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Wnt signaling pathway
inhibitors, sclerostin and DKK-1,
correlate with pain and bone
pathology in patients with
Gaucher disease

Margarita M. Ivanova*, Julia Dao, Neil Kasaci,
Andrew Friedman, Lauren Noll and Ozlem Goker-Alpan

Translational Research, Lysosomal and Rare Disorders Research and Treatment Center, Fairfax,
VA, United States
Patients with Gaucher disease (GD) have progressive bone involvement that

clinically presents with debilitating bone pain, structural bone changes, bone

marrow infiltration (BMI), Erlenmeyer (EM) flask deformity, and osteoporosis.

Pain is referred by the majority of GD patients and continues to persist despite

the type of therapy. The pain in GD is described as chronic deep penetrating

pain; however, sometimes, patients experience severe acute pain. The source

of bone pain is mainly debated as nociceptive pain secondary to bone

pathology or neuropathic or inflammatory origins. Osteocytes constitute a

significant source of secreted molecules that coordinate bone remodeling.

Osteocyte markers, sclerostin (SOST) and Dickkopf-1 (DKK-1), inactivate the

canonical Wnt signaling pathway and lead to the inhibition of bone formation.

Thus, circulated sclerostin and DKK-1 are potential biomarkers of skeletal

abnormalities. This study aimed to assess the circulating levels of sclerostin

and DKK-1 in patients with GD and their correlation with clinical bone

pathology parameters: pain, bone mineral density (BMD), and EM deformity.

Thirty-nine patients with GD were classified into cohorts based on the

presence and severity of bone manifestations. The serum levels of sclerostin

and DKK-1 were quantified by enzyme-linked immunosorbent assays. The

highest level of sclerostin was measured in GD patients with pain, BMI, and EM

deformity. The multiparameter analysis demonstrated that 95% of GD patients

with pain, BMI, and EM deformity had increased levels of sclerostin. The

majority of patients with elevated sclerostin also have osteopenia or

osteoporosis. Moreover, circulating sclerostin level increase with age, and

GD patients have elevated sclerostin levels when compared with healthy

control from the same age group. Pearson’s linear correlation analysis

showed a positive correlation between serum DKK-1 and sclerostin in

healthy controls and GD patients with normal bone mineral density.

However, the balance between sclerostin and DKK-1 waned in GD patients

with osteopenia or osteoporosis. In conclusion, the osteocyte marker,

sclerostin, when elevated, is associated with bone pain, BMI, and EM flask

deformity in GD patients. The altered sclerostin/DKK-1 ratio correlates with the
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reduction of bone mineral density. These data confirm that the Wnt signaling

pathway plays a role in GD-associated bone disease. Sclerostin and bone pain

could be used as biomarkers to assess patients with a high risk of BMI and EM

flask deformities.
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Introduction

Deficiency of the enzyme glucocerebrosidase (GCase) and

accumulation of glucosylceramide (GC) substrate and its

product glucosylsphingosine (lyso-Gb1) lead to Gaucher

disease (GD) (1). GD primarily affects monocyte lineage cells

(macrophages), which play essential roles in the immune system

and are involved in osteoclast differentiation and osteoclast–

osteoblast activities in bone remodeling. Of GD patients, 80% to

95%, including asymptomatic patients, present with different

forms of bone involvement, including structural bone changes,

debilitating bone pain, and osteoporosis (2–4). Due to abnormal

bone remodeling, structural bone pathology includes

Erlenmeyer flask deformity, bone modeling abnormality,

osteonecrosis, and lytic lesions in GD (2, 5, 6). Bone pain

occurs in GD patients even if there have been no fractures or

bone disease. Pain remains to be a major complaint in patients

with GD and continues to persist despite enzyme replacement

therapy (ERT) or substrate reduction therapy (SRT) (7, 8). The

pain in GD is described as a chronic deep penetrating pain and

tenderness sensation; however, sometimes, patients experience

severe acute pain (bone crisis) usually related to ischemic insult.

Today, the source of bone pain is mainly debated as nociceptive

pain secondary to bone involvement pathology or neuropathic

or inflammatory origins (9).

Osteocytes, differentiated from osteoblast, are considered a

significant source of secreted molecules that coordinate osteoclast

and osteoblast activities in response to physiological changes in the

body, including physical, hormonal, age-related, or disease-related

status. The canonical Wnt signaling pathway plays an essential role

in osteoblast differentiation and bone formation, bone resorption,

and bone homeostasis (10–12). Osteocytes secrete sclerostin, which

inhibits bone formation by inhibiting the Wnt signaling pathway

(13). DKK-1, mainly expressed by pre-osteoblasts and osteoblasts, is

also a secreted protein that binds to the LRP6 co-receptor on the

cellular membrane and inhibits b-catenin-dependentWnt signaling

(14). Sclerostin and DKK-1 are antagonists of the Wnt/b-catenin
signaling pathway due to inhibition of the Wnt pathway. Both

molecules initiate the inhibition of bone formation and promote

bone resorption. Therefore, sclerostin and DKK-1 neutralizing
02
antibodies (romosozumab and BHQ880) are appealing new

strategies for the treatment of inhibition of decreasing bone

mineral density and osteoporosis. Both neutralizing antibodies

block the inhibition of the Wnt/b-catenin pathway, which plays

an essential role in bone formation.

The goal of this study was to assess the plasma level of

sclerostin and DKK-1 in patients with GD and correlate it with

the degree of bone involvement, including bone pain, bone

marrow infiltration, Erlenmeyer (EM) flask deformity,

and osteoporosis.
Materials and methods

Subjects

Patients with GD ages 18 to 68 years (range 42 ± 15) and 20

healthy controls (range 48 ± 11) participated in the study at a

single center Lysosomal and Rare Disorders Research and

Treatment center (LDRTC) between 2019 and 2022. GD

diagnosis was based on GCase residual activity and GBA

sequencing analysis. Thirty-eight patients had a known

genotype, including 17 patients who were homozygous with

N370S. The most common second allele was L444P (n = 12); one

patient has L444P/L444P (Table 1). Participants were

categorized further into three groups based on T- or Z-score

of bone mineral density (BMD): the normal cohort, no bone

complication (N; an average of T-score 0.03 ± 0.2; Z-scores −0.2,

n = 11), the osteopenia cohort (OSN; an average of Z-score −1.07

± 0.2, T-score −1.6, n = 14), and osteoporosis cohort (OSR; an

average of Z-score −2.96 ± 0.8; T-score −2.73 ± 0.4, n = 14). All

patients gave a written informed consent form for the collection

and analysis of their data. The clinical protocol was approved by

ethics committees and data protection agencies at all

participating sites (Western Institutional Review Board, WIRB

#20131424) and NCT04055831. In addition, healthy controls

were recruited under NCT02000310, or plasma was purchased

(StemExpress, Folsom, CA, USA).

At enrollment, a detailed medical history that included bone

disease characteristics such as bone surgery, bone fracture, bone
frontiersin.org
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pain, bone marrow infiltration, EM flask deformity, avascular

necrosis (AVN), and osteonecrosis was obtained (Table 1).

BMD, bone marrow infiltration (BMI), and a summary of

skeletal abnormalities from skeletal surveys using X-rays were
Frontiers in Endocrinology 03
retrieved by chart review. Bone densitometry and bone marrow

involvement were assessed using dual‐energy X‐ray

absorptiometry (DXA) and MRI of the lumbar spine, femora,

and bilateral hips as routine clinical care. BMD abnormalities,
TABLE 1 Demographic, genotypes, and clinical characteristics of bone disease in patients with GD.

Patient
no.

Age
(years)

Gender ERT/SRT
duration(years)

Genotype(allele
1/allele 2)

Bone
pain

Bone marrow
infiltration

EM
deformity

Cystic
changes

Pathologic
fractures/

bone surgery

AVN

No bone complication

1 18 F ERT 5–10 N370S/F213I Yes Yes Yes No No/no No

2 56 F ERT > 10 N370S/N370S Yes Yes Yes No No/no Yes

3 41 F SRT N370S/R463C No Yes Yes No No/no Yes

4 50 F ERT 5–10 N370S/N370S No Yes Yes No No/no No

5 29 F SRT N370S/N370S No No No No No/no No

6 25 F ERT > 10 L444P/L444P No No No No No/no No

7 37 F ERT > 10 N370S/W381X Yes Yes No No No/no Yes

8 49 F ERT > 10 N370S/L444P Yes Yes No No No/yes Yes

9 29 F ERT 5–10 /L444P No No No No No/no No

10 21 M SRT N370S/L444P No Yes No No No/no No

11 33 M ERT 1–5 R48Q/L444P Yes Yes Yes No No/no No

Osteopenia (OSN)

1 29 F ERT 1–5 N370S/N370S No Yes Yes No No/yes No

2 61 F ERT > 10 N370S/N370S Yes Yes Yes No Yes/no Yes

3 32 F ERT 5–10 N370S/L444P No No No No No/no No

4 52 F SRT N370S/N370S No Yes No No No/no No

5 40 F SRT N370S/R463C Yes Yes No No No/no No

6 41 F Naive N370S/N370S No No No No Yes/no No

7 51 F SRT 5–10 N370S/L444P No No No No No/no No

8 74 F SRT 1–5 N370S/N370S Yes Yes Yes No No/no No

9 38 F ERT > 10 N370S/N370S Yes No No No No/no No

10 61 F 1 year N/A Yes No No No No/no No

11 65 M SRT 5–10 N370/N370 Yes Yes No No No/no No

12 18 M Naive N370S/N370S No Yes No No No/no No

13 37 M ERT 1–5 N370S/V394L Yes No No No Yes No

14 20 M ERT > 10 L44P/P266A No No No No No/no No

Osteoporosis (OSR)

1 57 F SRT 5–10 L444P/R502C Yes Yes Yes No No/no No

2 54 F ERT > 10 N370S/L444P Yes Yes Yes No No/no Yes

3 20 F ERT 1–5 N370S/L444P Yes No No No No/no No

4 62 F SRT N370S/N370S Yes Yes Yes Yes No/no No

5 30 F ERT > 10 N370S/N370S No Yes No No No/no No

6 63 F Naive N370S/R496H Yes Yes Yes No No/no No

7 44 F ERT/SRT > 10 L444P/R493C Yes Yes No No Yes/yes No

8 68 F ERT 5–10 N370S/R463C Yes No Yes No No/yes Yes

9 45 F ERT 5–10 N370S/N370S Yes No Yes No No/yes No

10 46 F SRT N370S/N370S Yes No Yes No No Yes

11 55 M SRT 0–1 N370S/L444P Yes No No No Yes/yes No

12 36 M ERT > 10 N370S/Y412X Yes Yes Yes No Yes/yes Yes

13 39 M ERT 5–10 N370S/N370S No No No No No/no No

14 42 M SRT 5–10 N370S/N370S No Yes No No No/yes No
frontiers
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i.e., osteopenia and osteoporosis, were defined with Z- or T-score

using the WHO criteria. Information about bone pain was

extracted from the patient medical history and by using the

Brief Pain Inventory.
Sample collection

Venous blood samples were collected into EDTA tubes at

three different patient visits 6–8 months apart (15). After

centrifugation, plasma was collected, aliquoted into small

volumes, and stored at −80°C prior to analysis.
Enzyme-linked immunosorbent assay

The plasma levels of bone markers were measured using

commercially available ELISA kits. The sclerostin concentration

was measured in 50 µl of plasma using a human sclerostin ELISA

kit (Abcam, Cambridge, UK). The concentration of DKK-1 was

measured in 100 µl of plasma using a human DKK-1 (Dickkopf-1)

ELISA kit (Abcam, Cambridge, UK). The level of Wnt-5a was

measured in 50 µl of plasma using a human Wnt-5a ELISA kit,

and the level of beta-catenin was measured in 25 µl using a human

beta-catenin ELISA (MyBioSource, San Diego, CA, USA). The

RANKL was measured in 100 µl of plasma using RANKL ELISA

kits (OriGene Technologies Inc., Rockville, MD, USA).
Statistical analysis

Statistical analysis was performed using Graph Prizm

(GraphPad, San Diego, CA, USA). The differences between the

two groups were tested by Student’s t-test (unpaired) or F-test.

The groups were compared using one-way analysis of variance

(ANOVA) followed by Brown–Forsythe, Bartlett’s multiple

comparisons, and Kruskal–Wallis tests. The relationships

between sclerostin, DKK-1, and RANKL were determined

using Pearson’s or Spearman’s correlation technique.
Results

Elevated level of sclerostin is associated
with pain, bone marrow infiltration, and
Erlenmeyer flask deformities in Gaucher
disease

Sclerostin is a relevant marker of the mature osteocyte pool.

Sclerostin inhibits the Wnt/b-catenin signaling pathway by

binding the LRP5/6 and Frizzled co-receptors on osteoblasts,
Frontiers in Endocrinology 04
reducing bone formation by inhibiting osteoblast differentiation

and activity (16). There are no data on the circulated level of

sclerostin levels in GD patients. First, we evaluated sclerostin in

patients with GD, compared it with the sclerostin of the healthy

control cohort, and analyzed its relationship with GD bone

disease characteristics. Sclerostin was significantly higher in the

GD cohort than in the healthy controls (Figure 1A). The

majority of GD patients with OSN and OSR showed an

elevated level of sclerostin (Figure 1B). An increased

circulating level of sclerostin has been described as a part of

age-related bone formation and bone physiology (17, 18).

Therefore, we divided GD female patients into two cohorts

according to age: <45 and >45 years old. The analysis

demonstrated that sclerostin was significantly increased in

healthy control and GD patients with age (Figure 1C).

Moreover, GD patients have elevated sclerostin levels when

compared with healthy control from the same age group.

Pearson’s correlation analysis showed a significant positive

correlation between sclerostin and age in controls and GD

female but not male patients (Figures 1D, E).

Next, we evaluated the correlation between sclerostin and

bone pathology parameters. An elevated sclerostin level was

associated with bone pain, bone marrow infiltration, and EM

flask deformity in GD (Figures 1F–H). The multiparameter

analysis demonstrated that 10 out of 21 GD patients with

elevated sclerostin levels had bone pain, bone marrow

infiltration, and EM flask deformity (Venn diagrams,

Figure 2A). Four patients with bone pain, bone marrow

infiltration, and high sclerostin represent the OSN (n = 2) and

OSR (n = 2) cohorts. No GD patient with bone pain, bone

marrow infiltration, and EM flask deformity had a normal

sclerostin level. Our data suggest that high sclerostin together

with bone pain could be useful markers to predict the high risk

of bone marrow infiltration and EM flask deformity.

Circulating levels of sclerostin were dynamic in GD patients

within 18–24 months of monitoring. Patients with a constant

normal range of sclerostin remained without pain, two had OSN,

and two had “no” bone pathology. One NB patient and one OSN

patient showed an elevated sclerostin (SOST) level episode once.

The majority of GD patients with pain presented with

consistently high levels of sclerostin over 18 months

(Figure 2B). The patient who mentioned pain as uncertain

showed an average sclerostin level and one borderline episode.
Circulating DKK-1 correlates with
sclerostin

DKK-1, similar to sclerostin, is an extracellular inhibitor of

the canonical Wnt/b-catenin signaling pathway. Since the

relationship between DKK-1 and OSN-OSR progression in
frontiersin.org
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GD patients is unknown, we analyzed the DKK-1 in the GD

cohorts. The distribution of plasma DKK-1 in healthy controls

showed a wide range from 581 to a maximum of 5,539 pg/ml

(2,225 ± 243, mean ± SEM).

Compared with healthy controls, seven patients with GD

(20%) had high levels of DKK-1 (Figure 3A). The analysis of

DKK-1 in the GD cohorts showed an increased level in the OSN

cohort compared with the N and OSR cohorts (Figure 3B).

In contrast to sclerostin and bone pain, BMI, or EFD–EM

relationship, there was no difference in serum DKK-1 among the

bone pain/no pain cohorts, BMI, or EFD–EM cohorts

(Supplementary Figure 1). DKK-1 levels were not changed in

GD patients within 18–24 months of monitoring. Patients with a

normal range of DKK-1 maintained normal levels, and GD

patients with high levels of DKK-1 consistently presented higher

levels over 18–24 months (Figure 3C).
Frontiers in Endocrinology 05
Because both biomarkers are Wnt/b-catenin inhibitors, we

assessed the correlation between sclerostin and DKK-1. After

adjusting to normal bone mineral density (N), OSN, and OSR

cohorts, Pearson’s and Spearman’s correlation analyses showed

a monotonic relationship between sclerostin and DKK-1 in

healthy controls only (Spearman’s correlation, r = 0.35, p =

0.04), healthy controls, and GD patients with no bone

complications and with/without pain (Pearson’s correlation r

= 0.47, p = 0.003116) (Figure 3D). However, serum sclerostin

and DKK-1 levels did not correlate in the OSN-GD and OSR-

GD cohorts together (Figure 3E), indicating that increasing the

circulation level of sclerostin changes the DKK-1/sclerostin

balance in GD patients with OSN and OSR. In addition,

significant differences were found in the sclerostin/DKK-1

ratio between no pain and pain GD patients in patients with

normal bone mineral density and OSN patients (Figure 3F).
A B

D E

F G H

C

FIGURE 1

Plasma sclerostin concentrations. (A) Sclerostin level (pg/ml), control vs. GD. *p < 0.05 unpaired t-test and F-test. (B) Sclerostin concentrations
in control subjects and GD with no bone complication (N), osteopenia (OSN), and osteoporosis (OSR). p < 0.05; ANOVA, Brown–Forsythe, and
Bartlett’s multiple comparison tests. Data are means ± SEM. (C) Sclerostin level in female controls and GD patients age-related; cohort divided
into two groups before and after 45 years old. *Unpaired t-test p < 0.05. (D, E) Scatterplot analysis of the correlation of sclerostin and age in
healthy controls and GD female (D) and male patients (E). Pearson’s two-tailed correlation. (F–H) Sclerostin level in GD patients related to bone
pain (F), bone marrow infiltration (G), and EM flask deformity (H). Biomarkers’ normal range is highlighted in green. GD, Gaucher disease; EM,
Erlenmeyer.
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DKK-1, not sclerostin, correlates with
RANKL

Because DKK-1 could enhance RANKL through inhibition

of the Wnt/b-catenin pathway, and plasma RANKL was elevated

in GD patients with OSN (15), we further investigated the

correlation between RANKL and DKK-1. Previously, we

demonstrated that high RANKL and RANKL/OPG in our

cohort correlated with osteopenia (15). Therefore, we used

RANKL data from our previous study and correlated them

with DKK-1 and sclerostin. Pearson’s and Spearman’s

correlation analyses demonstrated a statistically significant

positive correlation between serum DKK-1 and RANKL in the

healthy control group (Pearson’s two-tailed correlation analysis

r = 0.63, p = 0.005, and Spearman’s r correlation analysis r =

0.47, p = 0.013) (Figure 4A). Additionally, Pearson’s and

Spearman’s linear correlation analyses confirmed a positive

correlation between DKK-1 and RANKL in all GD patients

(Pearson’s p = 0.0121, r = 0.14) (Figure 4B). However, DKK-1

and RANKL levels did not correlate in the NB, OSN, and
Frontiers in Endocrinology 06
OSR GD cohorts, possibly due to insufficient sample size

(Figures 4C–E). In contrast to DKK-1, RANKL and sclerostin

did not correlate in the control or GD cohorts (Figures 4F, G).
Elevation of SOST and DKK-1 does not
impact the circulating beta-catenin and
Wnt5a

Next, we measured b-catenin and Wnt5a levels because

Wnt/b-catenin canonical and Wnt5a non-canonical Wnt

signaling pathways enhance osteoclastogenesis, while

circulating sclerostin and DKK-1 inhibit the Wnt signaling

pathway (19). Because b-catenin is a central component of the

Wnt pathway, and plasma b-catenin has been proposed as a

diagnostic biomarker for postmenopausal women (20, 21), we

hypothesized that secreted b-catenin could correlate with

osteoporosis in GD. Moreover, several publications mention a

negative association between plasma b-catenin and sclerostin or

DKK-1 (20, 21). However, there was no significant difference
A

B

FIGURE 2

(A) The Venn diagrams indicate the number of patients with bone pain, bone marrow infiltration, and EM flask deformity in the GD cohort with a
normal range of sclerostin level (left) and high sclerostin level (right). Sclerostin level >250 pg/ml was assessed as an elevated level. (B) For GD
patients with pain (Pain +) (n = 7, patient P29 described the pain as uncertain) and absent pain (n = 6) who had completed three or four visits,
plasma sclerostin levels were measured to assess longitudinal dynamics. Three time points are represented for each participant: initial visit, 6–8
months of follow-up visit (V2), and 12–14 months of follow-up visit (V3). EM, Erlenmeyer; GD, Gaucher disease.
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between patients and controls for serum b-catenin levels

(control cohort 9.4 ± 4.2 and GD cohort 10.0 ± 5.8). Wnt5a is

a Wnt non-canonical ligand that promotes osteoblast

differentiation and RANKL-induced osteoclast formation (19).

There was no difference between GD patients and healthy

controls for circulated Wnt5a levels (control cohort 0.4 ± 0.34

and GD cohort 0.5 ± 0.38).
Discussion

In the current study, we demonstrated two important

findings: 1) an elevated level of sclerostin is associated with

pain, bone marrow infiltration, and EM flask deformity in GD;

2) increased circulating sclerostin changes the DKK-1/

SOST balance.

Skeletons disorders are often accompanied by bone pain.

Bone diseases associated with GD have a complex of

accumulated events/etiologies including abnormal bone

development presenting as vertebral remodeling defects,

modeling abnormalities of the long bones, and the radiologic

hallmark for GD called EM flask deformity (22, 23). Bone
Frontiers in Endocrinology 07
destruction can occur due to osteonecrosis, and cystic/lytic

lesions are observed with or without AVN. Pathologic

fractures occur due to a reduction of BMD, which can start

even in teenage years leading, to early osteoporosis in female and

male patients with GD (24). Pain is one of GD’s prime and

debilitating symptoms, often associated with other structural

skeletal involvement (9, 22).

A Brief Pain Inventory analysis in our cohort revealed that

45% of GD patients with normal mineral bone density, 45% with

osteopenia, and 78% of patients with osteoporosis report chronic

pain. These results are commensurate with the literature that

27%–63% of GD patients have a history of pain (3, 8, 15, 25).

Despite the fact that pain is one of the common GD symptoms,

the source of pain is still debatable. It has been considered that

pain is the result of skeletal involvement, but the pain is

described even in the absence of bone disease without a clear

explanation (9, 15). The source of pain could be chronic

inflammation and/or structural damage to the peripheral

nervous system (9). The deterioration of the nerve may

present as a result of excessive osteoclast activity that generates

a low pH during bone resorption and stimulates acid-sensing ion

channels of nerve fibers that innervate bone (26). Because
A B

D E F

C

FIGURE 3

DKK-1 level. (A) DKK-1 level, control vs. GD. (B) DKK-1 concentrations in control subjects and GD with no bone complication (N), osteopenia
(OSN), and osteoporosis (OSR). Data are means ± SEM. (C) For GD patients with high DKK-1 levels (n = 4) and normal DKK-1 levels (n = 5) who
had completed three visits, DKK-1 was measured to assess longitudinal dynamics. Visits are represented for each participant, including an initial
visit, 6–8 months of follow-up visit, and a second 12–14 months of follow-up visit, except for P20 visit 4 (18 months) and P18 visit 5 (24
months). (D) Scatterplot analysis of correlation of DKK-1 and sclerostin in healthy controls and GD patients with no bone complication,
including patients without pain (blue circle) and with pain (red circle). *p < 0.05 Pearson’s and Spearman’s tests, 90%, one-tailed. (E) Scatterplot
analysis of correlation of DKK-1 and sclerostin in all GD patients with OSN and OSR, including patients without pain (blue color) and with pain
(red color). (G) Sclerostin/DKK-1 ratio according to the no bone pain or bone pain groups: healthy control group, all GD patients, GD group NB,
GD group OSN, and GD-OSRR group. Data are means ± SEM. *p < 0.05 unpaired t-test. DKK-1 and sclerostin measurement pg/ml. GD,
Gaucher disease.
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increased osteoclast number and activity have been

demonstrated in GD models and patients (15, 25, 27, 28),

induced acid-sensing ion channels (acidosis) can play a role in

driving bone pain.

Our study’s main conclusion is that elevated sclerostin in

plasma is correlated with pain in GD patients. This observation

may unravel the association between the role of osteocytes in

bone remodeling and bone pain.

If elevated sclerostin correlates with bone marrow infiltration in

GD, could the pain be a signal of bone marrow infiltration or

predictive of EM flask deformity? For example, bone pain occurs

in leukemia patients with the infiltration of white cells into bone

marrow (29, 30). The bone marrow is innervated by sensory and

sympathetic nerve fibers and nerve fibers involved in the
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transmission and modulation of bone pain (26). Infiltration of

Gaucher cells in the bone marrow may lead to the thinning of the

cortex with resultant pain, osteonecrosis, and lytic lesions (7, 31). In

addition, BMI induces abnormal bone remodeling. Thus, the

remodeling of the distal femora, Erlenmeyer flask deformity, is a

common radiological finding in patients with Gaucher disease (31–

33).Erlenmeyerflaskdeformity implies theonsetofdiseaseactivity in

childhoodwhen the skeleton is developing. This deformity, resulting

fromdefective bonemodeling at themeta-diaphyseal region, leads to

straight uncarved di-metaphyseal borders and cortical thinning (33).

The cellular aspects of abnormal bone remodeling that lead to EM

flask deformity are not fully understood; however, several studies

discuss that osteoclast impairment could be implicated in EM

deformity (34).
A B
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FIGURE 4

DKK-1 correlates with RANKL in GD patients. (A) Scatterplot analysis of correlation of DKK-1 and RANKL in healthy controls. (B) Scatterplot
analysis of correlation of DKK-1 and RANKL in GD patients. 95%, two-tailed. (C) Scatterplot analysis of correlation of DKK-1 and RANKL in GD
patients without bone complication (GD-NB). (D, E) Scatterplot analysis of correlation of DKK-1 and RANKL in GD patients with OSN) (E) and
OSR (E). (F) Correlation of sclerostin and RANKL in healthy control. (G) Sclerostin and RANKL correlation in GD. DKK-1 and sclerostin
measurement pg/ml. GD, Gaucher disease; OSN, osteopenia; OSR, osteoporosis.
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The dynamic signaling communication between osteoclast,

osteoblast, and osteocytes controls bone remodeling. Osteocytes

coordinate osteoclast and osteoblast activity, acting as endocrine

elements by secreting hormone-like mediators that affect bone

cell function and respond to mechanical stimulation on bones

(35). One of these mediators is sclerostin. Sclerostin is a cysteine-

knot glycoprotein that is predominantly expressed in the bone

by osteocytes and less by chondrocytes. Sclerostin regulates bone

formation by inhibiting osteoblast–osteocyte differentiation,

decreasing bone matrix formation, promoting osteoblast

apoptosis, and maintaining bone-lining cells in an inactive

state (Figure 5) (36–39). Regarding sclerostin as a biomarker

for bones, high levels of sclerostin have been detected in patients

with thalassemia-associated osteoporosis (40) and abnormal

bone remodeling in myeloma (41).

One of the crucial pathways in the skeletal system, the Wnt

pathway, is involved in various processes, including the

differentiation, proliferation, and synthesis of bone matrix by

osteoblasts and differentiation of osteoclasts (12, 42). The Wnt

pathway includes the canonical signaling pathway (b-catenin
dependent) and the non-canonical or b-catenin independent

pathway. b-Catenin is required to activate mesenchymal cells,

pre-osteoblasts, to differentiate into osteoblasts and maintain

osteocyte viability. Decreased b-catenin activity and inhibition

of osteoblast differentiation in GD were previously reported (43,

44). Moreover, several studies on induced pluripotent stem cells
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(iPSCs) derived from GD patients with null GCase enzyme

activity demonstrated defects in the Wnt signaling pathway

and increased sclerostin expression (44–46). Interestingly, the

treatment of GD iPSC-derived osteoblasts with recombinant

GCase enzyme did normalize sclerostin levels (46). One possible

mechanism of sclerostin elevation in GD is that functional

lysosome is essential for sclerostin degradation (46). However,

in GD, accumulation of GC in lysosomes leads to impaired

autophagy-lysosomal function, activating the endoplasmic

reticulum (ER)-associated degradation pathway and the

unfolded protein response (47–52). Thus, sclerostin

degradation may be compromised in GD. An additional

mechanism of sclerostin elevation may be directly affected by

chronic inflammation in GD. For example, a pro-inflammatory

cytokine, TNF-alpha, induced the sclerostin expression in

osteoblast and osteocyte cells (53–55). Moreover, TNF-alpha

contributes to osteoporosis, promoting RANKL-induced

osteoclast formation (56, 57). In GD, the elevation of TNF-

alpha is associated with macrophage and T-cell activations

(58–60).

Dual inhibition of the Wnt signaling pathway by two

secreted molecules, sclerostin and DKK-1, demonstrates that

multiple mediators likely regulate bone formation. Sclerostin

and DKK-1 inhibit the Wnt pathway by blocking binding

between Wnt and cell surface receptors—frizzled (FZD) and

lipoprotein receptor-related protein 5/6 (LRP6)—and
FIGURE 5

A model of inhibition of the Wnt signaling pathway in GD. The balance between bone formation and bone resorption is controlled by Wnt
signaling pathway (activation of bone formation), sclerostin and DKK-1 (inhibition of bone formation), and the RANKL/OPG pathway (osteoclast
activation). Elevation of secreted sclerostin or DKK-1 leads to inhibition of Wnt signaling pathway in GD. Sclerostin prevents activation of binding
of Wnt 3a and LRP on the cellular membrane and, as a result, inhibits the expression of genes that stimulate bone formation, for example,
RANKL inhibitor—OPG. RANKL, expressed by pre-osteoblasts and osteoblasts, promotes osteoclast maturation. Activation of osteoclasts initiates
bone resorption. Elevated TRAP5b in GD plasma is the biomarker of osteoclast activity and activation of bone resorption. Activation of bone
resorption with inhibition of bone formation leads to decreasing bone mineral density in GD. GD, Gaucher disease.
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preventing b-catenin translocation to the nucleus (10, 11, 61, 62)

(Figure 5). If sclerostin is secreted by osteocytes, the source of

secreted DKK-1 is mainly pre-osteoblast, osteoblast, and, to a

lesser extent, osteocytes (Figure 5). Sclerostin inhibits Wnt

signaling in the adult bones and keeps the bone lining cells in

a quiescent state as part of routine bone maintenance. DKK-1

plays an essential role during skeletal development, and in

adults’ bones, DKK-1 is not highly expressed unless activated

(14). The increased DKK-1 levels, especially in GD patients with

osteopenia, are probably reflective of osteoblasts’ altered

differentiation and activity, similar to elevated RANKL in GD

patients with osteopenia (15).

Secretion of sclerostin and DKK-1 must be balanced to

maintain the Wnt/b-catenin pathway in a steady state and

maintain healthy bone mineral density. We have demonstrated

a positive correlation between sclerostin and DKK-1 in healthy

controls and GD patients with normal bone mineral density.

However, the shifting balance between sclerostin and DKK-1 in

favor of sclerostin correlates with decreased BMD. A positive

correlation between serum sclerostin and serum DKK-1 in a

healthy population has been mentioned earlier (63).

Serum sclerostin levels increase with age and are associated

with weakening bone formation and activation of bone

resorption (64, 65). Moreover, the decreasing bone mineral

density with increasing age correlates with sclerostin, especially

in postmenopausal women (17, 18, 65–67). Our study also

concurs that serum sclerostin level positively correlates with

age in healthy controls and female patients with GD. However,

sclerostin plasma level was significantly higher in GD patients

when compared with age-matched controls. These observations

correspond with the datum that in GD, the structural bone

changes, including early onset accelerated bone mineral density

loss, are less related to age (8). Given that approximately 6% of

men and 21% of women aged 50–84 develop osteoporosis, in

GD, abnormal BMD is observed in all ages and both genders and

further progresses with age (8, 68). For example, in our cohort,

the average age of GD patients with normal BMD was 34 ± 12

years, with osteopenia at 46 ± 17 years and osteoporosis at 47 ±

14 years. Our results showed the lack of age-dependent increase

in sclerostin levels in male patients with GD, similar to controls.

However, the small sample size for male subjects may have

impacted the power of the statistical analysis.

The most common therapies used to treat bone pain are

non-steroidal anti-inflammatory drugs (NSAIDs) and opiates.

“Bone Pain Inventory” analysis of our GD cohort showed that

some of our patients used various medications, including

NSAIDs (such as ibuprofen) or acetaminophen, and more

severe pain was managed with opiates. Moreover, these

therapies do not treat the source of the actual cause but only

inhibit pain. The treatment of bone pathology and chronic pain

in patients is complicated and often insufficient. Inhibition of

osteoclast activity may be a solution to inhibit bone resorption

and reduce bone pain. Bisphosphonates and denosumab were
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developed to treat osteoporosis, and both therapies relieve pain

in patients with bone cancer (69). Pharmacological inhibition of

sclerostin and DKK-1 by monoclonal antibodies has been

explored as a potential therapy for osteoporosis, fracture

healing, and other bone disorders (69, 70). Also, anti-sclerostin

antibodies improve bone mineral density or fracture healing and

may relieve skeletal pain (69, 71, 72).
Conclusion

Elevated sclerostin is associated with reduced bone mineral

density, bone pain, bone marrow infiltration, and EM flask

deformity in patients with GD. In addition, the altered

sclerostin/DKK-1 ratio correlates with the reduction of bone

mineral density. In conclusion, our data confirm that the Wnt

signaling pathway plays a role in GD-associated bone disease.

However, the potential molecular mechanism requires further

exploration to design effective therapies for GD-related

bone disease.
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