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Acute effect of propranolol on
resting energy expenditure in
hyperthyroid patients

Jaël Rut Senn1,2, Rahel Catherina Löliger1,2,
Jonas Gabriel William Fischer1,2, Fabienne Bur1,2,
Claudia Irene Maushart1,2 and Matthias Johannes Betz1*

1Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel,
Basel, Switzerland, 2Faculty of Medicine, University of Basel, Basel, Switzerland
Objective: Hyperthyroidism is a common endocrine disorder which leads to

higher resting energy expenditure (REE). Increased activity of brown adipose

tissue (BAT) contributes to elevated REE in hyperthyroid patients. For rapid

control of hyperthyroid symptoms, the non-selective b-blocker propranolol is
widely used. While, long-term treatment with propranolol reduces REE it is

currently unclear whether it can also acutely diminish REE.

Design: In the present prospective interventional trial we investigated the effect

of propranolol on REE in hyperthyroid patients.

Methods:Nineteen patients with overt primary hyperthyroidism were recruited

from the endocrine outpatient clinic. REE was measured by indirect calorimetry

before and after an acute dose of 80mg propranolol and during a control

period, respectively. Additionally, skin temperature was recorded at eleven

predefined locations during each study visit, vital signes and heart rate (HR)

were measured before and after administration of propranolol.

Results: Mean REE decreased slightly after acute administration of 80mg

propranolol (p= 0.03) from 1639 ± 307 kcal/24h to 1594 ± 283 kcal/24h. During

the control visit REE did not change significantly. HR correlated significantly with

the level of free T3 (R2 = 0.38, p=0.029) free T4 (R2 =0.39, p=0.026). HR decreased

81 ± 12 bpm to 67 ± 7.6 bpm 90 minutes after oral administration of propranolol

(p<0.0001). Skin temperature did not change after propranolol intake.

Conclusions: In hyperthyroid patients a single dose of propranolol reduced

heart rate substantially but REE diminished only marginally probably due to

reduced myocardial energy consumption. Our data speak against a relevant

contribution of BAT to the higher REE in hyperthyroidism.

Clinical trial registration: ClinicalTrials.gov, identifier (NCT03379181).

KEYWORDS

hyperthyroidism, thyroid hormone, energy expenditure, propranolol, brown adipose
tissue (BAT)
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1 Introduction

Hyperthyroidism is a common endocrine disorder, which is

characterized by an excessive synthesis and release of thyroid

hormones (TH). Hyperthyroid patients often suffer from weight

loss and heat intolerance due to higher resting energy expenditure

(REE) (1–3). Excess levels of TH increase REE via peripheral and

central mechanisms. In skeletal muscle TH increase the

transcription of sarcoplasmic reticulum Ca2+-ATPase which

increases skeletal muscle respiration and energy expenditure (4).

Centrally, TH activates the sympathetic nervous system (SNS) via

the ventromedial nucleus of the hypothalamus (5).

The SNS and its main transmitter norepinephrine activate

brown adipose tissue (BAT). BAT is a thermogenic tissue which

is usually activated in response to cold exposure in order to

maintain the normal body core temperature. It can convert

chemical energy from triglycerides or glucose directly into heat.

Brown adipocytes contain a large number of mitochondria and

store lipids in small intracellular droplets as opposed to the large

single lipid drop found in white adipocytes.

The importance of TH for the function and differentiation of

brown adipocytes is underscored by the fact that BAT expresses

high levels of deiodinase 2 (DIO2) which converts thyroxin (T4)

to triiodothyronine (T3) (6). Research in rodents (7) and

humans (8) revealed that hyperthyroidism activates BAT in

the absence of cold. Thus, higher BAT activity could

contribute partially to the higher REE in humans suffering

from hyperthyroidism.

Medical treatment of hyperthyroidism aims to reduce TH

synthesis and to lower plasma TH levels using antithyroid drugs

such as methimazole. However, b-adrenoreceptor (b-AR)
antagonists (b-blockers) are often administered to rapidly

control hyperthyroid symptoms. Especially the non-selective

b-blocker propranolol is widely used and is considered the

drug of choice (9–11). In humans, treatment with propranolol

over the course of four weeks reduced REE while treatment with

the b1-selective antagonist metoprolol did not (12–14).

However, the acute effects of b-blockers on REE in patients

with hyperthyroidism are currently unclear. Several

interventional studies demonstrated a reduction of cold-

induced BAT activity in 18F-FDG-PET/CT scans after blocking

the b-ARs with propranolol in euthyroid patients (15–17).

We hypothesized that propranolol might immediately decrease

REE in patients suffering from primary hyperthyroidism by
Abbreviations: ATP, Adenosine Triphosphate; b-AR, b-Adrenoreceptor;

BAT, Brown Adipose Tissue; BMI, Body Mass Index; CIT, Cold Induced

Thermogenesis; DIO 2, Deiodinase 2; FA, Fatty Acids; fT3, Free

Trijodothyronine; fT4, Free Thyroxine; HbA1c, Glycated Hemoglobin; HR,

Heart rate; PET, Positron Emission Tomography; REE, Resting Energy

Expenditure; RQ, Respiratory Quotient; SNS, Sympathetic nervous system;

TH, Thyroid Hormone; TSH, Thyroid Stimulating Hormone; UCP1,

Uncoupling Protein 1.
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reducing BAT activity. We investigated the effect of a single dose

of 80 mg of propranolol on REE in hyperthyroid patients.
2 Subjects and methods

2.1 Subjects

From January 2018 to February 2020 we enrolled 19 patients

between 20 to 70 years of age presenting to the outpatient

endocrine clinic at the University Hospital Basel, Switzerland.

Patients were eligible if the TSH value was below 0.2 mlU/l and

the level of free T4 at or above 25 pmol/l or free T3 at or above 8

pmol/l. Patients with a BMI above 30 kg/m2, pregnant or

breastfeeding women, uncontrolled diabetes (HbA1c >7.5%),

asthma, chronic obstructive pulmonary disease or any other

significant chronic or acute disease such as heart or kidney

failure, liver cirrhosis or metastasized cancer, abuse of alcohol or

illicit drugs, prolonged electrographic PR interval or pre-existing

therapy with beta-blockers or antithyroid medication

were excluded.

The study protocol was reviewed and approved on

December 11, 2017, by the medical ethics committee of the

University of Basel (ID EKNZ 2017-02044) and registered on

ClinicalTrials.gov (NCT03379181). All participants provided

written informed consent.
2.2 Study design

This was a prospective interventional trial to assess the effect

of a single dose propranolol on REE in hyperthyroid patients. In

all participants REE was measured before and 90 minutes after a

sigle dose of 80mg propranolol (Treatment). To exclude a

significant influence of resting period between the two

measurements per se, a control visit without a study drug

administration was introduced after the first eleven patients

had been recruited (Control). This control visit was performed

in a randomized order to the intervention visit in the last

eight patients.

The study visits and examinations took place in the

morning, after a fasting period of at least 6 hours. The study

comprised also an observational part in which the effect of

hyperthyroidism on cold-induced thermogenesis (CIT) and

body composition were evaluated and which has been

published previously (18).
2.3 Clinical parameters

In all participants, weight and height were measured and

body mass index (BMI) was calculated [kg/m2]. An ECG was
frontiersin.org
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performed at the start of the study visit, to exclude prolonged PR

intervals. Additionally, they completed a hyperthyroid symptom

scale (Supplementary Table 1). Blood pressure [mmHg] and

heart rate (HR) [bpm] were measured at the beginning of the

study visit, and heart rate was monitored every 30 minutes after

administration of propranolol.
2.4 Laboratory parameters

We measured serum thyroid stimulating hormone (TSH),

free trijodothyronine (fT3), free thyroxine (fT4) and glycated

hemoglobin (HbA1c) in all trial participants. Laboratory

analyses were conducted at the central lab of the University

Hospital Basel. TSH and fT3/fT4 were measured with electro-

chemiluminescence immunoassays (Elecsys, all assays from

Roche Diagnostics GmbH, Mannheim, Germany). The

reference ranges were as follows: TSH, 0.332–4.490 mIU/l, free

T3: 2.6-5.6 pmol/l and free T4 11.6-22.0 pmol/l. HbA1c was

measured at the point of care (DCA Vantage, Siemens

Healthineers, Erlangen, Germany).
2.5 Measurements of energy expenditure
and respiratory quotient

REE and respiratory quotient (RQ) and were measured

before and 90 minutes after a single oral dose of 80mg

propranolol (Treatment) or after an equivalently long resting

period without intervention (Control), respectively. We

performed indirect calorimetry for 30 min using a ventilated

hood calorimeter (Cosmed Quark RMR, Cosmed, Rome, Italy).

The patients lay on a hospital bed in the supine position and

were covered with a fleece blanket, in order to prevent cold-

induced thermogenesis. Measurements were performed in an

air-conditioned study room at a controlled ambient temperature

of 24°C year round. Patients were asked to fast overnight (at least

6 hours) and to refrain from intensive physical exercise 24h prior

to the study visit.
2.6 Measurements of body core
temperature and skin temperature

The core body temperature was measured by infrared

tympanometry (Braun, ThermoScan PRO 6000, Marlborough,

MA) after each calorimetry. The skin surface temperature was

monitored continuously every minute during the study visits by

wireless iButtons (Maxim Integrated, San Jose, CA, United

States) placed at 11 defined body locations. Supraclavicular

region (right and left), parasternal at the level of the second

intercostal space (right and left), umbilicus, mid-thigh (right and

left), middle of the lower arm palmar side, finger tip of the 3rd
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finger of the non-dominant hand, middle of the lower left leg

and back of the left foot. An additional sensor logged the

ambient temperature at the study location. The temperature

data of every location during the last 10 min were averaged

and analyzed.
2.7 Statistical analysis

Data were analyzed using GraphPad Prism Version 9.3.1

(GraphPad, La Jolla, CA). Continuous data are given as mean ±

SD unless stated otherwise. Pairwise comparisons were

performed with paired t-tests. A p-value below 0.05 was

considered significant. The relation between TH values and

HR was modelled using a logarithmic growth equation with a

plateau: HR = Ym – (Ym – Y0)*e
-k*x, were e x represents the TH

level. Conditions were constrained for Y0 and Ym, with Y0 > 30

and Ym < 100 in order to reflect physiology of HR.
3 Results

3.1 Baseline characteristics

We screened all patients attending our outpatient thyroid

clinic for eligibility and recruited 19 patients for the study

between January 2018 and July 2019. At screening all patients

were hyperthyroid with a TSH level below 0.2 mlU/l and free T4

at or above 25 pmol/L or free T3 at or above 8 pmol/L. However,

at the timepoint of the first study visit one female patient with

Graves’ disease was already in a slightly hypothyroid state.

Therefore we excluded this patient from the analysis.

Thus, 18 patients (14 female/4 male) were included in the

analysis. In the first 10 patients we performed only the

interventional treatment visit with propranolol. In the last 8

patients, we conducted the treatment visit and also an additional

control visit and the sequence of the visits was randomized (see

Study flowchart, Figure 1). The two subgroups were comparable in

BMI, age and score points on the hyperthyroid symptom scale.

Fifteen patients suffered from Graves’ disease, two had thyreoiditis

and one had iatrogenic hyperthyroidism. Of these, 15 patients were

on thyrostatic therapy at the time of study inclusion. The median of

treatment duration was 8 days (see Supplementary Table 2).

They were on average 45 ± 17 years old and had a BMI 24 ±

4.5 kg/m². An average score of 14 points was achieved on the

hyperthyroidism symptom scale (see Table 1).
3.2 Propranolol and resting
energy expenditure

Ninety minutes after a single dose of propranolol mean REE

decreased by 45 kcal/24h from 1639 ± 307 kcal/24h to 1594 ± 283
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kcal/24h (p=0.029, Figure 2A). During the control session, mean

REE did not decrease significantly (baseline: 1540 ± 272 kcal/24h,

after 90 minutes: 1513 ± 220 kcal/24h, p=0.42, Figure 2B). The

RQ, an indicator of the amount of carbohydrate or lipids

metabolized, remained stable after propranolol (baseline: 0.74 ±

0.05, after 90 minutes: 0.75 ± 0.055, p= 0.16, Figure 2C), but

decreased significantly after the 90-minutes in the control setting

from 0.77 ± 0.051 to 0.72 ± 0.04 (p=0.0012, Figure 2D).

Additionally we stratified the analysis into the ten patients

without a control session (group 1) and the eight patients with

a control session (group 2). In group 1 REE decreased from 1717

kcal/24h to 1652 kcal/24h (p=0.01) and in group 2 from 1541

kcal/24h to 1522 kcal/24h (p=0.64).
3.3 Thyroid hormon levels, resting
energy expenditure and heart rate

Propranolol acutely lowers HR (19). The maximum plasma

concentration of propranolol is reached within 60 to 90 minutes

after oral intake (11). HR decreased significantly from baseline (81

± 12 bpm) to 67 ± 7.6 bpm at 90 minutes (p<0.0001, Figure 3A)

indicating that both dosage and absorption of propranolol were

appropriate. We tested whether the change in heart rate (DHR)

correlated with the change in resting energy expenditure (DREE)
and thus could explain the slight reduction in REE. DHR and

DREE were positively associated (R2 = 0.17) but the correlation

was not significant (p=0.10, Figure 3B). In addition, we performed

the statistical analysis separately for both groups (group 1: only

treatment, group 2: treatment and control). They were similar in

relation to HR, REE and TH levels (see Table 1).

The levels of fT4 and fT3 were positively associated with HR

(R2 = 0.39, p=0.026 and R2 = 0.38, p=0.029, Figures 4A, B).
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However, the degree of hyperthyroidism did not affect the

response of REE to propranolol (Figures 4C, D).
3.4 Core body temperature and
skin temperature

It is known, that hyperthyroidism increases core body

temperature in rodents (20). In hyperthyroid humans core

body temperature is often markedly elevated in the setting of

thyroid storm (21) but usually normal in clinically stable

hyperthyroid outpatients (18). We wondered whether the

acute dose of propranolol affected body temperature.

Therefore, we assessed core body and skin temperature. The

mean tympanic temperature, as a surrogate marker of core body

temperature, did not change after a single dose of propranolol

(baseline: 37.0 ± 0.25°C, 90 minutes after propranolol: 37.0 ±

0.27°C, p=0.26, Figure 5A). In the control visit, the results were

comparable (baseline: 37.0 ± 0.29°C, 90 minutes after resting

period: 37.0 ± 0.24°C, p= 0.09, Figure 5C).

BAT is mainly localized in the supraclavicular region (22)

and measurements of supraclavicular skin temperature have

previously been used as a surrogate marker of BAT activity

(23). Therefore, we assessed whether skin temperature in the

supraclavicular region decreased as a marker of lower BAT

activity in response to propranolol. We compared those

measurements to the parasternal skin temperature as a

reference because this skin area is centrally located but not

close to BAT depots. Supraclavicular skin temperature was

higher than the parasternal region: 35.7 ± 0.6°C vs. 34.8 ±

0.7°C before and 35.8 ± 0.6°C vs. 35.0 ± 0.7°C 90 minutes

after propranolol (effect of supraclavicular vs. parasternal

position, p=0.0002, effect of propranolol p=0.34, Figure 5B).

Results were similar during the control visit: supraclavicular

baseline 35.5 ± 0.4°C, parasternal 35.0 ± 0.6°C and 35.6 ± 0.4 vs.

35.2 ± 0.6 after 90 minutes (p=0.074 for skin position and

p=0.043 for time, Figure 5D).
4 Discussion

Hyperthyroidism elevates patients’ REE and significantly

increases their oxygen consumption. Especially in the setting

of thyroid storm or in patients with concomitant

cardiopulmonary disease it is highly desirable to acutely

reduce REE. Beta-adrenergic blockade with propranolol or

other b-blockers is recommended to quickly alleviate the

symptoms of hyperthyroidism (24). In the present study, we

investigated the acute effect of propranolol on REE in patients

with overt hyperthyroidism. We show here that an acute dose of

80 mg of propranolol does not reduce REE in a clinically

meaningful way.
FIGURE 1

Flow chart of the study population showing included and
excluded patients.
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Theoretically the amount of propranolol given in our study

could have been insufficient. In a previous trial propranolol

effectively reduced REE when given to patients suffering from

hyperthyroidism for a period of four weeks. Patients received a

cumulative daily amount of 160 mg to 320 mg, divided into four

single doses which translates into similar plasma levels as a

single dose of 80 mg (12). Additionally, thyroid dysfunction can

influence disposition of drugs. In hyperthyroid patients,

absorption and metabolism of numerous pharmaceuticals are

altered (25). Propranolol shows variability in plasma

concentrations in healthy as well as in thyrotoxic patients (26–

28). This could possibly be due to the increased hepatic blood

flow and activity of the liver to metabolize the drug (28, 29).

Thus, the dose required to reach therapeutic levels is variable
Frontiers in Endocrinology 05
and possibly higher in hyperthyroid patients. In our study

propranolol significantly reduced heart rate indicating that

plasma levels were sufficient to inhibit b1-ARs.
Patients underwent calorimetry in a fasted state and

predominantly metabolized fatty acids (FAs) as indicated by a

respiratory quotient (RQ) close to 0.7. During the control visit

the RQ declined further, in line with increased use of FAs.

However, after intake of propranolol, the RQ remained stable

implying that propranolol slowed lipolysis by blocking b2-ARs.
Taken together, these points indicate that the amount of

propranolol given in our study was sufficient to elicit clinically

relevant effects.

BAT is a major target of TH and metabolically active in

hyperthyroidism even in the absence of a cold stimulus (8).
TABLE 1 Baseline characteristics.

Group 1 (treatment only)
(n=10)

Group 2 (treatment and
control) (n=8)

All patients
(n=18)

p-value Group 1 vs
Group 2

Age (in years) 46 ± 17 44 ± 17 45 ± 17 0.73

Sex 7 female/3 male 7 female/1 male 14 female/4 male

Cause of hyperthyroidism - 9 Graves’ disease
- 1 overtreatment

- 6 Graves’ disease
- 2 subacute thyreoiditis

- 15 Graves’
disease

- 2 subacute
thyreoiditis

- 1 overtreatment

Hyperthyroidism symptom
scale
(total points)

14 ± 8 14 ± 6.0 14 ± 7 0.97

Weight (kg) 69 ± 21 66 ± 15 67 ± 18 0.71

Height (cm) 170 ± 10 165 ± 7.4 168 ± 9.4 0.26

BMI (kg/m2) 24 ± 5 24 ± 4 24 ± 4.5 0.80

Pulse rate 0 min
Pulse rate 90 min after
Propranolol

81 ± 9.2
67 ± 9.5***
p= 0.0007

81 ± 16
67 ± 5.9*
p= 0.0137

81 ± 12
67 ± 7.7****
p <0.0001

0.99
0.93

Systolic blood pressure
(mmHg)

127 ± 18 129 ± 16 128 ± 16 0.74

Diastolic blood pressure
(mmHg)

74 ± 13 69 ± 7.6 72 ± 11 0.43

TSH (mlU/L, Ref. 0.332-
4.490mIU/l)

0.0079 ± 0.0078 0.007 ± 0.0042 0.0075 ± 0.0063 0.78

free T4 (pmol/l, Ref. 11.9-
21.6pmol/l)

38 ± 24 33 ± 9.7 36 ± 18 0.60

free T3 (pmol/l, Ref. 2.6-
5.6pmol/l)

11 ± 5.6 11 ± 5.3 11 ± 5.3 0.94

REE Before Propranolol
REE Before Control

1717 ± 320
-

1541 ± 280
1540 ± 272

1639 ± 307
-

0.24
N/A
*p < 0.05, ***p < 0.001, ****p < 0.0001. N/A= not applicable.
frontiersin.org

https://doi.org/10.3389/fendo.2022.1026998
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Senn et al. 10.3389/fendo.2022.1026998
Therefore, we hypothesized that BAT contributes significantly to

REE and that its activity can be reduced by propranolol. The b3-
AR has been described as the main AR facilitating the activity of

brown adipocytes upon stimulation by norepinephrine.

Propranolol is generally viewed as a non-selective b-AR
antagonist which primarily concerns its effect on b1- and b2-
ARs (30). Its antagonistic effect at the b3-AR has been

questioned in the past (31), but it is clearly more capable to

inhibit the b3-AR than other b-blockers in clinical use (30). In

human volunteers who underwent mild cold exposure,

propranolol did not reduce cold-induced thermogenesis and

the authors speculated that this might be due to limited

inihibition of the b3-AR (32). However, in an animal model

propranolol at a dosage of 5 mg/kg body weight was able to

abrogate the effect of a selective b3-AR-agonist on glucose uptake
into BAT as determined by 18F-FDG-PET/CT (33). Moreover,

interventional studies in euthyroid patients undergoing routine
18F-FDG-PET/CT scans showed that prior administration of

propranolol minimizes FDG uptake into BAT as compared to

control (15–17). Most of these studies were performed with a

single dose of 20 to 80 mg propranolol. Recently, it has been

suggested that not the b3-AR but the b2-AR facilitates BAT

activation in humans (34). In this case, propranolol should be

able to inhibit adrenergic signaling to BAT as well.

TH are crucial for BAT differentiation and activity and are

required for mitochondriogenesis and the regulation of UCP1 in

response to cold exposure (35). Thyroidectomized rats have a

threefold reduction in UCP1 levels, which leads to an insufficient

thermogenic response to cold (36). Replacing thyroxine in

physiological amounts normalized UCP1 expression and

prevented hypothermia (37). Additionally, TH regulates the

sensitivity of tissues to sympathetic stimulation, which can

induce thermogenic adipocytes in WAT in the hyperthyroid

state (38, 39). The TH mediated effect in adrenergic

responsiveness of BAT is still not fully understood. Some

early studies showed a higher expression of b-AR in BAT due

to TH, but the results are contradictory. Mild to moderate

hyperthyroidism leads to a decreased adrenergic responsiveness

of BAT probably due to the increased thermogenesis in other

tissues, while severe hyperthyroidism leads to a increased BAT

activation (8, 35). On the other hand, without the SNS drive, TH

alone cannot upregulate UCP1 (35, 40). Under warm ambient

conditions, BAT activity as determined by 18F-FDG-PET/CT is

higher in hyperthyroid humans than in euthyroid controls.

However, it does not reach the levels elicited by mild cold

exposure which are several fold higher (8, 41).

Recent data from experiments in rodents indicate that the

increase in REE and body temperature induced by high levels of

thyroxine are centrally mediated and independent of UCP1 (20)

suggesting that muscle and possibly other tissues contribute

significantly to the higher metabolic rate. REE is the sum of
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thermogenesis in all tissues of the human body. While BAT is

thermogenically highly active, it comprises only a small amount of

body mass, especially in comparison to skeletal muscle. Muscle

energy metabolism has been assessed by magnetic resonance

spectroscopy in healthy volunteers who had been rendered

mildly hyperthyroid by supraphysiological supplementation of

T3 for three days. Coupling between mitochondrial respiration

and ATP regeneration was reduced and whole body REE was

increased (42). In patients with resistance to thyroid hormone

associated with mutations in thyroid hormone receptor b (THRB)

skeletal muscle is chronically exposed tomildly elevated TH levels.

These individuals exhibit increased REE and increased tricyclic

acid cycle flux due to inefficient mitochondrial coupling (43).

Calcium cycling involving the sarcoplasmatic reticulum Ca2

+-ATPase (SERCA1) constitutes a major mechanism of futile

cycling within skeletal muscle (44). Importantly, the expression

of SERCA1 is transcriptionally controlled by TH (4). Indeed,

muscle biopsies in hyperthyroid individuals revealed higher

amounts of skeletal muscle Ca2+-ATPase and Na+-K+-ATPase

which correlated positively with EE and TH levels (45). In line

with these studies, fasting glucose uptake into skeletal muscle was

significantly elevated in hyperthyroid subjects as determined by
18F-FDG-PET/CT (8, 46). This underscores that skeletal

muscle may substantially contribute to the higher REE

in hyperthyroidism.

b2-AR signaling increases skeletal muscle lipid oxidation and

thermogenesis (47) as well as mitochondrial biogenesis (48).

These effects of catecholamines can be blunted by b-AR-
antagonists (49). In the absence of an adrenergic stimulus,

however, administration of propranolol did not reduce

thermogenesis: Propranolol given at a dose of 160 mg daily to

healthy volunteers did not reduce sleeping metabolic rate, which

is comparable to REE (32).

In addition, increased metabolism within the liver may

contribute to the elevation of REE in hyperthyroidism.

Investigations in isolated hepatocytes from hyperthyroid rats

revealed an increased mitochondrial proton leak as well as a

higher ATP consumption as a source of stimulated thermogenesis

(50). Additionally, the energy demand of myocardial tissue

increases with HR in a linear fashion (51). Propranolol clearly

reduced HR, which is in accordance with in previous studies (19,

52). In our trial, it was reduced by approximately 20% on average

which would explain a reduction in total REE of approximately 30

to 40 kcal/d (53) which could actually represent the small change in

REE we observed.

Although skin temperature in the supraclavicular region

where BAT is mainly located (23, 54), was significantly higher

than in the parasternal region, it did not change after

administration of propranolol. This suggests, that propranolol

actually has only a minimal effect on the increased BAT activity

in hyperthyroid patients.
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b-blockers and especially propranonol can have a direct

effect on TH metabolism, especially by the conversion of T4 to

T3 (14, 55, 56). When given over a period of four weeks

propranolol could reduce REE in hyperthyroid patients and

this effect is likely be due to reduced levels of T3 (12). As T3 has a

plasma-half life of approximately 19 hours, a single dose of

propranolol will therefore not lead to noticeable effect on REE by

lowering levels of T3.

Our study is the first to evaluate the effects of propranolol on

REE in hyperthyroid patients. Strengths of our study comprise a
frontiersin.org
A B

FIGURE 3

Pulse rate was measured before interventional visit and monitored every 30 minutes after administration of propranolol. Pulse reate decreased
significantly (p<0.0001) from 81 ± 12 bpm (baseline) to 67 ± 7.6 bpm (after propranolol) (A). The correlation between the change in heart rate
(DHR) and the change in REE (DREE) was r=0.41, R2 = 0.17 and p=0.10 (B).
D

A B

C

FIGURE 2

Resting energy expenditure (REE) measured at baseline and 90
minutes after a single dose of 80 mg propranolol or after a 90-
minute resting period, respectively. REE decreased significantly
(p= 0.029) from baselinie 1639 ± 307 kcal/24h to 1594 ± 283
kcal/24h 90 minutes after administration of propranolol (A). REE
at baseline (1540 ± 272 kcal/24h) and after 90- minutes resting
period (1513 ± 220 kcal/24h) showed no significant change
(p=0.42) in control intervention (B). Respiratory quotient (RQ) at
baseline (0.74 ± 0.05) and 90 minutes after Propranolol (0.75 ±
0.055) (p= 0.16) (C). RQ significantly decreased (p=0.0012) from
0.77 ± 0.051 (baseline) to 0.72 ± 0.04 (90 minutes after resting
period) during the control intervention (D).
D

A B

C

FIGURE 4

Influence of thyroid hormon levels on HR and DREE. Non-Linear
Regression shows a positive correlation between HR and thyroid
hormone levels; fT4 (R2 = 0.39, p=0.026) (A) and fT3 (and R2 =
0.38, p=0.029) (B). DREE did not correlate with level oft fT4 (p=
0.65) (C) or fT3 (p= 0.29) (D) respectively. The degree of
hyperthyroidism did not affect the response of REE to
propranolol.
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prospective design and a cohort representing the clinical reality

of hyperthyroid patients. Our conclusions on the effect of

propranolol on BAT activity are limited by the fact that we

did not employ 18F-FDG-PET/CT to visualize and assess the

glucose uptake into the tissue. Moreover, we only had a control

visit in eight of the eighteen analyzed patients. However, from a

practical perspective this is unlikely to alter our main finding.
Frontiers in Endocrinology 08
5 Conclusion

In hyperthyroid patients a single dose of propranolol

reduced heart rate substantially, but REE diminished only

marginally probably due to reduced myocardial energy

consumption. Our data speak against a relevant contribution

of BAT to the increased REE in hyperthyroidism.
A B

DC

FIGURE 5

Mean tympanic temperature did not change after administration of propranolol: baseline 37.0 ± 0.25°C and 90 minutes after propranolol: 37.0
± 0.27°C (p=0.26) (A). Control visit (90-minute resting phase): baseline: 37.0 ± 0.29°C, after 90 minutes: 37.0 ± 0.24°C (p= 0.09) (C). Mean
supraclaviculare skin temperature compared to parasternal skin temperature as a reference. Supraclavicular skin temperature was higher than
parasternal (effect of supraclavicular vs. parasternal position, p=0.0002) but did not significantly change after propranolol (effect of propranolol
p=0.34) (B). Similar results were observed during the control visit (D).
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