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Fibroblast growth factor 23
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handling in patients with
chronic kidney disease
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Background:Disturbances inmagnesium homeostasis are common in patients

with chronic kidney disease (CKD) and are associated with increased mortality.

The kidney is a key organ in maintaining normal serum magnesium

concentrations. To this end, fractional excretion of magnesium (FEMg)

increases as renal function declines. Despite recent progress, the hormonal

regulation of renal magnesium handling is incompletely understood. Fibroblast

Growth Factor 23 (FGF23) is a phosphaturic hormone that has been linked to

renal magnesium handling. However, it has not yet been reported whether

FGF23 is associated with renal magnesium handling in CKD patients.

Methods: The associations between plasma FGF23 levels, plasma and urine

magnesium concentrations and FEMg was investigated in a cross-sectional

cohort of 198 non-dialysis CKD patients undergoing renal biopsy.

Results: FGF23 was significantly correlated with FEMg (Pearson’s correlation

coefficient = 0.37, p<0.001) and urinary magnesium (-0.14, p=0.04), but not

with plasma magnesium. The association between FGF23 and FEMg remained

significant after adjusting for potential confounders, including estimated

glomerular fi l trat ion rate (eGFR), parathyroid hormone and 25-

hydroxyvitamin D.

Conclusions: We report that plasma FGF23 is independently associated with

measures of renal magnesium handling in a cohort of non-dialysis CKD

patients. A potential causal relationship should be investigated in future studies.
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1 Introduction

Magnesium ions (Mg2+) are essential in several biological

processes such as cell signaling, energy metabolism, growth and

proliferation. Normomagnesemia is maintained between 0.7 and

1.1 mmol/L through an elaborate coordination between the

kidney, bone and intestine. Renal excretion of Mg2+ is a

controlled process (1) fine-tuned in the distal convoluted tubule

(DCT). In the DCT, regulated Mg2+ reabsorption occurs through

the transient receptor potential melastatin (TRPM) 6 (2). 10-25%

filtered Mg2+ is reabsorbed in the proximal tubule and 50-70% is

reabsorbed in the thick ascending limb of Henle’s loop. Fine-

tuning of Mg2+ reabsorption occurs in the DCT (10%) via an

active transcellular process (1). TheMg2+ handling in the kidney is

influenced by several factors. Generally, peptide hormones, such

as parathyroid hormone (PTH) or vasopressin, increase the Mg2+

transport (3). Interestingly, vitamin D does not influence, in

physiological conditions, the Mg2+ homeostasis, yet rodents

treated with vitamin D showed an increase in serum levels of

Mg2+ and a decrease in renal Mg2+ excretion (4). Electrolytes play

an important role in the transport of Mg2+. Calcium (Ca2+) and

Mg2+ ions have been shown to activate Calcium Sensing Receptor

(CaSR) and regulate paracellular Mg2+ transport (5), while

potassium (K+) indirectly influences the Mg2+ transport in the

DCT through the voltage-gated channel Kv1.1, which provides an

electrical driving force for transcellular Mg2+ transport (6, 7).

Nevertheless, the exact regulation of renal Mg2+ handling remains

largely unkown. Mutations in the TRPM6 gene results in primary

hypomagnesemia with secondary hypocalcemia (PHSH, OMIM#

602014), an autosomal recessive condition characterized by

abnormally low serum Mg2+. However, the precise hormonal

regulation of TRPM6 in health and in disease has not yet been

characterized (8).

Chronic kidney disease (CKD) affects approximately 10% of the

population globally and is associated with increased cardiovascular

morbidity and mortality (9). Vascular calcification is a key

mechanism behind the increased cardiovascular risk associated

with CKD (10, 11). In CKD patients the fractional excretion of

Mg2+ (FEMg) gradually increases to compensate for the reduced

number of functioning nephrons (12). In patients with end stage

renal disease (ESRD) the adaptive mechanisms are no longer

sufficient to fully compensate for the loss of glomerular filtration

capacity, which can lead to hypermagnesemia (13). Also,

hypomagnesemia is commonly observed in CKD patients due to

reduced intestinal uptake or increased renal losses caused by use of

medication such as diuretics and proton-pump inhibitors (14, 15),

comorbidities including diabetes and hypertension, or low dietary

Mg2+ intake (1).

Both hyper- and hypomagnesemia have been linked to

cardiovascular disease and higher overall mortality in patients

with CKD (16, 17). Mechanistically, Mg2+ has been demonstrated
Frontiers in Endocrinology 02
to inhibit phosphate-induced vascular calcification, and Mg2+

supplementation or Mg2+-based therapies have shown promise

in reducing cardiovascular disease in CKD patients (18–22). A

better understanding of the hormonal regulation of renal Mg2+

handling, especially in the setting of reduced renal function, is

therefore of outmost clinical importance.

Fibroblast Growth Factor 23 (FGF23) is a bone-derived

hormone that reduces the apical abundance of the sodium-

phosphate co-transporters NPT2A and NPT2C in the proximal

tubule, thereby lowering phosphate (Pi) reabsorption and

increasing urinary Pi excretion. FGF23 concentrations increase

dramatically in CKD patients, likely as an adaptive mechanism to

counteract Pi retention (23–25). FGF23 plays an active role in the

inhibition of renal 1,25-dihydroxyvitamin D (1,25(OH)2D)

synthesis by increasing the expression of the calcitriol-inactivating

enzyme 24-hydroxylase, whereas PTH stimulates the 25-

hydroxyvitamin D-1a-hydroxylase, which generates 1,25(OH)2D

(26). FGF23 and 1,25(OH)2D regulate each other through a

feedback loop, as 1,25(OH)2D stimulates FGF23 synthesis in

osteoblasts through the presence of a vitamin D response element

in the FGF23 promoter (27). Animal studies show that FGF23

inhibits PTH secretion by activating the MAPK pathway, which

decreases PTH expression and secretion (28, 29). This mechanism

may not be important in humans, as CKD patients display a

simultaneous increase in PTH and FGF23 levels (30–32).

Many epidemiological studies have linked increased FGF23

concentrations to worse clinical outcomes, including

cardiovascular morbidity and mortality (33, 34), although the

evidence of a causal relationship from prospective trials is

still lacking.

In addition to regulating Pi balance, FGF23 and its co-

receptor Klotho have been linked to renal handling of other

electrolytes, including Ca2+, sodium (Na+) and K+ (35–37).

There are also some indications that FGF23 may be involved

in controlling renal Mg2+ reabsorption. First, mice with diet-

induced hypomagnesemia have increased serum FGF23 levels

and reduced renal Klotho expression (38, 39), suggesting that

dietary Mg2+ can influence the regulation of the FGF23-Klotho

axis. Similarly, low plasma Mg2+ concentrations are associated

with high plasma FGF23 concentrations and high mortality rates

in azotemic cats with CKD (40). Second, a negative association

between serum FGF23 and Mg2+ was observed in patients

unde rgo ing hemod i a l y s i s , suppor t ing a pos s i b l e

interrelationship (41). Third, Mg2+ supplementation was

recently reported to reduce vascular calcification in

hyperphosphatemic Klotho-deficient mice with high FGF23

concentrations (8).

Herein we set out to test whether FGF23 could be involved in

renal Mg2+ handling in patients with non-dialysis CKD, and

particularly we hypothesize that FGF23 and FEMg are

positively associated.
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2 Materials and methods

2.1 Study design and patient inclusion

For the present study we used a cohort of non-dialysis

patients with CKD stage 1-5 undergoing kidney biopsy at the

Karolinska University Hospital between 2011 and 2017

(KaroKidney – karokidney.org) (23). All patients in which

plasma and spot urine Mg2+ were available were included in

the analysis. The study received ethical approval (Ethical Review

Board, Stockholm, Sweden, DNR 2010/579-31), and informed

consent was obtained from all participants.
2.2 Exposure, outcome and covariates

Prior to the kidney biopsy, blood and urine samples were

collected and directly analyzed or frozen and stored at -80°C for

later biochemical measurements. Intact FGF23 was measured in

plasma using a second-generation enzyme-linked immunosorbent

assay (ELISA) (Immutopics, San Clemente, CA, USA). Plasma

(normal values equal to 0.7-1.1 mmol/L) and urine Mg2+

concentrations were measured using a colorimetric assay

(Roche/Hitachi, Tokyo, Japan) according to the manufacturer’s

protocol. Absorbance was measured at a 600 nm wavelength on a

microplate spectrophotometer (Bio-Rad Laboratories, CA, USA).

All Mg2+ measurements were carried out in triplicate. The FEMg

(normal range defined as FEMg under 4%) was calculated using

the formula [(UMg
2+ x PCrea)/(UCrea x PMg

2+ x 0.7)] x 100 (where

U = urinary, P = plasma, Mg2+ = ionized magnesium, Crea =

creatinine) (42). Soluble Klotho and aldosterone were analyzed in

serum using ELISA methods (IBL International, Germany and

DRG Diagnostics, Germany, respectively). Estimated eGFR was

calculated using plasma Cystatin C values.
2.3 Statistical analysis

Data were expressed as mean ± standard deviation (SD) or

median with interquartile range (IQR) for continuous variables

and percentage of total for categorical variables. Plasma FGF23,

Klotho, 25-hydroxyvitamin D, PTH, aldosterone, fractional

excretion of Ca2+ (FECa), FEMg, fraction excretion of K+

(FEK), plasma Pi, Ca2+, creatinine, and urinary Ca2+, Mg2+, Pi

and creatinine were log10 transformed when used in models, to

improve their distribution towards normal. Missing data were

imputed by using Predictive Mean Matching with 15 iterations

and can be found in Supplementary Table 1.

The cohort was stratified into quartiles, based on the plasma

levels of FGF23, and the quartiles were tested for group
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comparisons using one-way ANOVA and Tukey’s post-hoc test

to correct for multiple comparisons.

Pearson’s correlation was used to explore the relationships

between FGF23, FEMg, eGFR, age, sex, aldosterone, PTH,

Klotho, 25-hydroxyvitamin D, FEK, fractional excretion of Pi

(FEPi), FECa, plasma Na+, K+, Ca2+, Pi, Mg2+, urinary Ca2+, and

Pi concentrations. All data were compiled in a correlation matrix

with all covariates included.

Univariate linear regression models were performed to

investigate the effect of FGF23 on FEMg values. Data were

expressed as regression coefficient (b), 95% confidence intervals

(CI), adjusted R2 and p-value. Multivariate general linear regression

models were run to investigate the effect of FGF23 on FEMg. The

first model (model 1) consisted of age (years), sex and eGFR (mL/

min/1.73 m2). The second model (model 2) included the same

parameters as model 1 plus Klotho (pg/mL), 25-hydroxyvitamin D

(nmol/L), and PTH (ng/L). The third model (model 3) included

model 1 and medication (yes/no): loop diuretics, thiazide, PPI, and

beta blockers. The fourth model (model 4) included model 2 and

model 3, and the fifth model (model 5) included model 4 and

comorbidities (yes/no): hypertension and diabetes. The sixth model

(model 6) included model 2 and FECa, while the seventh model

(model 7) included model 1 and FECa, FEK and FEPi.

The cohort was divided into quartiles of FGF23

concentrations and quartiles of eGFR, to investigate if the

log10FEMg associations are consistent even if the cohort is

divided and we see the same trend. Linear regression analysis

was used to show the associations.

Differences with a p-value of <0.05 were considered

statistically significant. Statistical analyses were performed

using statistical software SPSS for Windows, version 25,

release 25.0.0.1, 64-bit edition and GraphPad Prism 8 for

macOS, version 8.4.3 (471).
3 Results

3.1 Baseline characteristics of study
population

The study cohort included a total of 198 CKD patients.

Clinical characteristics and relevant laboratory results for the full

cohort and FGF23 strata are reported in Table 1. Of the 198

patients, 62.7% were male, the mean age was 50.5 ( ± 17.0) years,

the median for FGF23 was 81 (58 – 154) pg/mL and the mean

eGFR was 48.7 ( ± 22.3) mL/min/1.73m2. Of the patients, 13.1%

were hypomagnesemic and 57.1% presented FEMg values higher

than the normal range. Of note, FEMg, FEPi and FEK increased

over quartiles of FGF23. All plasma and urine electrolyte values

are shown in Supplementary Figure 1.
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TABLE 1 Baseline characteristics of patients in the CKD cohort (N=198) and of each FGF23 strata.

Full cohort Quartile 1 Quartile 2 Quartile 3 Quartile 4 p value for trend
N 198 48 52 48 50

Demographics

Age (years),
mean ± SD

50.5 ( ± 17.0) 48.0 ( ± 17.4) 48.6 ( ± 16.1) 49.8 ( ± 18.2) 55.6 ( ± 15.7) 0.10

Sex (male), % 62.7 54.8 64.6 58.5 71.7

Laboratory analyses

FGF23 (pg/mL),
median (IQR)

81.0 (58.0-154.0) 44.0 (33.2-53.0) 65.2 (61.1-71.0) 107.0 (94.3-125.0) 243.0 (186.5-373.5) <0.0001

GFR Cystatin C (mL/min/1.73 m2),
mean ± SD

48.7 ( ± 22.3) 61.9 ( ± 19.1) 57.3 ( ± 18.3) 48.3 ( ± 20.8) 27.4 ( ± 13.2) <0.0001

Klotho (pg/mL),
median (IQR)

640.5 (536.2-780.5) 748.5 (575.7-932.5) 653.5 (560.2-737.0) 637.5 (553.0-732.5) 571.0 (487.5-745.2) 0.005

PTH (ng/L),
median (IQR)

9.1 (4.6-33.0) 6.4 (3.8-29.0) 9.6 (5.2-37.0) 6.7 (4.7-13.0) 11.5 (5.6-33.2) 0.05

25-hydroxyvitamin D (nmol/L),
median (IQR)

37.5 (24.0-53.2) 39.5 (33.2-54.5) 39.0 (28.2-57.2) 31.0 (18.2-49.7) 35.5 (25.5-49.0) 0.78

Plasma creatinine (µmol/L),
median (IQR)

121.5 (82.7-182.2) 82.0 (69.2-117.2) 100.0 (78.2-132.2) 123.0 (98.0-186.0) 209.0 (157.0-300.7) <0.0001

Urinary creatinine (mmol/L),
median (IQR)

6.4 (4.9-9.4) 6.8 (5.3-11.1) 6.7 (5.4-9.4) 6.3 (5.0-8.3) 5.6 (4.6-8.3) 0.55

Plasma Mg2+ (mmol/L),
mean ± SD

0.8 ( ± 0.1) 0.8 ( ± 0.1) 0.8 ( ± 0.1) 0.8 ( ± 0.1) 0.8 ( ± 0.1) 0.81

Urinary Mg2+ (mmol/L),
median (IQR)

2.0 (1.1-3.0) 2.3 (1.4-3.0) 2.2 (1.3-3.5) 1.9 (1.1-2.8) 1.7 (1.1-2.3) 0.13

FEMg (%),
median (IQR)

4.8 (2.5-8.1) 3.2 (1.9-4.7) 4.1 (2.3-8.6) 5.0 (3.3-7.5) 7.5 (4.7-13.1) <0.0001

Plasma Ca2+ (mmol/L),
median (IQR)

2.2 (2.1-2.3) 2.2 (2.1-2.3) 2.2 (2.2-2.3) 2.2 (2.1-2.3) 2.2 (2.1-2.3) 0.56

Urinary Ca2+ (mmol/L),
median (IQR)

0.5 (0.1-1.2) 0.9 (0.3-1.7) 0.5 (0.2-1.4) 0.4 (0.1-1.2) 0.2 (0.1-0.6) 0.002

FECa (%),
median (IQR)

0.4 (0.1-0.7) 0.4 (0.1-0.7) 0.3 (0.1-0.9) 0.3 (0.1-0.7) 0.4 (0.1-1.1) 0.24

Plasma PO4
3- (mmol/L),

median (IQR)
1.1 (0.9-1.3) 1.0 (0.8-1.1) 1.0 (0.8-1.2) 1.2 (1.0-1.3) 1.3 (1.1-1.5) <0.0001

Urinary PO4
3- (mmol/L),

median (IQR)
14.0 (8.6-20.0) 14.0 (7.8-22.9) 15.4 (10.5-20.6) 13.0 (7.4-19.4) 13.4 (9.4-16.3) 0.65

FEPi (%),
mean ± SD

23.3 ( ± 14.3) 16.3 ( ± 10.8) 19.8 ( ± 12.4) 21.2 ( ± 11.1) 35.2 ( ± 14.8) <0.0001

Plasma K+ (mmol/L),
mean ± SD

4.0 ( ± 0.46) 3.8 ( ± 0.3) 3.9 ( ± 0.2) 4.1 ( ± 0.5) 4.2 ( ± 0.5) <0.0001

FEK (%),
median (IQR)

15.7 (10.1-22.5) 12.8 (7.4-18.5) 14.3 (10.1-19.4) 15.2 (10.2-21.6) 26.0 (16.3-34.9) <0.0001

Medication, (%)

Betablockers 34.8 24.4 23.1 43.2 46.9

Loop diuretics 35.3 19.5 23.1 38.6 57.1

Thiazides 4.9 4.9 5.8 4.7 4.1

Ca2+-based PO4
3- binders 10.3 12.2 9.6 6.8 12.2

Non-Ca2+-based PO4
3- binders 4.9 2.4 1.9 0 14.3

PPI 17.4 22.0 13.5 13.6 20.4

Comorbidities, (%)

Hypertension 45.5 33.3 40.4 47.9 60.0

T1D 1.5 2.1 0 43.2 4.0

T2D 12.1 10.4 9.6 0 18.0
Frontiers in Endocrinology
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Data reported as mean and SD for variables with normal distribution, and as median and IQR for skewed variables.
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3.2 Associations between FGF23,
covariates and renal magnesium
handling

Initially, the relationships between FGF23 and plasma Mg2+,

urinary Mg2+ concentrations, and FEMg were explored using

Pearson’s correlation (as shown in Figure 1 and Supplementary

Table 2). This analysis showed a significant correlation between

FGF23, FEMg and urinary Mg2+, but no significant correlation

with plasma Mg2+ concentration. Furthermore, plasma FGF23

was negatively correlated with plasma Klotho (r=-0.281,

p<0.001), and positively correlated with FEPi (r=0.527,

p<0.001) (shown in Figure 1 and Supplementary Table 2).

Next, Pearson’s correlation was used to assess the

relationship between FEMg and several clinical characteristics.

The bivariate analysis demonstrated a negative correlation
Frontiers in Endocrinology 05
between FEMg and eGFR (r=-0.397, p<0.001) and an inversed

correlation with plasma Klotho (r=-0.261, p<0.001), as seen in

Figure 1 and Supplementary Table 2. Further, FEMg was

positively and moderately correlated with FEPi (r=0.394,

p<0.001) and plasma Pi (r=0.229, p=0.001) (shown in Figure 1

and Supplementary Table 2).
3.3 Univariate and multivariate analyses
between FGF23 and renal magnesium
handling

Univariate linear regression analysis revealed a significant

correlation between plasma FGF23 and FEMg (in Table 2).

Conversely, there was no significant correlation between

FGF23 and plasma Mg2+ concentration and only a very weak
TABLE 2 Linear regression models exploring the association between FGF23 and FEMg.

Unstandardized b coefficient 95% CI Adjusted R2 p-value

Crude 0.449 0.292 to 0.606 0.135 <0.001

Model 1 0.236 0.034 to 0.438 0.184 0.022

Model 2 0.204 -0.026 to 0.434 0.182 0.081

Model 3 0.269 0.032 to 0.506 0.181 0.026

Model 4 0.283 0.021 to 0.545 0.176 0.034

Model 5 0.295 0.029 to 0.562 0.167 0.030

Model 6 0.210 0.004 to 0.416 0.197 0.046

Model 7 0.189 -0.023 to 0.401 0.203 0.080
fronti
model 1 adjusted for age, sex and GFR Cystatin C.
model 2 adjusted for age, sex, GFR Cystatin C, log10 Klotho, log10 25-hydroxyvitamin D, log10 PTH, log10 plasma PO4

3-, log10 urinary PO4
3-.

model 3 adjusted for age, sex, GFR Cystatin C, loop diuretics, thiazide, PPI, beta blockers, Ca2+-based PO4
3- binders, non-Ca2+-based PO4

3- binders.
model 4 adjusted for age, sex, GFR Cystatin C, log10 Klotho, log10 25-hydroxyvitamin D, log10 PTH, log10 plasma PO4

3-, log10 urinary PO4
3-, loop diuretics, thiazide, PPI, beta blockers, Ca2+-based PO4

3-

binders, non-Ca2+-based PO4
3- binders.

model 5 adjusted for age, sex, GFR Cystatin C, log10 Klotho, log10 25-hydroxyvitamin D, log10 PTH, log10 plasma PO4
3-, log10 urinary PO4

3-, loop diuretics, thiazide, PPI, beta blockers, Ca2+-based PO4
3-

binders, non-Ca2+-based PO4
3- binders, hypertension, diabetes.

model 6 adjusted for age, sex and GFR Cystatin C, log10 Klotho, log10 25-hydroxyvitamin D, log10 PTH, log10FECa.
model 7 adjusted for age, sex, GFR Cystatin C, log10FECa, log10FEK, FEPi.
A B C

FIGURE 1

Association between FGF23 and Mg2+ [FEMg (A), plasma Mg2+ (B), urinary Mg2+ (C)]. Data are the outcomes of simple linear regression analysis.
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correlation between FGF23 and urinary Mg2+ concentration (as

seen in Figure 2).

Next, we explored the relationship between FEMg and

FGF23 after adjustment for potential confounders. In crude

linear regression, FGF23 accounts for 37.4% of the variation in

FEMg, with an adjusted R2 of 0.135 (p<0.001). After

adjustment for age, sex and eGFR (model 1) there was an

overall adjusted R2 of 0.184 (p=0.022). In a multiple adjusted

linear regression model including age, sex, eGFR, Klotho, 25-

hydroxyvitamin D, PTH, there was an overall adjusted R2 of

0.189, (p=0.059). In model 3 (adjusted for use of medication)

there was an adjusted R2 of 0.179 (p=0.016), while model 4

showed an overall adjusted R2 of 0.174 (p=0.032). In the

adjustment for medication and comorbidities (model 5) there

was an adjusted R2 of 0.164 (p=0.029), while in the adjustment

for fractional excretions (model 7) there was an adjusted R2 of

0.203 (p=0.080). The adjustment for the Klotho-FGF23 axis

(model 6) showed an overall adjusted R2 of 0.197 (p=0.046).

Supplementary Tables 3, 4 show that the models in Table 2

were not over-adjusted, using the variance inflation factor and

two linear regression models.
3.4 Subgroup analysis by different eGFR
and FGF23 stages

To investigate if the associations to FEMg are consistent over

the full spectra of FGF23 concentrations and eGFR observed in

our cohort we performed sub-group analysis in the different

strata of FGF23 and eGFR (shown in Figure 3). The results show
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that, in the FGF23 strata, the association between FEMg and

FGF23 is significant only in the fourth quartile, while the

association between FEMg and eGFR is significant in the first,

third and fourth quartile. The division in eGFR quartiles

demonstrated that FEMg correlates only in the first quartile

with FGF23 (in Table 3). The pattern of FEMg is similar

throughout FGF23 and eGFR strata – it decreases with the

increase of eGFR and it simultaneously increases with FGF23

(Figure 3). Supplementary Figures 2, 3 explore Klotho in CKD

using similar analysis.
4 Discussion

In this study of 198 non-dialysis CKD patients, we

demonstrate that FGF23 is positively associated with FEMg

independently of renal function and other potential

confounders. This finding is consistent with the hypothesis

that FGF23 may influence renal magnesium handling in

patients with decreased renal function, and/or vice versa (23,

33, 34, 43).

The role of FGF23 in CKD and the associated cardiovascular

disease has been the subject of many studies over the last decade

(18, 39, 44, 45). As a master regulator of phosphate (46), it is well

established that the increase in FGF23 contributes to

maintaining phosphate homeostasis in early stages of CKD,

and as such protects against vascular calcification. This is

evidenced by studies (47) in which FGF23 neutralizing

antibodies were given to rats with CKD, where the reduction

of FGF23 resulted in hyperphosphatemia and significantly
FIGURE 2

Correlation matrix with relevant parameters included. Data are the outcomes of bivariate analysis; *Correlation is significant at the 0.05 level;
**Correlation is significant at the 0.01 level.
frontiersin.org

https://doi.org/10.3389/fendo.2022.1046392
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Grigore et al. 10.3389/fendo.2022.1046392
worsen vascular calcification. However, it is still debated whether

the dramatically increased FGF23 concentrations commonly

observed in late-stage CKD patients have direct and

detrimental effects on the cardiovascular system.
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Similarly, the role of Mg2+ homeostasis in CKD patients has

received increasing attention over the last few years, especially in

the context of vascular calcification and other cardiovascular

morbidities (17, 20, 48). There have been some indications that
A

B

FIGURE 3

Association between eGFR and FEMg (A) in comparison with the association of FGF23 and FEMg (B). Data are the outcomes of simple linear
regression analysis.
TABLE 3 Subgroup analysis of FEMg associated with FGF23 or eGFR in FGF23 or eGFR quartiles.

FGF23 eGFR

Quartile range R2 p-value R2 p-value

FGF23 (pg/mL)

quartile 1 15.1-57 0.013 0.932 -0.379 0.008

quartile 2 58-81 -0.162 0.252 -0.069 0.627

quartile 3 83-152 -0.035 0.810 -0.310 0.029

quartile 4 154-2307 0.340 0.018 -0.324 0.025

eGFR (mL/min/1.73 m2)

quartile 1 8-30 0.300 0.035 -0.260 0.068

quartile 2 31-47 0.154 0.272 -0.233 0.093

quartile 3 48-66 0.155 0.310 -0.140 0.360

quartile 4 67-106 0.122 0.400 -0.162 0.262
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Mg2+ is involved in controlling FGF23 levels (38, 39), and that

FGF23-Klotho signaling might influence renal magnesium

handling. A potential mechanism for such relationship might

be that FGF23-Klotho signaling in the DCT controls TRPM6

expression and/or activity. This is supported by the co-

expression of Klotho and TRPM6 in distal tubular cells (49,

50), and by the fact that the renal expression of Klotho and

TRPM6 are strongly correlated in healthy individuals as well as

in patients with diabetic nephropathy (51).

Although a few studies have reported on associations between

FGF23 and Mg2+ in animals or in patients with ESRD, no studies

have explored their potential relationship in human non-dialysis

CKD (40, 41). In the present study we report a direct and

independent association between FGF23 and FEMg, whereas

there are no or only weak associations to plasma or urinary

Mg2+. This is supportive of the hypothesis that FGF23 may

participate in controlling renal Mg2+ reabsorption, to maintain

Mg2+ homeostasis as renal function declines (23, 33, 34, 43). The

plasmaMg2+ levels were stable across all quartiles, which indicates

a sustained intestinal absorption of Mg2+ due to dietary Mg2+

intake (4, 52). However, the cross-sectional nature of this study

restricts us from drawing conclusions about any possible causality

behind the observed relationship between FEMg and FGF23.

Importantly, as the hormonal regulation of Mg2+ handling is

incompletely understood, there could be confounders that we

did not consider in our models and that might explain the

observed relationship, which could provide a potential

mechanism and explanation to the observed associations.

In conclusion, our study demonstrates that FGF23 is positively

associated with FEMg in patients with CKD, independently of

renal function and other potential confounders. These finding

warrants further investigations of the FGF23-Klotho-Pi-Mg2+ axis

in patients with CKD and vascular calcification.
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