
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Cilia Abad,
Charles University, Czechia

REVIEWED BY

Camille Fung,
The University of Utah, United States
Chad Slawson,
University of Kansas Medical Center
Research Institute, United States

*CORRESPONDENCE

Rinaldo Rodrigues dos Passos Junior
rinaldo_passos@discente.ufg.br

SPECIALTY SECTION

This article was submitted to
Developmental Endocrinology,
a section of the journal
Frontiers in Endocrinology

RECEIVED 30 August 2022
ACCEPTED 18 November 2022

PUBLISHED 01 December 2022

CITATION

dos Passos Junior RR, de Freitas RA,
Dela Justina V, San Martı́n S, Lima VV
and Giachini FR (2022) Protein O-
GlcNAcylation as a nutrient sensor
signaling placental dysfunction in
hypertensive pregnancy.
Front. Endocrinol. 13:1032499.
doi: 10.3389/fendo.2022.1032499

COPYRIGHT

© 2022 dos Passos Junior, de Freitas,
Dela Justina, San Martı́n, Lima and
Giachini. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Original Research
PUBLISHED 01 December 2022

DOI 10.3389/fendo.2022.1032499
Protein O-GlcNAcylation
as a nutrient sensor signaling
placental dysfunction in
hypertensive pregnancy

Rinaldo Rodrigues dos Passos Junior1*,
Raiany Alves de Freitas1, Vanessa Dela Justina2, Sebastián San
Martı́n3, Victor Vitorino Lima2 and Fernanda Regina Giachini1,2

1Graduate Program in Biological Sciences, Federal University of Goiás, Goiânia, Brazil, 2Institute of
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Introduction: During pregnancy, arterial hypertension may impair placental

function, which is critical for a healthy baby's growth. Important proteins during

placentation are known to be targets for O-linked b-N-acetylglucosamine

modification (O-GlcNAcylation), and abnormal protein O-GlcNAcylation has

been linked to pathological conditions such as hypertension. However, it is

unclear how protein O-GlcNAcylation affects placental function and fetal

growth throughout pregnancy during hypertension.

Methods: To investigate this question, female Wistar and spontaneously

hypertensive rats (SHR) were mated with male Wistar rats, and after

pregnancy confirmation by vaginal smear, rats were divided into groups of

14, 17, and 20 days of pregnancy (DOPs). On the 14th, 17th, and 20th DOP, rats

were euthanized, fetal parameters were measured, and placentas were

collected for western blot, immunohistochemical, andmorphological analyses.

Results: SHR presented a higher blood pressure than the Wistar rats (p=0.001).

Across all DOPs, SHR showed reduced fetal weight and an increase in small-

for-gestational-age fetuses. While near-term placentas were heavier in SHR

(p=0.006), placental efficiency decreased at 17 (p=0.01) and 20 DOPs

(p<0.0001) in this group. Morphological analysis revealed reduced junctional

zone area and labyrinth vasculature changes on SHR placentas in all DOPs. O-

GlcNAc protein expression was lower in placentas from SHR compared with

Wistar at 14, 17, and 20 DOPs. Decreased expression of O-GlcNAc transferase

(p=0.01) and O-GlcNAcase (p=0.002) enzymes was found at 14 DOPs in SHR.

Immunohistochemistry showed reduced placental O-GlcNAc content in both

the junctional zone and labyrinth of the placentas from SHR. Periodic acid-

Schiff analysis showed decreased glycogen cell content in the placentas from

SHR at 14, 17, and 20 DOPs. Moreover, glucose transporter 1 expression was

decreased in placentas from SHR in all DOPs.
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Conclusions: These findings suggest that decreased protein O-GlcNAcylation

caused by insufficient placental nutritional apport contributes to placental

dysfunction during hypertensive pregnancy, impairing fetal growth.
KEYWORDS

hypertension, placenta, O-GlcNac, glycosylation, glucose uptake, fetal
growth restriction
Introduction

Hypertensive disorders of pregnancy (HDPs) are a

worldwide health problem that complicate up to 10% of all

pregnancies and are among the leading causes of pregnancy-

related mortality and morbidity, with an estimated 14% of global

pregnancy deaths (1, 2). Therefore, the term HDP is commonly

used to describe a wide spectrum of patients, including those

with mildly elevated blood pressure, as well as those with severe

hypertension, with or without organ dysfunction (3). Although

many pregnancies affected by hypertension usually progress well

and have normal outcomes, there is an increased risk of

complications such as preeclampsia, fetal growth restriction,

and perinatal death (4). Despite various etiopathologies, HDPs

are characterized by structural and functional alterations of the

placenta (5, 6).

The placenta is undoubtedly known to be vital during

pregnancy because it helps to establish the pregnant state,

protect the embryo, and promote the exchange of nutrients,

gasses, and waste products so that the embryo can survive and

develop in the intrauterine environment (7). During the multiple

events of placental development, several signaling pathways are

triggered to coordinate these processes, and specific proteins that

regulate placental function are known to be targets for post-

translational modification involving glycans (8).

O-linked b-N-acetylglucosamine modification (O-

GlcNAcylation) is a dynamic and reversible process that

regulates protein stability, activity, and localization, and

therefore cellular response, by the addition of a single

saccharide to the serine, threonine, and tyrosine sites of

nuclear, cytosolic, and mitochondrial proteins (9). The cycling

of O-GlcNAcylation is tightly controlled by two unique and

essential enzymes: O-GlcNAc transferase (OGT) and O-

GlcNAcase (OGA), which catalyze the addition and removal

of O-GlcNAc, respectively (10). The substrate for O-

GlcNAcylation requires glucose conjugation with amino acids,

lipids, and nucleic acids to produce uridine diphosphate-N-

acetylglucosamine (UDP-GlcNAc) through the hexosamine

biosynthetic pathway (HBP) (11). Therefore, HBP and O-

GlcNAcylation are considered to be major nutrient-sensitive
02
pathways (12, 13) and aberrant O-GlcNAcylation has been

associated with metabolic disruption and pathological

conditions, such as diabetes and arterial hypertension (14, 15).

The growth and development of a healthy baby require the

transport of essential nutrients through the placenta, such as glucose

and amino acids. Glucose reaches the growing fetus via numerous

glucose transporters (GLUT) present in the placenta, where GLUT1

and GLUT3 isoforms are known to be major contributors to

placental glucose transport (16, 17). Moreover, nutrient uptake in

response to fetal demand is tightly coordinated by an array of

signaling pathways, andO-GlcNacylation is known to be a nutrient-

sensing pathway involved in glucose utilization (12, 13).

Interestingly, arterial hypertension during pregnancy has been

associated with impaired fetal growth and small-term babies.

However, the involvement of the O-GlcNacylation pathway on

placental nutritional apport and fetal development in this condition

remains unknown.

Therefore, in the present study, we investigated how

hypertension affects O-GlcNacylation of proteins, availability

of glucose in the placenta, and fetal growth during pregnancy in

hypertensive rats.
Materials and methods

Ethics statement

All the procedures and animal handling and maintenance

were carried out according to the guidelines provided by the

Brazilian College of Animal Experimentation upon approval by

the Ethics Committee on the Use of Animals of the Federal

University of Mato Grosso (CEUA-Araguaia; #23108.038471/

2019-14).
Animals

Female Wistar and Spontaneously Hypertensive Rats (SHR)

(12-14 weeks old, 180-200 g) obtained from the Laboratory of

Vascular Biology and Histopathology of the Institute of Biological
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and Health Sciences at the Federal University of Mato Grosso were

used in this study. The rats were maintained in the animal facility

room, at 23 ± 2°C, with 12-hour light/dark cycles, fed a standard

commercial diet, and received free water intake. The blood pressure

was measured by tail-cuff plethysmography after three days of

adaptation to the device, before mating.
Mating and pregnancy determination

For mating, females were housed with males of the same

species during the night (of ±4 females for each male). By the

morning of the following day, the rats were separated, and

vaginal smears were taken to observe the presence of sperm

and keratinized cells from the estrous cycle. If positive for the

presence of spermatozoa, this was designated gestational day 0.
Experimental design

Pregnant SHR and Wistar rats were separated into

hypertensive and normotensive groups, respectively, and

divided into 14, 17, and 20 days of pregnancy (DOP)

subgroups (n = 6, for each group). On the 14th, 17th, and 20th

DOP, rats were anesthetized with 3% sodium pentobarbital (50

mg/kg body weight, i.p.) and submitted to laparotomies for

removal of the placentas and fetuses. The placentas were cleaned

of connective tissue, cut in half, and stored at -80°C or immersed

in a fixative solution for the histological experiments. The living

fetuses were individually weighted and classified according to the

mean values of fetal weights in the normotensive group as small

for gestational age [(SGA) fetal weight < Wistar mean - SD x

1.7]; appropriate for gestational age [(AGA) fetal weight within

Wistar mean ± SD x 1.7]; and large for gestational age [(LGA)

fetal weight >Wistar mean +SD x 1.7] (18), demised fetuses were

not included. Posteriorly, rats were killed by pneumothorax, and

fetuses were killed by placement in a CO2 chamber.
Western blotting

Placentas were immersed in liquid nitrogen and mechanically

macerated to obtain total cell lysate by incubating samples with

lysis buffer containing protease inhibitors. Protein concentration

was determined using the Bradford Assay Kit (Sigma-Aldrich).

Extracted proteins (60 mg per lane) were loaded and separated on

a polyacrylamide gel (8-10%) by electrophoresis and transferred to

a nitrocellulose membrane (Sigma-Aldrich). The success of

protein transfer was further detected by Ponceau S staining.

Non-specific binding sites were blocked with 5% skimmed dry

milk in Tris-buffered saline solution with Tween-20 (TBS-T, pH
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7.6) for 1 hour, at room temperature. Membranes were rinsed and

incubated with primary antibodies overnight at 4°C under

constant agitation. The following antibodies were used: anti-O-

GlcNAc (Sigma-Aldrich Cat# O7764, RRID : AB_1079524, 1:500),

anti-OGT (Abcam Cat# ab50273, RRID : AB_881784, 1:1000),

anti-OGA (Sigma-Aldrich Cat# SAB4200311, RRID :

AB_10898726, 1:500), anti-GLUT1 (Abcam Cat# ab115730,

RRID : AB_10903230, 1:8000), anti-b-actin (Abcam Cat#

ab8227, RRID : AB_2305186, 1:3000). Thereafter, membranes

were removed from primary antibodies and washed with TBS-T.

Membranes were treated with the respective secondary antibodies

for 1 hour at room temperature. Protein bands were detected

using the ECL Plus Western Blotting Detection System (GE

Healthcare) and then quantified using an image-analysis

software program. The protein expressions were normalized to

the intensity of b-actin protein and were further expressed as

arbitrary units.
Histological procedures

Placentas were fixed in methacarn solution (60% methanol,

30% chloroform, and 10% acetic acid), for 3 hours, at 4 °C, under

constant agitation. Then, the placentas were dehydrated in

successive alcohol dilutions, clarified in xylene, and

subsequently infiltrated with paraffin. Sections of 4 µm

thickness were made using a microtome, stretched in a

floating bath at 50°C, and adhered to glass slides previously

treated with poly-L-lysine 0.1% (Sigma) for better adhesion of

the sections.
Hematoxylin and eosin staining

For morphological analysis, hematoxylin-eosin staining was

performed. Sections were deparaffinized and rehydrated, and the

slides were immersed in hematoxylin for 1 minute, rinsed in

running water and in distilled water, and subsequently

counterstained with aqueous eosin for 30 seconds.
Periodic Acid-Schiff (PAS) staining

Sections were deparaffinized and rehydrated. Slides were

dipped in a periodic acid solution and rinsed in distilled water.

Subsequently, slides were placed in Schiff’s solution (basic

fuchsin, sodium bisulfite, hydrochloric acid, and distilled

water) at room temperature and rinsed in sulfuric water.

Finally, the histological sections were counterstained with

Harris hematoxylin to fully recognize PAS-positive staining

and rinsed well in distilled water.
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Immunohistochemistry

Immunohistochemistry was performed according to a

previously established protocol (19). Sections were deparaffinized

and rehydrated. Each of the following steps was followed by rinses

in 0.1M phosphate buffer solution (PBS) – pH 7.2-7.4. Antigenic

epitope retrieval was performed by immersing slides in citrate

buffer (pH 6.0) at 95°C for 25 minutes. Then, sections were

incubated in a hydrogen peroxide solution (3% H2O2 (v/v) in

PBS) to block endogenous peroxidase activity. To reduce

nonspecific antigenic sites (background), the slides were

incubated with Cas-Block solution (ThermoFisher Scientific), for

30 minutes. The incubation of the primary antibody was preceded

by a series of standardizations, and the antibody dilutions were

previously determined. The slides were subsequently incubated

with the anti-O-GlcNAc primary antibody (Cell Signaling

Technology Cat# 9875, RRID : AB_10950973), diluted 1:50 in

PBS containing 0.3% (v/v) Tween 20, overnight at 4°C in a humid

chamber. After extensive rinsing in PBS, all sections were

incubated with biotin-conjugated goat anti-mouse IgG (Sigma-

Aldrich Cat# A9044, RRID : AB_258431) diluted 1:250 in PBS for

1 h, at room temperature. The peroxidase reaction was visualized

using the NovaRED® kit (Vector). A slight counter-stain was

performed with Harris hematoxylin to provide a contrast to the

chromogen. The secondary antibody specificity was tested by

omitting the primary antibody. The specificity of the primary

antibody was tested in experiments with positive control tissues,

already described in the literature (19).
Histochemical, morphological, and
morphometric analysis

Sections were examined in a Nikon Eclipse microscope, and

the images were captured using a digital camera (Opton) and

TCapture software. For morphometric analyses, the areas of the

junctional zone and the labyrinth were measured in (mm2) using

the Image-Pro-Plus software (Media Cybernetics, Silver Spring,

MD, USA). PAS stain-positive cells were counted for each captured

field and normalized by the area (mm2) of the junctional zone.

They were expressed as the number of cells per mm2 of the

junctional zone. Protein expression of immunohistochemistry

staining was determined by semi-quantitative analysis using

ImageJ Fiji (WS Rasband, National Institute of Health, Bethesda,

MD) and was expressed as the percentage of staining intensity

normalized by the nuclei number, as described previously (20).
Statistical analysis

Data were presented as mean ± standard error of the mean

(SEM), and “n” represents the number of animals used in
Frontiers in Endocrinology 04
the experiment. Statistical analysis was performed using the Prisma

program (GraphPad Prism 5.0, GraphPad Software Incorporated,

CA) (GraphPad Software Inc.), with Student t test, compared to the

respective normotensive group. For analysis between three or more

groups, aone-wayanalysisofvariance (One-WayANOVA) followed

by the Tukey post-test was used. For percentage analysis, Fisher’s

exact test was used in the SPSS program (IBM SPSS Statistics 20). P

values <0.05 were considered statistically significant.
Results

Reduced placental O-GlcNac, OGT, and
OGA expression in SHR

Systolic blood pressure (SBP) was higher in SHR when

compared to Wistar rats [(mmHg) 181 ± 3 vs. 128 ± 5 Wistar;

p < 0.001] (Figure 1A). We accessed the O-GlcNac protein

expression on placentas from SHR and Wistar rats at 14, 17,

and 20 DOP. Placentas from SHR presented reduced O-GlcNac

protein expression at 14, 17, and 20 DOPwhen compared to those

from Wistar rats (Figure 1B). Moreover, reduced expression of

OGT (0.5 ± 0.01 vs. 0.9 ± 0.1 Wistar; p = 0.01) and OGA (0.4 ±

0.01 vs. 1 ± 0.1 Wistar; p = 0.002) enzymes was found on 14 DOP

in SHR (Figures 1C, D), but not in 17 or 20 DOP.
Reduced fetal weight and increased
percentage of small for gestational age
(SGA) fetuses in SHR

Fetal parameters from pregnant SHR and Wistar rats at 14, 17,

and 20 DOP are shown in Table 1. SHR presented increased pre-

implantation losses. Reduced fetal weight with an increased number

of small for gestational age (SGA) fetuses was found on SHR at 14,

17, and 20 DOP when compared to Wistar. The percentage of SGA

fetuses increased throughout pregnancy in SHR, and near term,

100% of all the fetuses were found to be SGA in this group.
Placental structural and functional
alterations in SHR

Once the fetal weight was decreased and the fetuses were

smaller in SHR, we investigated the placenta (Table 2). Placental

weight was found to increase throughout pregnancy, and near-

term placentas from SHR were found to be significantly heavier

when compared to those fromWistar rats [(g) 0.6 ± 0.02 vs. 0.4 ±

0.02 Wistar; p = 0.006]. On the other hand, placental efficiency,

indicated by the fetal/placental weight ratio, decreased in SHR at

17 (1.7 ± 0.1 vs. 2.3 ± 0.1Wistar; p=0.01) and 20 DOP (6 ± 0.2 vs.

10 ± 0.2 Wistar; p<0.0001).
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FIGURE 1

Reduced placental O-GlcNAc, OGT and OGA expression in SHR. (A) Bar graph showing SBP (mmHg) in Wistar and SHR; n = 6 each group. (B)
Upper representative picture of western blot membrane of placental O-Glcnac expression in Wistar and SHR at 14, 17 and 20 DOP. Bar graph
showing the O-Glcnac expression in Wistar and SHR at 14, 17 and 20 DOP; n = 6 each group. (C) Upper representative picture of western blot
membrane of placental OGT expression in Wistar and SHR at 14, 17 and 20 DOP. Bar graph showing the OGT expression in Wistar and SHR at
14, 17 and 20 DOP, n = 6 each group. (D) Upper representative picture of western blot membrane of placental OGA expression in Wistar and
SHR at 14, 17 and 20 DOP. Bar graph showing the OGA expression in Wistar and SHR at 14, 17 and 20 DOP, n = 6 each group. Values are
presented as means ± SEM, and data were analyzed by one‐way ANOVA, followed by Tukey post-test. *p < 0.05 vs Wistar at respective DOP.
Protein expression was individually determined and corrected by b−actin expression.
TABLE 1 Fetal parameters from Wistar and SHR at 14, 17 and 20 DOP.

14 DOP 17 DOP 20 DOP

Wistar SHR Wistar SHR Wistar SHR

Pre-implantation loss 1.2 ± 0.4 4 ± 0.7* 1 ± 0.6 4 ± 0.8* 0.5 ± 0.2 4 ± 1.7*

Fetal weight (g) 0.15 ± 0.004 0.13 ± 0.007* 0.9 ± 0.03 0.7 ± 0.03* 4.9 ± 0.1 3.4 ± 0.04*

SGA (%) 3.40 27.60* 1.60 43.50* 1.50 100.0*

AGA (%) 96.60 72.40* 91.80 56.50* 97.0 0.0*

LGA (%) 0.0 0.0 6.60 0.0 1.5 0.0
Frontiers in Endocrinology
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SGA, small for gestational age; AGA, appropriate for gestational age; LGA, large for gestational age. *p<0.05 vs Wistar. Student unpaired t-test and Fisher exact test (%).
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Morphometric analysis showed that the junctional zone (Jz)

increases throughout pregnancy, reaching a higher peak area on day

17 of pregnancy in both Wistar and SHR. However, placentas from

SHR presented decreased Jz area on all DOP analyzed, compared to

the respective Wistar group (Figures 2A–C). Although no

alterations were found in the labyrinth zone (Lz) between groups

(Figure 2B), the placental Lz from SHR presented a compacted area

with thicker wall vessels and vascular congestion (Figure 2C).
Reduced protein O-GlcNAcylation
on both Jz and Lz of the placentas
from SHR

We performed immunohistochemistry to characterize the

localization of the O-GlcNAc protein profile in placental tissue.

Immunohistochemistry analysis showed reduced O-GlcNAc

deposition on both Jz and Lz of the placentas from SHR when

compared to Wistar rats (Figures 3A, B). In these zones, proteins

from both endothelial and trophoblast cells were the most

frequent targets for O-GlcNAcylation (Figure 3C).
Reduced glucose storage and GLUT1
expression on placentas from SHR

Thus, we decided to investigate placental glucose uptake and

storage. PAS analysis evidenced the presence of islets of glycogen

cells in the Jz of placentas from both groups, with a greater

amount of glycogen cells at 17 DOP when compared to the other

gestational time points. We observed a decreased glycogen cell

content in placental tissue from SHR at 14, 17, and 20 DOP

when compared to Wistar (Figures 4A–D).

Moreover, GLUT1 expression was found to be decreased in

placentas from SHR at 14, 17, and 20 DOP when compared to

Wistar rats (Figure 5).
Discussion

In this study, we sought to investigate the relationship

between protein O-GlcNAcylation, placental glucose

availability, and fetal growth throughout the pregnancy
Frontiers in Endocrinology 06
affected by hypertension. Our findings showed that

hypertension interestingly promotes alterations in the protein

O-GlcNAc profile throughout pregnancy that are associated

with placental structure-function alterations and impaired fetal

growth, due to decreased placental glucose availability in SHR.

In the present study, SHR presented decreased fetal weight at

14, 17, and 20 DOP with an increasing percentage of SGA

fetuses. Near-term, 100% of all the fetuses from SHR were SGA,

indicating intrauterine growth retardation. The growth of a

healthy baby relies on a healthy placenta, and functional or

structural defects of the placenta impact fetal growth (21). In this

study, the placental weight increased throughout pregnancy, and

near-term placentas from SHR were found to be significantly

heavier, compared to Wistar. A bigger placenta could indicate a

compensatory mechanism to ensure proper nutrient supply to

the growing fetus due to uteroplacental hypoperfusion resulting

from increased blood pressure (22). Moreover, the fetal/

placental weight ratio was found to be decreased in SHR at 17

and 20 DOP, indicating a loss of placental efficiency from the

17th DOP until term. In rodents, placental efficiency can be

estimated by the grams of fetus produced per gram of placenta

(23), and a reduced fetal/placental weight ratio may indicate a

dysfunctional placenta because fetuses do not grow properly

despite an enlarged placenta. These findings are in accordance

with previous studies that already described fetal and placental

parameters in this animal model (24–26). However, the previous

reports did not show the relation between O-GlcNAc, placental

development, and fetal growth, as reported here.

O-GlcNAcylation is known to regulate the function of more

than 4000 proteins, therefore contributing to the appropriate

modulation of cellular responses and adaptation to cellular stress

(27). Several stages of embryonic development during pregnancy

have been shown to depend on the O-GlcNAc cycling, including

placentation (28). Protein O-GlcNAcylation has been implicated

in embryonic development once the OGT enzyme was

determined to be essential for embryonic stem cell viability

and OGT depletion was related to embryonic lethality (29, 30).

Lately, O-GlcNAc was found to promote trophectoderm

differentiation into invasive trophoblast, a pattern required

during embryo implantation (31). These data could relate to

our findings once SHR presented an increased number of pre-

implantation losses along with reduced placental O-GlcNAc

expression since 14 DOP. We speculate that protein O-
TABLE 2 Placental parameters from Wistar and SHR, at 14, 17 and 20 DOP.

14 DOP 17 DOP 20 DOP

Wistar SHR Wistar SHR Wistar SHR

Placental weight (g) 0.16 ± 0.01 0.17 ± 0.01 0.37 ± 0.03 0.42 ± 0.02 0.45 ± 0.007 0.55 ± 0.02*

fetal/placental
weight ratio

0.98 ± 0.09 0.78 ± 0.06 2.33 ± 0.1 1.78 ± 0.1* 10.43 ± 0.2 6.1 ± 0.2*
fro
*p<0.05 vs Wistar. Student unpaired t-test.
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GlcNAcylation may be reduced in the early stages of embryonic

development as a consequence of hypertension in these animals.

To better understand the importance of O-GlcNAc in placental

tissue, a recent study documented approximately 750 O-

GlcNAcylated proteins in trophoblast and fetal capillaries within

the villous of the human placenta (32). Here, we show structural

alterations of the placenta in SHR at 14, 17, and 20 DOP. A reduced
Frontiers in Endocrinology 07
Jz area of the placenta was found on all DOPs analyzed, and the Lz

showed a compacted area with thicker wall vessels and vascular

congestion. Interestingly, immunohistochemistry showed reduced

protein O-GlcNAcylation on both Jz and Lz of the placentas from

SHR. The Jz contains three main cell types (spongiotrophoblast

cells, trophoblast giant cells, and glycogen cells), and constitutes the

main endocrine compartment of the placenta (33). The Lz
B

C

A

FIGURE 2

Morphometric and morphological alterations in placentas from SHR. (A) Bar graph showing the Jz area (mm2) of placentas from Wistar and SHR at 14,
17 and 20 DOP; n = 5-6 each group. (B) Bar graph showing the Lz (mm2) area of placentas from Wistar and SHR at 14, 17 and 20 DOP; n = 5-6 each
group. (C) Hematoxylin & eosin-stained placentas (40X) from SHR and Wistar at 14, 17 and 20 DOP; Overall view of the labyrinth (Lz) region, junctional
zone (Jz) and maternal decidua (Md). Values are presented as means ± SEM, and data were analyzed by Student unpaired t-test. *p < 0.05 vs Wistar at
respective DOP.
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comprises the entire placental exchange area and is responsible for

transport in which maternal and fetal blood circulations come into

close contact without mixing (34). Structural defects in both Jz and

Lz during placentation impair fetal development (35, 36). In this

regard, a few proteins and transcription factors that are important

for the development of the placental tissue were found to be O-

GlcNAcylated. For example, the hypoxia-inducible factor-1 alpha

(HIF-1a), essential for placental vascular development, is a target

for the O-GlcNAc cycling enzymes OGA and OGT, playing a

critical role in HIF-1a stabilization (37). Another example is the

histone H2A, which is highly expressed in the early mouse placenta

(38), where its O-GlcNAcylation was found to be important for

trophoblast differentiation and placental development (39). Finally,

the specific protein 1 (SP1), a transcription factor involved in

placental trophoblast invasion and migration, is also a target for

O-GlcNAc (40).

As mentioned before, HBP and O-GlcNAcylation have been

established as nutrient sensor signaling pathways (10).
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Therefore, O-GlcNAc pathway regulation is critical for growth

signaling of the human placenta, and OGT has been elicited as a

primary nutrient sensing protein, involved in glucose and amino

acid utilization, and as a biomarker of cellular stress (11, 41).

Hypertension in pregnancy is known to be associated with

placental hypoperfusion (42, 43) and hypoxia was shown to

decrease O-GlcNAcylation. Here, we observed reduced placental

protein O-GlcNAcylation in all DOP analyzed concomitantly

with reduced OGT and OGA expression in 14 DOP in SHR.

These data, combined with the reduced PAS stain, could indicate

nutrient stress in the early placenta as a consequence of

decreased placental glucose uptake during chronic

hypertension. In fact, disruption in this nutrient-sensing

pathway is related to placental insufficiency and fetal growth

restriction. Moreover, we believe that the decreased OGA

expression observed here may be a compensatory mechanism

to raise protein O-GlcNAc levels. Furthermore, while maternal

nutrition influences significant placental changes that affect fetal
B

C

A

FIGURE 3

Reduced O-GlcNAc protein expression on both Jz and Lz of the placentas from SHR. (A) Bar graph showing the % of O-GlcNAc protein
expression on the Jz of the placentas from Wistar and SHR; n = 4 each group. (B) Bar graph showing the % of O-GlcNAc protein expression on
the Lz of the placentas from Wistar and SHR; n = 4 each group. (C) Immunoreaction on the Jz and Lz of the placentas from Wistar and SHR.
After antigen retrieval, sections were treated with anti-O-GlcNAc (1:50) and biotin-conjugated goat anti-mouse IgG (1:250). Negative control
sections were incubated with PBS or with the secondary antibody (omitting the primary antibody). Values are presented as means ± SEM, and
data were analyzed by Student unpaired t-test. *p < 0.05 vs Wistar.
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growth, the majority of cases of fetal growth restriction result

from changes in placenta function that result in the

dysfunctional transport of nutrients, especially glucose and

amino acids, which have been linked to OGT sensing

pathways (44, 45).

Thus, we decided to investigate glucose transport availability

in the placentas of hypertensive rats. In rodents, glucose is stored

in the form of glycogen cells grouped in clusters in the Jz of the

placenta. PAS analysis showed a reduced number of glycogen

cells per mm2 of Jz in placentas from SHR at 14, 17, and 20 DOP

when compared to Wistar rats. On day 17, a substantial amount

of glycogen cells was found in both SHR and Wistar placentas
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when compared to the other days. This indicates that glycogen

storage peaks at this period. Previous studies have also shown a

peak in placental glycogen stores between 15.5 and 18.5 days (46,

47). Moreover, reduced glycogen stores in placentas of stroke-

prone SHR have been described previously at 18 DOP,

compared to the Wistar-Kyoto strain (48) and this was

associated with inadequate uterine artery remodeling and

uteroplacental blood flow in these animals.

Fetal growth and development require glucose as the

primary nutrient, which is transported across the placenta

through facilitated diffusion by the glucose transporter family.

GLUT1 was described as the principal glucose transporter in the
B C

D

A

FIGURE 4

Reduced glycogen cells content in placentas from SHR at 14, 17 and 20 DOP. (A-C) Bar graph showing the placental amount of glycogen cells
per mm2 of Jz in Wistar and SHR at 14, 17 and 20 DOP, respectively. (D) Representative placental tissue sections showing PAS positive stained
glycogen cells in Wistar and SHR at 14, 17 and 20 DOP. Values are presented as means ± SEM, and data were analyzed by Student unpaired t-
test. *p < 0.05 vs Wistar at respective DOP.
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placenta (49), and its expression was found to increase

throughout gestation in humans (45). In this study, placentas

from SHR presented decreased GLUT1 expression at 14, 17, and

20 DOP when compared to Wistar. Thus, nutrient flux from

glucose, fatty acid, and nucleotide metabolism in the placenta is

expected to impact OGT’s enzymatic activity in the placenta.

Less is known about the role of OGT regulation of nutrients in

fetal growth restriction. However, OGT-deficient placentas and

those from growth-restricted fetuses contain diminished levels of

GLUT1 receptors (50). GLUT1 protein expression was found to

be down-regulated, and glucose transport activity was decreased

in placentas from pregnancies affected by preeclampsia (51).

Recently, a study showed that in addition to reduced GLUT1 in

the decidua of patients with severe preeclampsia, GLUT1

deficiency may trigger aberrant glycolysis, thereby leading to

poor decidualization and subsequent impaired placental

development (52). Furthermore, a recent study showed that O-

GlcNAcylation mediates the regulation of the water channel

aquaporin 3 (AQP3) and that both elevated O-GlcNAcylation

and AQP3 increase glucose uptake via GLUT1 (53).

Interestingly, we have previously described that SHR presents

a lack of placental AQP3 expression and that AQP3 is important
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for trophoblast cell migration, a crucial step during placentation

(54). Curiously, loss of AQP3 in the placentas was shown to

induce growth restriction in mice (55). O-GlcNAcylation was

found to regulate GLUT1 through c-Myc (56) and AQP3

through SP1 (53). Together, our findings make a significant

contribution to our understanding of how protein O-

GlcNAcylation affects fetal growth and placental function

during hypertension.

Finally, the data we presented establish protein O-

GlcNAcylation cycling as a nutrient sense signaling and

cellular stress biomarker of placental dysfunction and impaired

fetal growth during hypertension in pregnancy. Moreover, we

showed reduced O-GlcNAc in the two main functional parts of

the placenta, which could be related to structural and functional

derangements of the placenta in SHR.
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FIGURE 5

Reduced placental GLUT1 expression in SHR at 14, 17 and 20 DOP. Upper representative picture of western blot membrane of placental GLUT1
expression in Wistar and SHR at 14, 17 and 20 DOP. Bar graph showing the GLUT1 expression in Wistar and SHR at 14, 17 and 20 DOP; n=6 each
group. Values are presented as means ± SEM, and data were analyzed by one‐way ANOVA, followed by Tukey post-test. *p < 0.05 vs Wistar at
respective DOP. Protein expression was individually determined and corrected by b−actin expression.
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