AUTHOR=Feng Jia-Wei , Ye Jing , Qi Gao-Feng , Hong Li-Zhao , Wang Fei , Liu Sheng-Yong , Jiang Yong TITLE=LASSO-based machine learning models for the prediction of central lymph node metastasis in clinically negative patients with papillary thyroid carcinoma JOURNAL=Frontiers in Endocrinology VOLUME=13 YEAR=2022 URL=https://www.frontiersin.org/journals/endocrinology/articles/10.3389/fendo.2022.1030045 DOI=10.3389/fendo.2022.1030045 ISSN=1664-2392 ABSTRACT=Background

The presence of central lymph node metastasis (CLNM) is crucial for surgical decision-making in clinical N0 (cN0) papillary thyroid carcinoma (PTC) patients. We aimed to develop and validate machine learning (ML) algorithms-based models for predicting the risk of CLNM in cN0 patients.

Methods

A total of 1099 PTC patients with cN0 central neck from July 2019 to March 2022 at our institution were retrospectively analyzed. All patients were randomly split into the training dataset (70%) and the validation dataset (30%). Eight ML algorithms, including the Logistic Regression, Gradient Boosting Machine, Extreme Gradient Boosting (XGB), Random Forest (RF), Decision Tree, Neural Network, Support Vector Machine and Bayesian Network were used to evaluate the risk of CLNM. The performance of ML models was evaluated by the area under curve (AUC), sensitivity, specificity, and decision curve analysis (DCA).

Results

We firstly used the LASSO Logistic regression method to select the most relevant factors for predicting CLNM. The AUC of XGB was slightly higher than RF (0.907 and 0.902, respectively). According to DCA, RF model significantly outperformed XGB model at most threshold points and was therefore used to develop the predictive model. The diagnostic performance of RF algorithm was dependent on the following nine top-rank variables: size, margin, extrathyroidal extension, sex, echogenic foci, shape, number, lateral lymph node metastasis and chronic lymphocytic thyroiditis.

Conclusion

By incorporating clinicopathological and sonographic characteristics, we developed ML-based models, suggesting that this non-invasive method can be applied to facilitate individualized prediction of occult CLNM in cN0 central neck PTC patients.