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Introduction: Despite vast research, premature birth's electrophysiological

mechanisms are not fully understood. Prediction of preterm birth contributes to

child survival by providing timely and skilled care to both mother and child.

Electrohysterography is an affordable, noninvasive technique that has been

highly sensitive in diagnosing preterm labor. This study aimed to choose the

more appropriate combination of characteristics, such as electrode channel and

bandwidth, as well as those linear, time-frequency, and nonlinear features of the

electrohysterogram (EHG) for predicting preterm birth using classifiers.

Methods: We analyzed two open-access datasets of 30 minutes of EHG

obtained in regular checkups of women around 31 weeks of pregnancy who

experienced premature labor (P) and term labor (T). The current approach

filtered the raw EHGs in three relevant frequency subbands (0.3–1 Hz, 1–2 Hz,

and 2–3Hz). The EHG time series were then segmented to create 120-second

windows, from which individual characteristics were calculated. The linear,

time-frequency, and nonlinear indices of EHG of each combination (channel-

filter) were fed to different classifiers using feature selection techniques.

Results: The best performance, i.e., 88.52% accuracy, 83.83% sensitivity, and

93.22% specificity, was obtained in the 2–3 Hz bands using Medium Frequency,

Continuous Wavelet Transform (CWT), and entropy-based indices.

Interestingly, CWT features were significantly different in all filter-channel

combinations. The proposed study uses small samples of EHG signals to

diagnose preterm birth accurately, showing their potential application in the

clinical environment.
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Discussion: Our results suggest that CWT and novel entropy-based features of

EHG could be suitable descriptors for analyzing and understanding the

complex nature of preterm labor mechanisms.
KEYWORDS

electrohysterography, entropy, time-frequency analysis, uterine electromyogram,
preterm labor, machine learning
1 Introduction

Preterm birth (PB), which affects 15 million newborns

worldwide, is the leading cause of neonatal mortality and

morbidity (1). PB is considered a multifactorial syndrome

associated with rupture of membranes, uterine abnormalities,

infections, and multifetal pregnancy (2). Prevention of PB includes

a set of measures taken in early-stage patients to stop or delay its

effects, which is why an early diagnosis is essential in developing a

patient-orientedcare strategyandreducingneonataldeath.However,

current diagnostic tools of PB are limited to algorithms for predicting

risk based on the patient’s clinical history, signs, and symptoms

instead of focusing on the syndrome’s underlying mechanisms.

Theprogressof labor canbemonitoredbya tocodynamometer,

which lacks sensitivity to detect slight uterine activity, or by an

intrauterinepressure catheter, an invasive technique for diagnosing

PB (3). Electrohysterography is a noninvasive technique that uses

surface electrodes in the mother’s abdomen to obtain electrical

information about the activity of myometrial cells by quantifying

uterine action potentials (3). This technique is sensitive to properly

detect uterine electrical activity, which allows continuous

monitoring the progress of labor and detection of dystocias.
02
Notably, relevant evidence revealed that electrohysterography is

more sensitive thanexternal tocodynamometry indetectinguterine

contractions during the early stage of labor (4). Various features of

the uterine electromyogram or electrohysterogram (EHG) have

been continuously studied to differentiate between preterm and

term birth (3). Interestingly, the EHG is advised for further

introduction and testing in clinical practice based on recent

research that suggests that it has no adverse effects (5).

Despite ongoing research on EHG, predicting premature birth

from it remains a complicated problem.One of themain difficulties

arises at the signal preprocessing stage, where there is still a

recurrent debate about where the predominant spectral contents

of the EHGare located (6, 7). In addition, the pool of attributes that

describes more appropriately the electrophysiological phenomena

ofpretermbirthand the classifier type is still anobject of continuous

study to develop an accurate prediction tool (6–9). Previous studies

have explored different methods to automatically classify EHG

signals and diagnose preterm birth (Table 1). According to these

results, the combination of time-frequency analysis with nonlinear

signal indices of EHG may enhance the classification of preterm-

term births. Wavelets can capture subtle variations in transient

signals using time-frequency analysis approaches and nonlinear
frontiersin.org
TABLE 1 Summary of previous studies for the prediction of preterm birth by obtaining linear, time-frequency, and nonlinear EHG features.

Authors Classifier type Dataset Length Features Accuracy Sensitivity Specificity AUC

Acharya et al., (2017)
(6)

Support vector
machine (SVM)
Radial Basis
Function (RBF)

TPEHG DB
(34 recordings of
preterm and
262 of the term)

Complete
recording

Empirical Mode
Decomposition (EMD)
Wavelet Packet
Decomposition (WPD)
Entropy-based methods

96.25 95.08 97.33 0.96

Jager et al., (2018) (7) Quadratic
Discriminant

TPEHG DB
TPEHG DS

Complete
recording

Sample Entropy
Medium Frequency
Maximum Frequency

100.00 100.00 100.00 1.00

Nieto del Amor et al.,
(2021) (9)

Linear Discriminant TPEHG DB 120-seconds
window
Complete
recording

Dominant frequency
Normalized Energy
Power spectrum deciles (D3,
D6, D8, D9)
Entropy-based methods

89.2% ± 2.4 98.4% ± 1.9 79.9% ± 4.9 0.93

Hoseinzadeh &
Amirani (2018) (10)

RBF SVM TPEHG DB N/A EMD
WPD
Feature extraction by
autoregressive models

97.1 95 99 N/A
N/A, Not available.

https://doi.org/10.3389/fendo.2022.1035615
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Romero-Morales et al. 10.3389/fendo.2022.1035615
signal processing techniques (11).

The present study aims to expand the setlist of time-frequency

and nonlinear indices of EHG aiming to improve the predictive

accuracy of current classifiers for predicting preterm birth. Thus,

novel parameters such as Flux and the Energy derived from the

Continuous Wavelet Transform (CWT) and multiple scales of

Phase Entropy were analyzed. To our knowledge, these

characteristics have not been tested for the differentiation

between term and preterm labor; however, previous studies have

shown their adequacy in the characterization of physiological

signals in pregnant women (12, 13).

This study also attempted to select the best combination of

electrode channel, bandwidth, pool of linear and nonlinear

characteristics of the EHG, and type of classifier, to achieve a

predictive accuracy higher than 85%. We consider that

developing a robust model for preterm labor prediction would

offer an advance in the diagnosis and timely treatment of the

population at risk, thereby reducing neonatal mortality and

contributing to the application of EHG in the clinical setting.
2 Materials and methods

The proposed methodology is presented in Figure 1. It was

divided into seven procedures that are furtherly explained in

this section.
2.1 Dataset description

The data analyzed in the present study to differentiate between

Preterm (P) and Term (T) groups were obtained from the open-

access databases Term-Preterm EHG DataSet with Tocogram
Frontiers in Endocrinology 03
(TPEHG DS) and the Term-Preterm EHG DataBase (TPEHG

DB) available on the Physionet website (7, 14, 15). The TPEHG

DS includes 26 EHG signals recorded at the University Medical

Center Ljubljana, Department of Obstetrics and Gynecology.

Twelve EHG recordings of the P group were collected from 8

healthy subjects whose pregnancy ended at 33.7 ± 1.97 weeks of

gestation (WG). The T group comprises 13 EHG recordings of ten

healthy participants whose labor onset triggered around 38.1 ±

1.04 WG. Thus, the data analyzed for both T and P conditions is

formed by 30 minutes of raw EHG obtained in regular medical

checkups around the 31st (30.2 ± 2.76)WG. Similarly, the TPEHG

DB consists of 300 records, 262 T and 38 P, obtained from 1997 to

2005 at the University Medical Center Ljubljana. 17 records from

each group (P and T) were selected to test the classification model

to obtain a balanced dataset. Data were selected based on

gestational age (between the 27th and 33rd WG) to maintain

time compatibility with the TPEHG DS. The P group contains

only 17 records that match our inclusion criteria. These were

taken from healthy participants who delivered around 34.7 ± 2.02

WG. From the T group, 119 records were obtained during or after

the 26th week of gestation. However, to maintain a balanced

dataset, 17 were randomly selected. These records belong to 17

healthy patients whose labor triggered around 39.3 ± 1.36 WG.

The EHG signals from the TPEHG DS and TPEHG DB

datasets were acquired using four AgCl2 electrodes positioned

on the abdominal surface in a 2 x 2 matrix configuration,

placed symmetrically above and under the navel with a space of

7 cm between each electrode, as shown in Figure 2. The

reference electrode was placed in the mother’s thigh.

Channels S1, S2, and S3 are bipolar signals resulting from the

difference in potential of electrodes (E1, E2, E3, and E4), as

stated in Figure 2. Each signal was digitalized at 20 samples per

second with a 16-bit resolution.
FIGURE 1

Block diagram of the proposed methodology for P and T classification.
frontiersin.org
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In this study, the signal p001 corresponding to P was

discarded by a visual examination, given that motion artifacts

possibly corrupted the signal in E1 and did not correlate with the

tocogram’s simultaneous acquisition.
2.2 Signal preprocessing

While there is no consensus on the frequency range of the EHG

signal, several authors suggest that themain frequencycontent is in the

frequency band of 0.1 – 4.0 Hz (3, 7). The EHG is often divided into

two frequency subbands: Fast Wave Low (0.1 – 1.2 Hz), associated

with thepropagationof theelectrical signal, andFastWaveHigh(1.2–

4.7 Hz), associated with myometrial excitability. Given that there is

no convention about the EHG bandwidth, three pass-band IIR filters

were applied to each raw EHG channel in the following subbands: F1

(0.3 – 1 Hz), F2 (1 – 2 Hz), and F3 (2 – 3 Hz) conducting the

procedure suggested by Selvaraju et al. (16). This filtering step

evaluated the best frequency content to classify between P and T

groups. In addition, it is also suggested that F1 holds valuable

information related to myometrial cell activity; at the same time,

bands F2 and F3, altered by maternal electrocardiogram (ECG)

interference and its harmonics, may be relevant biomarkers to

evaluate preterm birth (7). Preprocessing of the signal also included

an amplitude standardization using z-score normalization. This

method was applied to create homogenous conditions for data

processing between the complementary datasets employed.

Several studies have obtained promising results in predicting

preterm birth by isolating contractions or bursts from the EHG
Frontiers in Endocrinology 04
records (11, 17–19). However, that methodology requires

the supervision of qualified personnel or the simultaneous use

of tocodynamometry (TOCO). In this study, 120-second

windows with a 50% overlap were extracted from the filtered

EHG records, according to Nieto del Amor et al. (9).

Nevertheless, the present study differs from that proposed in

(9) by considering each 120-second window as a repeated

measurement for predicting preterm birth. Window extraction

was performed automatically, overcoming the disadvantages and

time-consuming procedures of EHG-burst identification. Its

simplicity and short length could make this algorithm suitable

for its implementation in a clinical environment.

Prior to window sampling, the EHG data was randomly and

uniformly split into training (70%), validation (15%), and testing

(15%). This procedure was done for the complete record to avoid

model bias. Thus, the training, testing, and validating groups

contain information from independent recordings.

Thirty-three features were calculated for each EHG window,

including linear: Maximum and Medium Frequency, Root Mean

Square (RMS), Amplitude, Zero Crossing Rate (ZCR), and

nonlinear: Sample Entropy (SampEn), Fuzzy Entropy

(FuzzEn), Permutation Entropy (PerEn), Bubble Entropy

(bEn), and Phase Entropy (PhEn). Specifically, novel

characteristics such as PhEn and Continuous Wavelet

Transform (CWT) derived features (Energy and Flux on 0°,

45°, and 90° used to evaluate cardiotocography signals (12)) were

introduced to identify preterm labor. The CWT was calculated

by the continuous 1-D wavelet transform, using the analytic

Morse wavelet, with a symmetry parameter equal to 3 and L1

normalization, ensuring an equal signal representation (20).

Additionally, DWT coefficients were calculated using the

methodology proposed by the author Janjarasitt, using the

‘Daubechies wavelet’ of 12th order, decomposing the signal in

7 levels, and calculating the difference between adjacent level

coefficients (8). Table 2 depicts the set of parameters calculated

for each EHG segment.

The entropy-based features calculated in the present study

possess internal input values that modify the discriminating

power between the classes P and T. Past studies have focused on

analyzing these values, finding the optimal combination of

parameters to predict preterm birth (Table 3). In this work, we

attempted to use those values to obtain an accurate predictive

model and identify the most relevant characteristics to detect

preterm birth using various entropy-based features.

The entropy-based feature of Permutation Entropy (PerEn) had

not been used before in studying EHG signals; that is why we

selected the input parameters d and p for PerEn according to

previous suggestions for electromyography analysis (33). The

internal parameter k was analyzed within this study for the novel

entropy of PhEn; it has been previously explored for the

differentiation between the third trimester and active parturition

and between eutocic delivery and c-section but not for preterm

birth detection (13, 34). The internal input parameter k was
FIGURE 2

Placement of electrodes in the maternal abdomen (modified from 7).
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modified from 2–24, with a 2-step increase, generating twelve PhEn

values, considered as individual characteristics for the algorithms of

feature selection and the classifier design.
2.3 Feature selection and
classifier design

We computed thirty-three features for each 120-second

window of EHG in the subbands F1, F2, and F3 and for the

three channels S1, S2, and S3. The classification models used in

the current study are decision trees, support vector machine

(SVM), and discriminant analysis.

Four feature selection algorithms (F-test, chi-test, linear

regression, and sequential selection) were used to select the best

features for each classification model, reducing the computational

cost and increasing the classifier’s performance. Feature selection

decreases the number of input variables by selecting characteristics

that show a relevant relationship between the input and target

variables (35). Thesemethods result in a list of predictors in order of

importance. Multiple runs for each algorithm resulted in a different

subset of relevant features, and multiple selection algorithms were

employed simultaneously to obtain consistent results. The

comparative analysis among algorithms choices allowed us to

select features better suited to describe preterm birth. In this

comparative methodology, the features were selected as follows:

the first ten features from the F-test and chi-test were selected.

Linear regression computes the regression model for output and
Frontiers in Endocrinology 05
input variables and returns information on the statistical correlation

of variables. Features with a significant p-value (p<0.05) were

selected from the linear regression model. These features were

sorted in ascending order, selecting the first ten results for the

classifier. Sequential selection features are extracted by adding and

sequentially extracting parameters until a condition is met and the

prediction algorithm cannot be improved. Feature selection

comprises the repeated characteristics within the tests employed:

sequential selection features were compared to the other three

models (F-test, chi-test, linear regression) the repeated features

were selected. Then, the ten predictors selected from the linear

regression were compared to the F-test and chi-test; these features

were also employed.

Each predictive model was composed of a range from 7 to 13

characteristics, selected independently employing feature

selection. Each dataset’s classifier type was trained through the

Classification Learner Toolbox in Matlab v2020a (MathWorks,

USA), using only the training set. The best classifier type was

selected based on accuracy and AUC (Area Under the Curve)

from the trained classifiers. This information was then used to

perform K-fold cross-validation for each dataset.
2.4 K-fold cross-validation

K-fold cross-validation is a procedure used in machine

learning for small datasets by dividing the data into three

groups (training, validation, and test). It results in a less biased
TABLE 3 Internal parameters employed in the calculation of entropy and wavelet-based features.

Feature Internal parameters

Sample Entropy m=2, r=0.15

Phase Entropy k=2,4,6,8,10,12,14,16,18,20,22,24

Permutation Entropy d=2, p=3

Dispersion Entropy m=2, c=3, linear mapping

Fuzzy Entropy m=2, r=0.0077, n=3
exponential function, local and global

Flux (Continuous Wavelet Transform features)
(k1, k2)

0°: (0,1); 45°: (1,1); 90°: (1,0)

Discrete Wavelet Transform analysis 12-order ‘Daubechies’ wavelet
TABLE 2 List of linear, nonlinear, and time-frequency features extracted from electrohysterographic signals.

Linear Nonlinear (Entropy-based) Time-frequency (Wavelet)

Maximum Frequency (21) Phase Entropy (PhEn) (22) Flux 0° (12)

Medium Frequency (21) Sample Entropy (SampEn) (23) Flux 45° (12)

Root Mean Square (RMS) (24) Dispersion Entropy (DispEn) (25, 26) Flux 90° (12)

Zero-Crossing Rate (ZCR) (27) Permutation Entropy (PerEn) (28, 29) Energy (12)

Amplitude (21) Bubble Entropy (bEn) (30, 31) DWT (8)

Fuzzy Entropy (FuzEn) (32)
frontiersin.org
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model since it ensures that every observation from the original

dataset appears in the training and testing set (36).

In this type of cross-validation, the total samples of train and

validation groups are randomly split into a k number of folds of

equal sizes. Then a classifier model is generated k times, each taking

a different fold as testing and the rest as training. In this study, a k

with a value of 23 was employed, with each partition containing 49

samples, to include the whole dataset. The test group, which

contains independent recordings not employed in the training or

validation sets, is tested for each classification model created.

Parameters such as accuracy, sensitivity, specificity, Negative

Predictive Value (NPV), Positive Predictive Value (PPV), Area

Under the Curve ROC (AUC), recall, precision, and F-Score

were calculated simultaneously during the cross-validation to

evaluate the performance of each channel-filter configuration.

All computations were performed in Matlab v2020a.
2.5 Statistical analysis

A statistical analysis of the selected features was performed

to evaluate the changes in the mean values of linear, nonlinear,

and time-frequency indices between the P and T conditions for

all combinations of filter-channel. These comparisons were

performed using a nonparametric Mann-Whitney test,

considering p<0.05 as a significant difference. The statistical

analysis was accomplished using GraphPad Prism version 8.0.2

for Windows (GraphPad Software, La Jolla, CA, USA).
3 Results

Considering the alternative hypothesis that the EHG signals

manifest differences between the T and P conditions, we

independently analyzed each feature used within the classifiers.

Figure 3 shows the statistical analysis of all features employed in

this study and indicates the features selected as optimal for

classification and used to train the prediction models. The lowest

p-values (p<0.0001) were found in the following features: linear

(RMS), entropy-based indices (DispEn, SampEn, FuzzEn), and

CWT-based features (Flux, Energy). It is also noticeable that the

features of the PhEn were selected for all the models. Similarly,

CWT features were employed in 4 out of 9 classifiers, including

the best model (S3F3). Other entropy measures, such as DispEn,

and SampEn, showed potential for classification. Linear Features

of interest, RMS, and Medium Frequency, were also selected in

various classifier models.

Table 4 shows the higher classifier performances obtained

from the k-fold cross-validation procedure from all classifier

models. Notably, the classifier models of fine gaussian SVM in

channel S2 within the 0.3 – 1 Hz subband (S2F1) and the

quadratic SVM in channel 3 in the 2 – 3 Hz subband achieved an

accuracy higher than 85%. The S3F3 model achieved an accuracy
Frontiers in Endocrinology 06
of 88.52±1.47%, a sensitivity of 83.83%±3.07%, a specificity of

93.22±1.31%, and subsequently, AUC=0.89±0.02 in the testing.

Interestingly, using the SVM classifier model, other classifier

models reached similar performances, such as S1F1 and S1F3.

The statistical analysis results are shown in Figure 3, with the

predictors used for each classifier. This figure highlights the low p-

values of some relevant features, i.e., CWT characteristics and

entropy-based methods. Interestingly, several significant

differences (p<0.0001) in the mean values of CWT features such

as Energy (Figure 4) were found between the T and P groups in the

S2 channel: Energy of S2F1 (2.8x1010 ± 7.1x109 amplitude in

arbitrary units, A.U (Arbitrary Units) vs. 1.2x1010 ± 4.3x109 A.U.,

Figure 4A); S2F2 (9.7x109 ± 3.5x109 A.U vs. 3.5x109 ± 1.9x109 A.U.,

Figure 4B) and S2F3 (4.2x109 ± 1.6x109 A.U vs. 1.8x109 ± 7.6x108

A.U., Figure 4C) for the P and T groups, respectively. In addition,

the mean values of Flux from the spectrogram (0°, 45°, and 90°)

were significantly higher (p<0.0001) in T compared to P conditions

for the three subbands F1, F2, and F3 (data not shown).

Figure 5 depicts representative preterm (Figure 5A) and term

(Figure 5B) participants’ spectrograms and their corresponding

EHG. Interestingly, in these representative examples, the Energy

of the T spectrogram is distributed on a broader frequency range

and manifests a higher magnitude than P.
4 Discussion

Addressing physiological phenomena from an engineering

interpretation can be challenging due to the prevailing gap

between medical sciences and mathematics. However, it allows

broadening the perspective of what is known about a topic. This

work aimed to improve the general understanding of the

mechanisms of parturition and preterm birth by applying

different classifier models trained with EHG features such as

RMS, CWT, and entropy-based methods. Therefore, nine

classification models were designed to predict preterm labor,

two of which achieved an accuracy higher than 85% using a k-

fold cross-validation procedure.

Remarkably, our results showed that CWT-derived features

are relevant in the characterization of EHG and could be suitable

for implementing an algorithm to predict preterm birth. These

results support the notion that the combination of metrics, such

as linear, nonlinear, and even time-frequency features,

complement each other for the purpose of classification (9).

Thus, in addition to contributing to the classification

performance, these new features also show relevant

information on the physiological mechanisms of parturition.

For example, RMS and CTW Energy both estimate the intensity

of the womb’s electrical activity (7), and the spectrogram shows

the Energy related to cellular activity or ‘bursts’ seen in the EHG

signal (Figure 5).

The uterus comprises billions of intricately interconnected

cells whose activity and responses are considered as a nonlinear
frontiersin.org
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dynamic process (37). Uterine electrical activity seems more

irregular in the T compared to P labor. For example, PhEn values

confirmed this behavior (T: 0.7973 ± 0.0372 vs. P: 0.7880 ±

0.0487)1 which is consistent with Reyes-Lagos et al., who

compared EHG signals in the third trimester and parturition.

That study showed a lower PhEn value for parturient women,

which reflects the loss of irregularity of the EHG signal (13).

Similarly, the high intensity, periodic and rhythmic contractions

manifested at preterm labor (indicated by RMS, CWT Energy,

and entropy-based measurements) differ from the term group,
1 These values represent the PhEn values obtained from S2F3, with a

k=4. However, a similar tendency in the data was observed throughout

other k values, and channel selections.

Frontiers in Endocrinology 07
despite that the EHG signals were recorded around 31 weeks of

gestation in both groups, which showed no clinical signs of labor.

Evidence suggests that the accelerated development of gap

junctions has been associated with preterm labor, typically

resulting in better electric coupling and synchronization of

myometrial activity (38).

The mechanisms involved in labor are still unknown for

both term and preterm deliveries (39), which make difficult the

research and clinical work to prevent preterm outcomes.

However, a hypothesis having elevated level of acceptance

postulates a series of biochemical, physiological, and

anatomical changes occuring in labor. Nevertheless, it does not

explain the central mechanisms, origin, or subsequent path of

parturition. In this hypothesis, the onset of labor is assumed as a

pro-inflammatory complex event triggered by a “decidual clock.”
FIGURE 3

Selection of features for each classifier. S1, S2, and S3 represent the bipolar channels acquired from the public database, while F1, F2, and F3, represent
the frequency sub-bands compared in this study. Colored frames (gray, yellow, and orange) indicate that the feature was selected as an optimal
classification parameter and used to train the prediction model. The classifiers that achieved the highest classification accuracy (< 85%) in testing are
presented in yellow and orange, indicating the type of classifier used. *,**,***,**** are used to describe significant differences between P and T groups in
the Mann-Whitney test, with p-values lower than 0.05, 0.01, 0.001, and 0.0001, respectively.
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This is proposed as the mechanism that controls the initiation of

delivery; however, it is still unclear how this clock works.

According to this mechanism, the change between anti-

inflammatory and pro-inflammatory mediators modifies the

myometrium contractile state (39).

The parameters obtained by CWT analysis offer a new way

to study EHG signals because they are based on the spectrogram

that includes a three-variable visualization of the signal,

incorporating time, frequency, and Energy. Jager et al.

theorized that the shape of the uterus and cervix favors the

influence of uterine muscle activity by propagating maternal

heart rate electromechanically (7). Owing to the magnitude of

EHG (500 uV), the electrical heart activity (1 mV) (26, 40) could

be identified through EHG records (3). During gestation, the

closed uterus reflects electrical pulses from the maternal

electrocardiogram, causing interference. Thus, interference is

expected to be more prominent in the T group (7). Furthermore,

as labor progresses, cervical effacement generates an opening in

the uterus, causing electrical signals to be diffracted,
Frontiers in Endocrinology 08
consequently the energy concentration is diminished in higher

sub-bands (Figure 4).

In preterm spectrograms, the EHG signal is visually

contained within the F1 frequency band (0.2–1 Hz), which is

frequently related to EHG (5, 7, 9, 21). Sub-bands F2 and F3 are

also identifiable, separated from the high-energy band. However,

in term spectrograms, the EHG activity shows a a broader range

that is translated to energetic components overlapping in bands

F1, F2, and F3, as derived from the ECG interference. This idea is

furtherly supported by CWT-derived features, in which the

energy values in sub-band F2 (1–2 Hz) are higher for the T

group (Figure 4B), where the interference derived from maternal

heart activity is expected.

The Flux derived from CWT analysis measures the rate of

change of local power in the time-frequency sphere (12). Flux was

calculated at 0°, 45°, and 90°, establishing the direction of the

signal’s propagation. A higher flux value represents higher power

changes in the signal and direction. Diab et al. measured the

directionality of a single EHG burst, demonstrating that during
TABLE 4 Summary of k-fold cross-validation for different classification models trained using the selected features of linear, nonlinear, and
frequency indices of EHG.

Classification models Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) AUC F-Score

S1F1 Quadratic Supportive
Vector Machine (SVM)

Train 95.56 ± 0.25 94.72 ± 0.36 96.36 ± 0.42 96.16 ± 0.42 95.01 ± 0.32 0.94 ± 0.03 0.93 ± 0.03

Validation 93.52 ± 3.24 92.97 ± 6.09 94.13 ± 5.64 93.99 ± 5.64 93.44 ± 5.37 0.94 ± 0.03 0.93 ± 0.03

Test 82.04 ± 1.11 64.09 ± 2.21 100.00 ± 0.00 100.00 ± 0.00 73.59 ± 1.19 0.82 ± 0.01 0.78 ± 0.02

S1F2 Cubic SVM Train 97.56 ± 0.29 97.21 ± 0.34 97.89 ± 0.35 97.79 ± 0.35 97.34 ± 0.32 0.93 ± 0.04 0.93 ± 0.05

Validation 93.17 ± 4.25 92.56 ± 5.99 93.76 ± 5.33 93.51 ± 5.72 93.08 ± 5.69 0.93 ± 0.04 0.93 ± 0.05

Test 55.04 ± 3.31 25.83 ± 3.76 84.26 ± 4.95 62.69 ± 9.33 53.17 ± 2.04 0.55 ± 0.03 0.36 ± 0.05

S1F3 Fine Gaussian SVM Train 94.90 ± 0.170 94.63 ± 0.26 95.16 ± 0.31 94.94 ± 0.3 94.86 ± 0.22 0.92 ± 0.03 0.91 ± 0.04

Validation 91.84 ± 2.75 91.22 ± 6.55 92.07 ± 4.70 91.90 ± 3.98 92.05 ± 4.55 0.92 ± 0.03 0.91 ± 0.04

Test 81.13 ± 1.39 94.52 ± 1.24 67.74 ± 2.03 74.57 ± 1.30 92.52 ± 1.69 0.81 ± 0.01 0.83 ± 0.01

S2F1 Fine Gaussian SVM Train 96.63 ± 0.20 97.76 ± 0.25 95.55 ± 0.30 95.47 ± 0.29 97.80 ± 0.23 0.88 ± 0.04 0.88 ± 0.04

Validation 88.20 ± 4.28 88.88 ± 5.85 88.04 ± 6.69 87.75 ± 6.95 88.99 ± 6.09 0.88 ± 0.04 0.88 ± 0.04

Test 87.52 ± 1.20 75.04 ± 2.40 100.00 ± 0.00 100.00 ± 0.00 80.06 ± 1.54 0.88 ± 0.01 0.86 ± 0.02

S2F2 Quadratic SVM Train 91.70 ± 0.21 92.59 ± 0.38 90.84 ± 0.84 90.66 ± 0.33 92.74 ± 0.34 0.9 ± 0.04 0.9 ± 0.04

Validation 90.33 ± 4.23 91.44 ± 5.84 89.41 ± 6.15 89.47 ± 5.40 91.07 ± 6.05 0.90 ± 0.04 0.90 ± 0.40

Test 66.83 ± 1.03 37.57 ± 1.47 96.09 ± 2.05 90.82 ± 4.41 60.61 ± 0.61 0.67 ± 0.01 0.53 ± 0.01

S2F3 Weighted Kernel Nearest
Neighbors (KNN)

Train 74.31 ± 0.44 70.34 ± 4.88 78.12 ± 4.62 75.82 ± 2.99 73.44 ± 1.97 0.68 ± 0.07 0.66 ± 0.08

Validation 68.32 ± 3.490 64.16 ± 10.13 72.80 ± 9.32 69.28 ± 9.52 68.00 ± 9.51 0.68 ± 0.07 0.66 ± 0.08

Test 51.04 ± 2.98 40.26 ± 5.16 61.83 ± 9.91 52.07 ± 4.65 50.65 ± 2.32 0.51 ± 0.01 0.45 ± 0.03

S3F1 Bagged Tree Train 99.89 ± 0.09 99.93 ± 0.12 99.85 ± 0.16 99.84 ± 0.17 99.93 ± 0.12 0.71 ± 0.06 0.7 ± 0.09

Validation 71.52 ± 6.2 68.9 ± 11.69 73.53 ± 9.78 71.35 ± 9.62 72.08 ± 5.98 0.71 ± 0.03 0.70 ± 0.09

Test 47.91 ± 3.360 32.70 ± 3.60 63.13 ± 50 47.1 ± 4.61 48.36 ± 2.65 0.48 ± 0.03 0.39 ± 0.04

S3F2 Cubic SVM Train 99.10 ± 0.22 99.3 ± 0.27 98.9 ± 0.29 98.86 ± 0.30 99.33 ± 0.12 0.93 ± 0.03 0.92 ± 0.04

Validation 92.64 ± 3.18 93.16 ± 5.26 92.26 ± 4.56 91.73 ± 5.92 93.28 ± 5.02 0.93 ± 0.03 0.92 ± 0.04

Test 72.17 ± 2.25 84.43 ± 1.59 59.91 ± 4.11 67.87 ± 2.30 79.35 ± 2.09 0.72 ± 0.02 0.75 ± 0.02

S3F3 Quadratic SVM Train 93.46 ± 0.31 93.57 ± 0.53 93.35 ± 0.44 93.11 ± 0.41 93.8 ± 0.48 0.91 ± 0.04 0.91 ± 0.04

Validation 91.30 ± 3.65 92.10 ± 5.86 90.33 ± 5.14 90.37 ± 4.55 92.52 ± 5.31 0.91 ± 0.04 0.91 ± 0.04

Test 88.52 ± 1.47 83.83 ± 3.07 93.22 ± 1.31 92.51 ± 1.46 85.27 ± 2.49 0.89 ± 0.02 0.88 ± 0.02
fron
The dataset employed for each classifier is denoted as S (1,2,3) for the signal channel and the frequency subband with F (1,2,3; 0.3 – 1 Hz, 1 – 2 Hz, 2 – 3 Hz, respectively). The highest
classification accuracy is shown in bold.
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labor, the signal is propagated along the entire matrix of electrodes

(41). However, their model also showed a tendency of propagation

towards the cervix, generating efficient contractions to expel the

fetus. Taking this into account, in the 0.1 – 1 Hz sub-band (which

contains the main components of the EHG signal), a comparison

between channelswasperformed for Flux90°.Our results showed a

higher flux value for channel 1 (data not shown), which could be

related to the bipolar electrode configuration, that allows scanning

the uterus signal propagation horizontally (through electrodes E2 -

E1) and vertically (throughFlux 90°). These results agreewith those

discovered by Diab et al., which confirms that CWT features, such

as Flux, describe a physiological pattern of the signal.
Frontiers in Endocrinology 09
Additionally, given that the bandwidth of 1–2 Hz contains

the principal interferences caused by the maternal heart rate (7),

higher flux was expected for the T group at 90°. This

phenomenon was observed in S1F2 (data not shown) and

could be related to the proximity held by observant electrode

E1 to the maternal heart. Maternal heart influence in channel S1

is amplified, creating a change in power that can be quantifiable

by flux analysis.

The main aim of medical research should be at the end to

bring discoveries to the clinical field. In this understanding, we

homogenized the current methodology aiming to facilitate the

eventual transition to clinical practice. For this reason, only
A B C

FIGURE 4

Energy values for the channel 2 in the three different subbands. The three panels can corroborate the difference between the P and T groups,
where the T group presents higher values than P. (A) Values for the S2F1 combination. (B) Shows the values of Energy for S2F2 and (C) the
Energy values for S2F3. **** represents p-value lower than 0.0001.
A B

FIGURE 5

Representative spectrograms of EHG signals for the term (T) and preterm (P) groups. (A) shows the spectrogram retrieved from the participant
no. 10, from the preterm group (P, recorded at 30 weeks of gestation and triggered labor at 32 weeks of gestation), while (B) shows the
spectrogram retrieved from participant no. 9, from the term group (T, recorded at 30 weeks of gestation and triggered labor on 39 weeks of
gestation). Below each spectrogram, the EHG signal can be visualized. Both spectrograms are derived from the S2 signal.
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records taken around a similar gestation age (e.g., the 31st week

of gestation) were included. However, the criterion reduced the

sample size, considering the number of available records in the

online datasets. Thus, the size of the sample is one of the main

limitations of the present study. Future investigations on the

preterm labor field should be performed to generate new EHG

datasets with more records taken in pregnant women with a

similar gestational age.
5 Conclusion

The best performance, i.e., 88.52% accuracy, 83.83%

sensitivity, and 93.22% specificity in the testing set, 91.30%

accuracy in validation, and 93.46% in training was obtained in

the 2–3 Hz bands using a Quadratic SVM classification model

trained with the EHG features of Medium Frequency, and CWT-

derived features such as Flux and Energy, and entropy-based

indices. In line with these results, these features exhibited

significant differences between term and preterm labor in the

EHG signals. Interestingly, CWT features were significantly

different in all filter-channel combinations. These differences

in the CWT features could be associated with the frequency

interference caused by the maternal heart and the placement of

electrodes closer to the chest. The main achievement of this

study is the determination of key features for preterm birth

prediction based on the analysis of EHG. Thus, these results

suggest that CWT and novel entropy-based features of EHG

could be suitable descriptors for analyzing and understanding

the complex nature of preterm labor mechanisms.
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