2 disruption on oocyte quality. (A) The number of blastocysts on E3.5 day from wild-type (Adm2++/Zp3-Cre,
N=13), heterozygous (Adm2+/-/Zp3-Cre, N=18), and homozygous (Adm2-/-/Zp3-Cre, N=8) mice. (B) The percentage of ovulated eggs and
fertilized eggs that developed to the blastocyst stage following culture in vitro for 48 hr (mean ± SEM). *, significantly different from the wild-
type or heterozygous groups at p <0.01.
frontiersin.org

https://doi.org/10.3389/fendo.2022.1047498
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Chang et al. 10.3389/fendo.2022.1047498
ovarian follicle growth can be revealed under pharmacological

conditions. While Adm2 disruption in oocytes did not lead to

obvious abnormality, female transgenic mice produced

significantly more oocytes following stimulation with

exogenous gonadotropins. In addition, we found that fertilized

eggs from homozygous mice exhibit impaired developmental

capacity in vitro. Although earlier studies have shown that

ADM2 facilitates follicle growth and COC formation in vitro

(38, 39, 61), the present study actually found that oocyte-specific
Frontiers in Endocrinology 07
Adm2 disruption enhances the ovulation rate after gonadotropin

treatment. These results suggested the oocyte-derived ADM2

plays a more complex role in folliculogenesis and may act to

limit the number of growing follicles that can reach maturity

after a gonadotropin surge in vivo independent of the closely

related ADM and CGRPs. Consistent with this hypothesis,

earlier studies of IVF patients have reported that (1) follicular

fluid ADM level is inversely correlated with the total number of

oocytes retrieved from patients (62) and (2) follicular fluid
A B

FIGURE 6

Effects of oocyte-specific Adm2 disruption on corpus luteum following synchronized ovulation. (A) Histological sections of representative
ovaries following superovulation. All ovaries contained a large number of corpus luteum, and the relative size is indicated by the horizontal scale
bars. (B) The average size of corpus luteum of wild-type (Adm2+/+/Zp3-Cre), heterozygous (Adm2+/-/Zp3-Cre), and homozygous (Adm2-/-/Zp3-
Cre) mice following superovulation (mean ± SEM). The size of the corpus luteum was individually determined by the HistoQuest and Image J
software. The average size (mm2) of all corpora lutea within two representative sections of an ovary is represented by vertical bars. *, significantly
different from the wild-type group at p <0.01.
FIGURE 5

Effects of oocyte-specific Adm2 disruption on cyclin D2 expression in growing follicles. The expression of immunoreactive cyclin D2 in ovaries of
wild-type (A, negative control and B, positive control), heterozygous (C), and homozygous (D) mice at 44 hr after PMSG treatment (mean ± SEM).
The immunoreactive cyclin D2 was detected using an anti-cyclin D2 antibody (Santa Cruz Inc.). Representative sections were shown at 100x
magnification. (E) Immunohistochemical DAB (3,3′-diaminobenzidine) staining of representative sections was quantified with the HistoQuest
software. The relative density of DAB staining is represented by vertical bars. The staining in wild-type ovaries was arbitrarily set as 100% (N =3).
The difference in DAB staining between wild-type and heterozygous animals was at the border of significance (p = 0.03). *, significantly different
from the wild-type group at p <0.01.
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ADM2 level is significantly higher in non-responding IVF

patients compared to those of responsive groups (63).

Therefore, a balanced intrafollicular ADM2 signaling may be

important for determining the number of follicles that can reach

final maturation. In addition to Adm2, conditional deletion of

the growth arrest specific-1, the neurokinin 1-receptor, as well as

the deletion of endothelin receptor type B (Ednrb) in a rescued

EDNRB knockout mouse enhanced ovulation rate in animals

(64–66). Therefore, the recruitment of growing follicles is

regulated by multiple negative regulatory pathways, and future

studies of these pathways may reveal how Adm2 disruption in

oocytes enhances ovulation rate, and facilitate our ability to

improve follicle development in infertile patients.

Our study also showed that Adm2 disruption reduces the

developmental capacity of fertilized eggs in vitro. This result

could be a consequence of impaired intrafollicular ADM2

signaling. The absence of an ADM2 gradient from oocytes

may hinder normal oogenesis. We and others have shown that

ADM2 promotes interactions between the oocyte and cumulus

cells, and blockage of ADM2 signaling impairs COC formation

in vitro. Likewise, intrabursal injection of an ADM2 antagonist

led to oocyte atresia and disintegration of the COC tertiary

structure (38, 39). Furthermore, the present study showed that

Adm2 disruption significantly reduces the size of the corpus

luteum in homozygous animals. The corpus luteum is a transient

endocrine gland that produces progesterone after ovulation. The

rapid growth of the corpus luteum is a result of both

proliferation and hypertrophy of luteal cells (67). The reduced

corpora luteum size in homozygous animals may be a

consequence of inadequate granulosa cell proliferation prior to

ovulation in individual follicles. This idea corroborates with the

observation that there is a significant reduction of cyclin D2

expression in follicles of homozygous animals and that oocyte

quality was reduced in heterozygous and homozygous animals.

The endocrine actions elicited by the superovulation

stimulation can lead to complex ovarian differentiation and

remodeling processes, which are modulated by pituitary

hormones and intraovarian factors. Among the various local

factors, recent progress indicated that the epidermal growth

factor (EGF) pathway plays a particularly significant role in

regulating oocyte maturation and ovulation (68). Following the

LH receptor activation, the LH signal was transmitted from the

periphery of the follicle to the COC and downregulates the level

of 3’5’-cyclic guanine monophosphate while simultaneously

providing a meiotic-inducing signal. The EGF system also

plays a role in the regulation of amino acid metabolism, and

this regulatory pathway may participate in the regulation of

competence of COCs and fertility in bovines (69). On the other

hand, local angiogenic signals are necessary to provide blood

flow to the corpus luteum, thereby allowing it to develop the

proper structure and acquire the steroidogenic capacity (70). In

ruminants, it was shown that angiogenic factors, including
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vascular endothelial growth factor-A (VEGFA), insulin-like

growth factors, angiopoietins, and fibroblast growth factors,

play central roles in promoting cell proliferation, angiogenesis,

and blood vessel stability in developing follicle and corpus

luteum (71). In addition, studies of the expression of

thrombospondins (THBS1 and THBS2) and their receptors

(CD36 and CD47) suggested that they may play a role in

inhibi t ing angiogenesis surrounding fol l ic les (72) .

Furthermore, immune cells that are recruited into the corpus

luteum after ovulation may play a role in supporting

angiogenesis and the growth of the corpus luteum. Moreover,

it has been shown that the lymphatic system is reconstituted in

the corpus luteum through lymphangiogenesis in cows during

early pregnancy (71, 73). While it is not clear whether ADM2

interacts with these intrafollicular factors in the mouse ovary, the

observation that ADM2 deficiency affects follicle development

and the size of corpus luteum suggests that ADM2 may

participate in the regulation of EGF-mediated COC

maturation and angiogenic factor-mediated corpus luteum

growth. Because ADM2, like ADM, exhibits potent angiogenic

and lymphangiogenic effects in different tissues in vivo and

affects COC integrity in vitro, ADM2 deficiency may reduce

angiogenesis and lymphangiogenesis within follicles and corpus

luteum, thereby retarding the growth of corpus luteum

after superovulation.

It is important to note that decreased hormonal responses

are a hallmark of ovarian aging. The recognition that

intrafollicular ADM2 signaling plays a role in coordinating

follicle growth may provide novel strategies to improve follicle

growth in women who exhibit poor ovarian responses after

ovarian hyperstimulation in IVF clinics (74, 75). Finally, we also

like to note we have recently developed a series of potent

agonistic and antagonistic ADM2 analogs (76). Future studies

of these analogs on follicle growth and ovulation may provide

insights into how CLR/RAMP signaling regulates distinct

aspects of ovarian folliculogenesis.
Conclusions

Disruption of the Adm2 gene in oocytes significantly

increased the number of ovulated oocytes but impaired the

egg’s developmental capacity after superovulation. Overall, the

study has revealed that oocyte-derived ADM2 plays a facilitative

role in the regulation of follicle growth and hormonal responses

independent of the closely related ADM and CGRP peptides.
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SUPPLEMENTARY FIGURE 1

Identification of wild-type and Adm2 loxP/loxP transgenic mice. PCR
amplification was used to detect the wild-type and transgene

sequences. The 450- and 350-basepair PCR products indicated the

presence of transgene and wild-type sequences, respectively. Mouse
tail DNA samples in lanes 2, 3, 8, and 10 were from homozygous mice

whereas those in lanes 4-7 were from wild-type animals. Samples in lanes
9 and 11-15 were from heterozygous animals. The red horizontal bar

indicates the position of the 500-bp size marker.

SUPPLEMENTARY FIGURE 2

Expression of the wild-type Adm2 transcript in the ovary and kidney
tissues. Reverse transcription-polymerase chain reaction (RT-PCR) was

used to detect the presence of wild-type Adm2mRNA in the ovary (O) and
kidney (K) of wild-type (+/+), heterozygous (+/-), and homozygous (-/-)

animals. The 535-basepair PCR product indicates the presence of the
wild-type Adm2 mRNA. The primer set sequences used to detect the

wild-type Adm2 transcript are 5’-GAC TGA GGC ACT CCA GAC CCA GAG

A-3’ and 5’-TGT CGG TGC AGA TTC TAC AGC CTA GAT-3’. Positions of
the Adm2 and Gapdh cDNA products are indicated by arrowheads.
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