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Untargeted metabolomics
reveals gender- and age-
independent metabolic
changes of type 1 diabetes
in Chinese children

Jianwei Zhang1,2†, Wei Wu1†, Ke Huang1, Guanping Dong1,
Xuefeng Chen1, Cuifang Xu1, Yan Ni1* and Junfen Fu1*

1Department of Endocrinology, The Children’s Hospital, Zhejiang University School of Medicine,
National Clinical Research Center for Child Health, Hangzhou, China, 2Department of Paediatrics,
Shaoxing Women and Children Hospital, Shaoxing, China
Introduction: Type 1 diabetes (T1D) is a chronic condition associated with

multiple complications that substantially affect both the quality of life and the

life-span of children. Untargeted Metabolomics has provided new insights into

disease pathogenesis and risk assessment.

Methods: In this study, we characterized the serum metabolic profiles of 76

children with T1D and 65 gender- and age-matched healthy controls using gas

chromatography coupled with timeof-flight mass spectrometry. In parallel, we

comprehensively evaluated the clinical phenome of T1D patients, including

routine blood and urine tests, and concentrations of cytokines, hormones,

proteins, and trace elements.

Results: A total of 70 differential metabolites covering 11 metabolic pathways

associated with T1D were identified, which were mainly carbohydrates, indoles,

unsaturated fatty acids, amino acids, and organic acids. Subgroup analysis revealed

that the metabolic changes were consistent among pediatric patients at different

ages or gender but were closely associated with the duration of the disease.

Discussion: Carbohydrate metabolism, unsaturated fatty acid biosynthesis, and

gut microbial metabolism were identified as distinct metabolic features of

pediatric T1D. These metabolic changes were also associated with T1D, which

may provide important insights into the pathogenesis of the complications

associated with diabetes.
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Introduction

Type 1 diabetes mellitus (T1D), a chronic disease caused by

destruction of pancreatic cells and decreased insulin secretion, is

accompanied by various complications, and has serious effects

on the quality of life and life span (1). According to the newly

released Diabetes Atlas from the International Diabetes

Federation in 2021, a total of 1,211,900 children and

adolescents world-wide had T1D (2) and China is ranked 4th

globally for the number of children with T1D (www.

diabetesatlas.org).

Recent increases in the incidence of T1D in children and

adolescents highlight the importance of environmental factors in

disease development. Metabolomic analysis serves as an excellent

approach to explore the integrated response of an organism

toward environmental changes. Previous metabolomic studies

have demonstrated the crucial role of metabolic profiling in

discovering biomarker discovery that are predictive of disease

incidence and development and potentially its pathogenesis (3–8).

For example, Balderas et al. compared the urine and serum

metabolome of 34 children with diabetes and 15 non-diabetic

controls and discovered that children with T1D had altered bile

acid profiles (9). Bile acids are absorbed during enterohepatic

circulation, and thus alterations in bile acid profiles may reflect the

T1D-associated changes in the gut microbiome. Changes in lipids

that play a role in cellular signaling and metabolism in the body

during progression to T1D were also noted by several lipidomic

studies (5, 9–16). Suvitaival et al. (17) concluded that levels of

triacylglycerols, phosphatidylcholines, sphingomyelins, and

ceramides were reduced in the plasma of TID children before

diagnosis. However, most of the previous metabolomics studies

have focused on specific varieties of candidate metabolites, thus

failing to effectively provide a complete understanding of the

metabolic pathogenesis in TID. Furthermore, these studies have

been conducted predominantly inWestern populations (18). Data

from Asian populations are sparse and limited mainly to cross-

sectional studies (19, 20). It is well known that T1D in children

and adolescents is affected by age and gender. However, current

studies have not stratified the metabolomics spectrum of the

disease from the perspective of age and gender.

In the present study, we applied an untargeted metabolomics

approach to measure the metabolic profiles of pediatric patients

with T1D in the Chinese population, as compared to their

healthy controls. The untargeted metabolomics approach was

performed using gas chromatography coupled with time-of-

flight mass spectrometry (GC-TOFMS). In parallel, we

comprehensively evaluated the changes of clinical biomarkers

of patients with T1D, including metabolic biomarkers from

blood biochemistry, inflammatory cytokines, antibodies,

immunoglobulins, and trace elements. This study aims to

investigate the metabolic phenome of pediatric T1D and its

association with the duration of the disease, and validate the
Frontiers in Endocrinology 02
consistency of metabolic changes among male and female

patients or at different ages.
Materials and methods

Study subjects

The study was approved by the Institutional Review Board of

The Children’s Hospital of Zhejiang University, School of Medicine

(Approval Number: 2016-JRB-018). Written informed consent was

obtained from the guardians of all recruited children, and the study

was performed in accordance with the principles of the Declaration

of Helsinki. A total of 141 participants including 76 T1D patients

and 65 healthy controls were enrolled in this study (Table 1).

Patients were diagnosed with T1D during their stay at the

Children’s Hospital of Zhejiang University School of Medicine

and were enrolled in the study between 2016 and 2020. The

median duration of the disease since diagnosis was 12 months

(range: 1–72 months) and based on this, T1D patients were divided

into short-term group (<3 months), mid-term group (3–12

months), and long-term group (>12 months), respectively. T1D

was diagnosed based on clinical and biochemical features,

specifically elevated blood glucose at presentation (a random

measurement of > 11.1 mmol/l and/or fasting blood glucose level

of > 7.1 mmol/l), and classical symptoms of diabetes. Furthermore,

all patients met at least one of the following criteria: 1) diabetic

ketoacidosis (DKA); 2) presence of T1D-associated antibodies

(glutamic acid decarboxylase, islet antigen 2, islet cell, or insulin

autoantibodies); and/or 3) on-going requirement for insulin

therapy. Healthy control refers to the group of children who

visited the hospital for routine physical examination, had no

disease state, and were enrolled on a voluntary basis.
Clinical measurements

The medical records and routine laboratory biochemistry data

of the participants were summarized in Table 2. Serum lipid profiles

(i.e., total cholesterol, HDL-cholesterol, LDL-cholesterol, and

triacylglycerols), total protein, apolipoprotein A1, apolipoprotein

B, lipoprotein A, carboxyhemoglobin, high-sensitivity C-reactive

protein, albumin, globulin, glycated hemoglobin (HbA1C), insulin-

like growth factor 1 (IGF-1), insulin-like growth factor-binding

protein 3, alanine aminotransferase (ALT), alkaline phosphatase

(ALP), aspartate aminotransferase (AST), lactate dehydrogenase

(LDH), total bilirubin, direct bilirubin, and indirect bilirubin were

measured. Human inflammatory cytokine multiple ELISA kit was

used to quantitatively measure cytokine levels including interferon-

gamma (IFN-g), interleukin (IL)-10, IL-2, IL-4, IL-6, and tumor

necrosis factor-alpha (TNF-a). Multiple monoclonal antibodies

that recognize a common cell-surface antigen are combined to
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form clusters of differentiation. The clusters are numbered

sequentially with respect to when they were discovered and

defined. The cell-surface reactivity of monoclonal antibodies to

each CD antigen was detected by flow cytometry.
Metabolomics

Blood samples were collected after fasting overnight for

at least 8 hours and centrifuged to obtain serum prior to

storage in -80°C freezer. The untargeted metabolomics

profiling of serum samples was performed on a GC-TOFMS

system (Pegasus BT, Leco Corp., St. Joseph, MO, USA) equipped

with an Agilent 7890B gas chromatograph and a Gerstel

multipurpose sampler with dual heads (Gerstel, Muehlheim,

Germany). The procedure was performed as described in a

previously published paper with minor modifications (21).

Briefly, each aliquot of 50 µL serum sample was mixed with 10

µL of internal standard, to which 175 µL of pre-chilled

methanol/chloroform (v/v=3/1) was added for metabolite

extraction. After centrifugation at 13,500 rpm for 20 min at 4°

C (Microfuge 20R, Beckman Coulter, Inc., Indianapolis, IN,

USA), the supernatant was carefully transferred to an

autosampler vial. The samples in autosampler vials were then

evaporated briefly to remove chloroform using a CentriVap

vacuum concentrator (Labconco, Kansas City, MO, USA), and

further lyophilized with a FreeZone freeze dryer equipped with a

stopping tray dryer (Labconco, Kansas City, MO, USA). The

sample derivatization was performed by a robotic multipurpose

sampler with dual heads (Gerstel, Muehlheim, Germany).

Specifically, the dried sample was derivatized with 50 µL of

methoxyamine (20 mg/mL in pyridine) at 37.5°C for 2 hr.,

followed by incubation at 37.5°C for 1 hr after the addition of 50

µL of MSTFA (1% TMCS) containing FAMEs as retention
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indices. Separation and sample derivatization were performed

as parallel operations. A Rxi-5 ms capillary column (30 m × 250

µm i.d., 0.25 µm film thickness; Restek corporation, Bellefonte,

PA, USA) was used for metabolite separation. The temperature

was initially held at 80°C for 2 min, then ramped up to 300°C at

the rate of 12°C/min, held for 4.5 min, then further ramped up to

320°C at the rate of 40°C/min, and finally, held for 1 min.

Helium was used as the carrier gas at a constant flow rate of 1.0

mL/min. The temperature of the injector and the transfer

interface were both set to 270°C and the injection volume was

0.5 µL in spitless mode. Measurements were made using electron

impact ionization (70 eV) in the full scan mode (m/z 50–500).

Instrument optimization was performed as needed.
Metabolite annotation

Metabolite annotation was performed by comparing the

retention indices and mass spectral data with those previously

generated from reference standards in the in-house library (22).

The reference chemicals were commercially purchased from

Sigma-Aldrich (St. Louis, MO, USA), Santa Cruz (Dallas, TX,

USA), and Nu-Chek Prep (Elysian, MN, USA). Commercial

libraries such as NIST library 2017 and LECO/Fiehn

Metabolomics library for GC-TOFMS were used for cross-

validation analysis. The direct relationship of two adjacent

metabolites from the known metabolic relation network

(KEGG) was used to indicate the alteration of specific

metabolic enzyme, thereby providing complementary

biological information for metabolite interactions. Metabolites

were annotated in the serum samples with those of pure

chemical standards. Metabolites that did not pass our QC

criteria (CV>20%) were removed from further statistical

analysis, as the purpose of this project was to provide data for

a further validation study, rather than making a simple

biomarker discovery. Missing values were initially imputed

using QRILC method reported in our previous work (23).
Data analysis

The medical records and the routine laboratory

biochemistry data were statistically analyzed using R packages

ver. 4.0.2. The details of statistical methods applied in this study,

R functions and packages were summarized in Supplementary

Table 1. Specifically, normally distributed variables were

analyzed using student t-test and presented as mean ±

standard deviation (SD), while non-normally distributed

variables were performed by non-parametric Mann-Whitney

U test and presented as medians and interquartile range (25th–

75th percentiles). The raw metabolomic data generated by GC-

TOFMS were processed using ADAP software (24). To reduce

bias caused by the high blood glucose levels in diabetic patients,
TABLE 1 Baseline characteristics of the study participants.

Name T1D (n=76) Control (n=65) p

Age (in months) 109.2 ± 47.07 110.9 ± 41.33 0.1325

Gender

Male 29 (44.6%) 31 (47.7%)

Female 47 (55.4%) 34 (52.3%)

Height, cm 132.1 ± 24.93 131.3 ± 20.75 0.09

Weight, kg 30.0 ± 13.76 29.4 ± 11.58 0.20

BMI, kg/m2 16.4 ± 2.69 16.3 ± 1.90 0.14

Duration (in months) 16.7 ± 18.9 — —

Normally distributed variables were analyzed using student t-test and presented as
mean ± standard deviation (SD), while non-normally distributed variables were
performed by non-parametric Mann-Whitney U test and presented as medians and
interquartile range (25th–75th percentiles). T1D, type 1 diabetes; BMI, body
mass index.
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glucose was excluded from the final data set. The metabolome

data were further standardized before statistical modeling.

Unsupervised principal component analysis (PCA) was used to

evaluate the natural clustering between patients with T1D and
Frontiers in Endocrinology 04
their healthy controls. Each dot represented an individual

subject and color-coded based on their grouping. To overcome

the complexity of biological samples, a widely-used supervised

orthogonal partial least square discriminant analysis (OPLS-DA)
TABLE 2 Characteristics of clinical measurements.

Name HC Median (reference range) T1D (Median ± SD) Median FC

TSH (uIU/ml) 2.645 (0.35–4.94) 2 ± 1.12 2 0.636

Potassium (mmol/L) 4.5 (3.5–5.5) 4 ± 0.35 4 0.842

Sodium (mmol/L) 140 (135–145) 138 ± 4.94 138 0.987

Glucose (mmol/L) 4.85 (3.6–6.1) 12 ± 5.79 12 2.515

Total Bile Acids (µmol/L) 6.0 (0.0–12.0) 5 ± 22.19 5 0.783

Uric acid (µmol/L) 256 (155–357) 220 ± 90.1 220 0.859

25(OH)D (ng/ml) 88.75 (27.5–150.0) 48 ± 19.31 48 0.544

Hemoglobin (g/L) 140 (120–160) 133 ± 11.68 133 0.951

PLT (109/L) 250 (100–400) 291 ± 82.44 291 1.163

WBC (109/L) 8.0 (4.0–12.0) 7 ± 4.07 7 0.865

Insulin (µg/L) 12.45 (1.9–23) 4 ± 23.88 4 0.321

HOMA-IR (%) 2 ± 14.38 2

ALT (U/L) <50 13 ± 10.05 13

Urea (µmol/L) 4.11 (1.79–6.43) 5 ± 1.7 5 1.128

Cholesterol (mmol/L) 4.35 (3.00–5.70) 4 ± 1.83 4 0.961

CKMB <25 23 ± 13.36 23

Creatinine (µmol/L) 46 (15–77) 58 ± 14.44 58 1.261

GGT (U/L) 32.5 (8–57) 12 ± 3.4 12 0.369

TC (mmol/L) <1.70 1 ± 7.08 1

HDLC (mmol/L) >1.04 1 ± 0.4 1

LDLC (mmol/L) <3.37 2 ± 1.03 2

HbA1c (%) 5.4 (4.5–6.3) 8 ± 2.86 8 1.463

HsCRP (mg/L) 4 (0–8) 4 ± 6.36 4 1

b2-MG (mg/L) 0.15 (0.00–0.30) 0 ± 2.45 0 0.715

C3 (g/L) 1 (0.50–1.50) 1 ± 0.26 1 1

C4 (g/L) 0.25 (0.10–0.40) 0 ± 0.1 0 0.8

IgG (g/L) 10.2 (6.36–14.04) 11 ± 2.42 11 1.058

IgM (g/L) 0.75 (0.29–1.21) 1 ± 0.48 1 1.44

Urinary Creatinine (mmol/L) 11275 (2550–20000) 4781 ± 3491.06 4781 0.424

Uridine triphosphate (mg) <100.0 12 ± 270.56 12

Urine a1-microglobulin (mg/L) <12.00 7 ± 13.63 7

FC is the fold change ratios by calculating the median value of each clinical marker in the T1D group vs. the reference range. HC, healthy control; T1D, type 1 diabetes; FC, fold change;
TSH, thyroid stimulating hormone; PLT, total platelet count; WBC, white blood cell count; HOMA-IR, homeostatic model assessment for assessing insulin resistance; ALT, alanine
transaminase; CKMB, creatinine kinase myocardial band; GGT, gamma-glutamyl transferase; TC, total count; HDLC, high density lipoprotein cholesterol; LDLC, low density
lipoprotein cholesterol; Hb1Ac, hemoglobin A1c; HsCRP, high-sensitivity C-reactive protein; b2-MG, Beta-2 microglobulin; C3, complement component 3; C4, complement
component 4; IgG, immunoglobulin G; IgM, immunoglobulin M.
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model was applied to capture the differential metabolites

between the two groups. The OPLS-DA model was

constructed using 1/7-fold cross-validation. Metabolic pathway

enrichment analysis was done using the hypergeometric

algorithm deployed in MetaboAnalyst (25). The significance of

the metabolic pathways associated with T1D was determined by

the cutoff p-value of 0.10. All the p values were adjusted by

Benjamini & Hochberg method. Spearman correlation analysis

was used to evaluate the correlation between each differential

metabolite and disease duration.
Results

Clinical characteristics and metabolic
profiles of T1D patients

The basic demographic information of the participants is

summarized in Table 1. No significant differences were observed

in gender, age, and BMI between patients with T1D and healthy

controls. Serum lipid profiles are summarized in Table 2. The

mass spectrometry-based metabolomics study detected 282

circulating metabolites that were present across all the study

samples, with a low median process variability among QC

samples (<20%). A total of 51 metabolite-metabolite ratios

were also calculated according to their metabolic reactions.

The identified serum metabolome covered over 60 biochemical

pathways of human metabolism and included a wide range of

metabolite classes such as amino acids, organic acids, fatty acids,

alcohols and sugar derivatives, lipids, nucleotides, indoles, and

phenols. The OPLS-DA scores plot depicts the distinct metabolic

profiles associated with T1D patients versus healthy controls

(Figure 1A). A total of 70 differential metabolites and 14

metabolite ratios were obtained between T1D patients and

healthy controls with FDR-corrected p value (p < 0.01).

Carbohydrates and organic acids altered apparently, and the

most significantly altered metabolites were 1,5-anhydrosorbitol,

a-lactose, indole acetic acid, arachidic acid, and so forth. The

majority of these metabolites were significant after age- and/or

gender adjusted (Supplemental Table 2). Based on these

differential metabolites, the metabolic enrichment analysis

indicated that 11 pathways were significantly perturbed in

T1D patients as compared to controls (Figure 1B), including

glucose metabolism, glutathione metabolism, arginine and

proline metabolism, branched chain amino acid (BCAA)

metabolism, etc. Among these, galactose metabolism was the

most significantly altered metabolic pathway associated with

T1D, and specifically increased a-lactose, sorbitol, myoinositol,

sucrose, glycerol, and reduced d-mannose and d-galactose were

identified in this study. Additionally, we examined the clinical

characteristics of T1D patients, including blood biochemistry,

complete blood count (CBC), cytokines, hormones, proteins,

trace elements, and urine tests. An integrative view of both
Frontiers in Endocrinology 05
clinical characteristics and metabolic changes of T1D patients is

illustrated in Figure 1C. Clinical markers that were different

included elevated levels of urine transferrin, IgE, IL-4, tartrate

resistant acid phosphatase (TRAcP-5b), adenosine deaminase

(ADA), and glucose levels, as well as reduced levels of urine

creatinine, IGF-1, adrenocorticotropic hormone (ACTH), IFN-r,

eosinophils, insulin, and r-glutamyl-transferase (GGT).
Association of age and gender factors
with circulating metabolome

Although age- matched controls were used in this study, age

was believed to be a confounding factor of host metabolism that

deserves thorough investigation, particularly for children. The

OPLS regression model revealed that metabolic profile variations

correlated closely with the age of T1D patients (Figure 2A,

r = 0.98, p = 1.96e-50). The patients were then further

stratified into three different subgroups according to their age:

young (1–84 months), middle (85–120 months), and old (121–

185 months). The baseline characteristics of patients in these

three subgroups are shown in Table 1. The metabolic profile of

patients in each subgroup was compared with age-matched

healthy controls, and each comparison consistently showed an

apparent separation between the two groups according to the

OPLS-DA score plot (Figures 2B–D). The heatmap of z-score

values derived from each comparison (FDR-corrected p value <

0.01) showed the relative expressions of differential metabolites

among patients and healthy controls, and indicated whether

specific metabolic changes were consistent across different age

groups (Figure 2E). For example, 1,5-anhydrosorbitol and

indoleacetic acid were significantly reduced in T1D patients of

all different ages (Figures 2F, G).

Similarly, we also examined the impact of gender on

metabolism. The OPLS-DA model with information on the

gender of the participants did not show any obvious internal

variations among patients with T1D or healthy controls

(Figure 3A). Moreover, to eliminate the influence of gender,

OPLS-DA model was applied to compare the metabolic

variations between male and female T1D patients (29 and 49,

respectively) and healthy controls (31 and 34, respectively),

separately (Figures 3B, C). The differential metabolites, 1,5-

anhydrosorbitol and indoleacetic acid, were significantly

reduced in both male and female patients with T1D

(Figures 3D, E). The enrichment pathway analysis based on

male and female differential metabolites further validated that

most of differential metabolic pathways were consistent in both

male and female patients. However, we found that four pathways

namely, (i) phenylalanine, tyrosine and tryptophan biosynthesis,

(ii) pentose phosphate pathway, (iii) purine metabolism, and (iv)

glyoxylate and dicarboxylate metabolism, could be affected by

the gender (Figure 3F).
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Association of disease duration with
circulating metabolome

To determine whether there is an association of disease

duration and serum metabolome, the orthogonal partial least

squares regression (PLSR) analysis was performed (Figure 4A).

This analysis depicted an obvious linearity between phenome

and disease duration of T1D patients. The patients were further

divided into three major clusters: initial progression from disease

onset (short, 1–6 months), moderate phase (medium, 7–18

months), and advanced phase (long, 1.5-6 years). As shown in

Figure 4B, the metabolic profiles of the three subgroups were

clearly separated according to the score plot of PLS-DA model.

The heat map indicated a significant Spearman’s correlation

between metabolites belonging to nine chemical classes and

disease duration (Figure 4C). Of them, 1,5-anhydrosorbitol,

pyruvic acid, and adenine had the strongest positive

correlations with disease duration.
Frontiers in Endocrinology 06
Discussion

The pathogenesis of diabetes in children is complicated due to

the frequent occurrence of future complications. Insulinopenia and

hyperglycemia, characteristics of the T1D milieu, profoundly alter

metabolic homeostasis. Altered metabolites affected by the variable

insulin and glycemic levels may theoretically increase the risk of

long-term complications. While diabetes is primarily characterized

by hyperglycemia, other nutrient metabolic pathways like amino

acid and tricarboxylic acid cycle (TCA) are also profoundly

perturbed. However, a comprehensive metabolic signature for

T1D, especially in Chinese children, was not previously

established. Hence, we performed a serum metabolomics study

of Chinese children with T1D. Utilizing both multivariate and

univariate statistical analyses, a unique metabolic pattern was

observed to be related to T1D. This included 70 differently

expressed metabolites that were associated with 11 specific

altered metabolic pathways. These metabolic changes were also
A B

C

FIGURE 1

Phenome and metabolome analysis of T1D patients. (A) OPLS-DA score plot of patients with T1D and healthy controls (each green dot
represents a healthy subject while each red dot denotes a T1D patient). (B) Metabolic enrichment pathway analysis using MetaboAnalyst.
(C) Circle plot of phenome and metabolome fold changes (T1D versus healthy controls). Each dot was color-coded based on their chemical
classes or clinical diagnostic purpose.
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investigated by sub-dividing the patients based on different ages

and gender. In addition, an integrative analysis of clinical features

and metabolic profiles was performed, which provided us a

comprehensive view of pediatric T1D. An interesting finding was

that a group of differential metabolites were closely associated with

the time elapsed since diagnosis of the disease, which might

provide important insights into the pathogenesis of the

complications associated with diabetes.

Dysregulated carbohydrate metabolism was an obvious

metabolic feature of T1D observed in this study. Particularly,

galactose metabolism was the most significantly altered metabolic

pathway associated with T1D (Figure 1B). This alteration remained

significant across different ages and in both genders of T1D patients

compared to healthy controls, but it was similar between young and

old participants (Figure 2G), or between male and female

counterparts (Figure 3F). We also observed that glutathione,

arginine, and BCAA metabolism were significantly altered

between the T1D and control groups. In normal physiological

conditions, glutathione has antioxidative and free radical-

scavenging roles, thereby maintaining the metabolism and

homeostasis of cells (26, 27). Metabolic disorder of the

glutathione pathway increases oxidative stress, which may

damage kidneys and blood vessels, and cause neurodegeneration.
Frontiers in Endocrinology 07
Arginine is the precursor for oxide synthesis, which can be

converted to vasodilating factors in the body. On one hand,

arginine can stimulate insulin secretion, but on the other hand,

arginine produces NO, which is involved in response to oxidative

stress in organisms, and participates in glutathione metabolism.

Disorders of arginine metabolism may affect endothelial cell

function, leading to insulin resistance and disturbances in

metabolism and hemodynamics (28). BCAAs include leucine,

isoleucine, and valine, which are essential amino acids that

provide energy to the body (29). Disordered BCAA metabolites

can block insulin signaling and disturb lipid metabolism, resulting

in insulin resistance and excessive lipid accumulation, respectively

(30). BCAA metabolism disorder is a biomarker of cardiovascular

metabolic diseases (31).

Among the differential carbohydrates, 1,5-anhydroglucitol

(1,5-AG) was the most significant marker that was consistently

lower in T1D patients, regardless of gender or age. Serum 1,5-AG

has been considered a potential marker of short-term glycemic

control and can be used for T1D diagnosis or the screening of

high-risk patients. Moreover, it was found to be less influenced by

diet or physical activity as compared to point glycemic markers

(32). Thus, 1,5-AG can be an effective supplementary marker to

hemoglobin A1c. Low plasma levels of 1,5-AG are associated with
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FIGURE 2

Association analysis between age and serum metabolome. (A) Scatter plot of OPLS-DA PC1 scores and ages of patients. (B–D) OPLS-DA score
plot of patients with T1D and healthy controls at different ages, B:(1-84 months), C:(85-120months), and D:(121-185months). (E, F) Box plots
showing the concentration of selected metabolites at different ages. (G) Heatmap of z-score values for differential metabolites between patients
with T1D and healthy controls at different ages.
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decreased pancreatic b-cell function (33). Sorbitol takes part in the
polyol pathway through the reduction of intracellular glucose to

sorbitol. The polyol pathway gets activated when excess glucose is

present within the cells and thus, a hyperglycemic state might

accelerate intracellular accumulation of sorbitol. Furthermore,

excessive sorbitol in the cells has been associated with a pro-

oxidative environment, which is known to increase diabetes-

related complications (34, 35). Renal tubular reabsorption of

1,5-AG is inhibited when there is excess glucose in the plasma.

Studies have found that 1,5-AG levels decrease in patients with

diabetes and this decrease is related to kidney damage owing to

high blood glucose levels (36).

We found that compared with the healthy group, TCA cycle

metabolites (pyruvate, fumarate, malate, and linoleic acid) were

significantly increased in the T1D group. Higher concentrations

of pyruvate appear to be necessary for anaplerosis (37). The

increased linoleic acid might be related to the insulin resistance

in patients with T1D. The increase of fatty acids can lead to the
Frontiers in Endocrinology 08
slowing down of the tricarboxylic acid cycle e.g., the

accumulation of fumarate and malate, which can block the

oxidation of glucose. Some studies have considered that high

physiological levels of exogenous insulin and hyperglycemia

could be responsible for insulin resistance in T1D patients

(38, 39).

In the present study, indoleacetic acid was significantly

reduced in the diabetic group, suggesting that T1D was

associated with the metabolism of indole and its derivatives.

Dietary tryptophan can be metabolized into IAA by gut

microbiota through the indole-3-acetamide pathway under the

catalysis of tryptophan monooxygenase and indole-3-acetamide

hydrolase (40). Recent work has demonstrated that gut

microbiota is an essential modulator of T1D susceptibility and

the reduced IAA levels were associated with intestinal mucosal

barrier integrity impairment (41). Dysfunction of the intestinal

mucosal barrier can increase intestinal permeability and trigger

an immunological response, contributing to the development of
D
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FIGURE 3

Association analysis between gender and serum metabolome. (A) OPLS-DA score plot of patients with T1D and healthy controls labeled with
information on gender of the participants. (B, C) OPLS-DA score plot of patients with T1D and healthy controls for males and females. (D, E)
Box plots showing the concentration of representative metabolites across different groups. (F) Metabolic enrichment pathway analysis for
different group comparisons.
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various autoimmune diseases, Including T1D (42). Indole acetic

acid is also involved in the metabolism of purines, and this

metabolic cycle is closely related to the pathogenesis of

diabetic nephropathy.

We also found that adenine, 1,5-AG, and pyruvate correlated

strongly and positively with the course of the disease. Clinically,

accumulation of adenine in the blood results in insoluble crystal (2,

8-dihydroxyadenine) precipitates in the renal tubules and

obstruction of tubular flow, which initiates renal injury (43, 44).

A similar disease phenotype can be induced in rodents by adenine-

feeding (45, 46). Adenine feeding-induced chronic kidney disease in

rodents is characterized by elevated plasma concentrations of urea

and creatinine, proteinuria, interstitial fibrosis, extensive tubular

dilation, degeneration of the proximal tubular epithelium with loss

of the brush border and inflammatory cell infiltration (47, 48).

In summary, metabolomics is a powerful tool for

investigation of the nature-nurture relationships involved in

the development of pediatric diabetes. Overall, in this study,

carbohydrate metabolism, unsaturated fatty acid biosynthesis,

and gut microbial metabolism were identified as distinct

metabolic features of pediatric T1D. These metabolic changes

were also associated with T1D, which may provide important

insights into the pathogenesis of the complications associated
Frontiers in Endocrinology 09
with diabetes. The limitation of this study is the lack of fecal

samples for the analysis of gut microbiome to confirm the role of

microbial metabolites in T1D, e.g., IAA metabolism. Further

studies are needed to explore the complex relationship between

gut microbiome and metabolism in the pathogenesis of T1D. In

the future, larger studies are needed to determine whether these

metabolic markers can add to the prediction of long-term T1D.
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