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Background: To identify the diagnostic biomarkers of metabolism-related

genes (MRGs), and investigate the association of the MRGs and immune

infiltration landscape in diabetic nephropathy (DN).

Methods: The transcriptome matrix was downloaded from the GEO database.

R package “limma”was utilized to identify the differential expressed MRGs (DE-

MRGs) of HC and DN samples. Genetic Ontology (GO) and Kyoto Encyclopedia

of Genes and Genomes (KEGG) analyses of DE-MRGs were performed using

“clusterProfiler” R package. WGCNA, LASSO, SVM-RFE, and RFE algorithms

were employed to select the diagnostic feature biomarkers for DN. The ROC

curve was used to evaluate discriminatory ability for diagnostic feature

biomarkers. CIBERSORT algorithm was performed to investigate the fraction

of the 22-types immune cells in HC and DN group. The correlation of

diagnostic feature biomarkers and immune cells were performed via

Spearman-rank correlation algorithm.

Results: A total of 449 DE-MRGs were identified in this study. GO and KEGG

pathway enrichment analysis indicated that the DE-MRGs were mainly

enriched in small molecules catabolic process, purine metabolism, and

carbon metabolism. ADI1, PTGS2, DGKH, and POLR2B were identified as

diagnostic feature biomarkers for DN via WGCNA, LASSO, SVM-RFE, and RFE

algorithms. The result of CIBERSORT algorithm illustrated a remarkable

difference of immune cells in HC and DN group, and the diagnostic feature

biomarkers were closely associated with immune cells.
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Conclusion: ADI1, PTGS2, DGKH, and POLR2B were identified as diagnostic

feature biomarkers for DN, and associated with the immune infiltration

landscape, providing a novel perspective for the future research and clinical

management for DN.
KEYWORDS
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Introduction

Diabetic nephropathy (DN) is one of the most common and

serious complications of diabetes mellitus (DM). With the increase

of incidence, DN has become one of the most important mortality

factors in diabetic patients (1). In the United States, over 50,000

patients with diabetes were treated for end-stage renal disease

(ESRD) (2). In China, the incidence and prevalence of DN have

also increased dramatically over the past decades. Statistics in 2016

showed that the number of patients with diabetes combined with

chronic kidney disease (CKD) in China is estimated to reach 24.3

million (3). In general, the prevalence of DN is expected to increase

over the next few decades, especially in developing countries, as the

prevalence of diabetes increases rapidly worldwide (4, 5).

Concerning medical and health care expenditure has become a

huge social and economic burden to society, there is an urgent need

to improve the understanding of the mechanism of DN.

The pathogenesis of DN development and progression is

complex and multifactorial, involving many pathways and

mediators. Among them, metabolic disorders have received

increasing attention. In addition to obvious glucose

metabolism disorders, renal lipid homeostasis has received

increasing attention in recent years (6). Unsatisfactory

glycemic management and renal lipotoxicity were identified as

one of the major factors in the progression of DN (6–8).

Lipotoxicity is mainly associated with dysfunctional signaling

and insulin resistance in non-adipose tissues such as

myocardium, pancreas, skeletal muscle, liver and kidney (9).

Abnormal serum lipids and ectopic renal lipid accumulation are

associated with the development of renal diseases, especially

diabetic nephropathy. Excessive lipid accumulation alters

cellular homeostasis and activates lipogenic and glycogengenic

cellular signaling pathways. The quantity and quality of lipids

are involved in renal injury associated with lipotoxicity by

activating inflammation, oxidative stress, mitochondrial

dysfunction, and cell death (10). Anti-lipopathic agents such

as statins and PPAR agonists have initially demonstrated a role

in renal protection and in reducing renal lipid accumulation (6).

Given the important influence of lipid metabolism on DN,

coupled with the fact that protein burden can significantly
02
influence DN progression (11), and the obvious important

influence of abnormal glucose metabolism, further study of

metabolism may be the key to future DN treatment.

At present, through the application of bioinformatics and

genome sequencing technology, biomarkers of disease can be

better identified. In this study, a variety of bioinformatics

algorithms were used to investigate the role of MRGs in the

pathogenesis of DN, and four MRGs were identified as diagnostic

feature biomarkers of DN. In addition, the correlation between

immune cells and diagnostic biomarkers was preliminarily

discussed. In conclusion, the results of this study will provide new

perspectives and insights for the treatment of DN patients in

the future.
Materials and methods

Date collection

The transcriptome matrix was downloaded from the Gene

Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.

gov/geo/). In this study, GSE96804 and GSE30122 were

downloaded from the GEO database, and the batch effect of

the transcriptome matrix was removed via “SVA” R package.

The GSE96804 contains 20 human glomeruli control samples

(unaffected portion of tumor nephrectomies) and 41 human

glomeruli DN samples ([HTA-2_0] Affymetrix Human

Transcriptome Array 2.0 [transcript (gene) version]). The

GSE30122 contains 26 glomerulus of control kidney samples,

and 9 glomeruli of DN samples ([HG-U133A_2] Affymetrix

Human Genome U133A 2.0 Array). Perl scripts were conducted

to extract the gene expression matrix and the probes were

annotated based on the platform annotation file.
Identification of metabolism-related
genes and differential expression analysis

The metabolism-related genes (MRGs) were obtained from the

Molecular Signatures Database (MSigDB) (http://software.
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broadinstitute.org/gsea/msigdb). “C2.cp.kegg. v7.5.1.symbols.gmt”

was used as the reference genes set and a total of 739 unique

MRGs were extracted from the gene matrix using the Perl scripts.

“limma” R package was conducted to identify the differential

expression MRGs (DE-MRGs) in HC and RA group, and the

threshold was set at |Fold Change| ≥ 1 and P-value < 0.05.
Weighted gene co-expression
network analysis

The WGCNA package was used for weighted gene co-

expression network analysis (WGCNA) in R software. Firstly,

DE-MRGs with variances greater than all quartile variances were

selected to perform WGCNA analysis, because the results of

network module analysis are easily affected by outlier samples, it

was particularly important to remove outliers before

constructing the network. In this study, the inter-array

correlation (IAC) between chips was used to evaluate the

distribution of microarray data and outliers with significantly

lower mean IAC values will be removed. The co-expression

network of genes conforms to no scale distribution, in another

word, it follows a power law distribution. WGCNA selected the

weighted coefficients to obtain the results that most accord with

the scale-free network distribution. Finally, genes and gene

modules were associated with clinical information to identify

key genes with potential biological significance in the network.

For any genes, gene significance (GS) relative to a certain

dependent variable was defined as the correlation coefficient

between its expression level and the level of the dependent

variable. Pearson correlation coefficient was used for

continuous dependent variables. For a Module, the definition

of Module Significance (MS) relative to a certain dependent

variable is the correlation coefficient between its characteristic

gene and the level of the dependent variable. For any gene in a

module, the module membership (MM) of this gene in the

module is defined as the correlation coefficient between this gene

and the characteristic gene of this module.
Diagnostic feature biomarkers screening
of DE-MRGs

Multiple machine learning algorithms were utilized to

identify the diagnostic feature biomarkers. The least absolute

shrinkage and selection operator (LASSO) was a regression

analysis algorithm and this algorithm obtained a refined model

by constructing a penalty function: by finally determining that

the coefficients of some indicators are zero, the LASSO algorithm

achieves the purpose of reducing the set of indicators. Support

vector machine (SVM) was a common discrimination method

usually used for pattern recognition, classification and regression

analysis. Moreover, it also was a supervised learning model in the
Frontiers in Endocrinology 03
field off machine learning. To avoid overfitting and achieve

reliable accuracy, recursive feature elimination (RFE)

algorithm was used to select the optimal genes from the

training cohort. Therefore, SVM-RFE was performed to select

the appropriate feature biomarkers. Finally, the overlapping

genes of WGCNA, LASSO, RFE, and SVM-RFE was

considered as diagnostic feature biomarker and the expression

levels of candidate genes were further validated in the

validation cohort.
Functional enrichment analysis

Gene ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analyses were

performed to identify potential functional components and

pathways using “clusterProfiler” R packages (12). Gene Set

Enrichment Analysis (GSEA) was utilized to enrich the KEGG

terms in the HC and DN group, with P < 0.05 was considered as

statistically significant.
Immune infiltration landscape analysis

“CIBERSORT” R package was performed to investigate the

immune infiltration landscape of HC and DN samples. The gene

expression of immune cells based on “CIBERSORT R script

v1.03” and the algorithm was run using the LM22 signature for

1000 permutations. Correlation analysis was performed to

determine the relationships between immune cells via

“Corrplot” R package and “ggplot2” R packages was utilized to

determine the difference of immune cell between HC and

DN samples.
Correlation analysis between diagnostic
feature biomarkers and immune
infiltrating cells

The correlation of the 4 diagnostic feature biomarkers and

immune cells were estimated via Spearman’s rank correlation

algorithm. The correlation results were visualized in lollipop

diagram via “ggplot2” R packages, and P-value < 0.05 were

considered as statistically significant.
Statistical analysis

All statistical analyses were performed using R software

(version 4.1.0) and Perl scripts. Correlation analyses between

the two variables were performed using the Spearman’s rank

correlation algorithm and P-value < 0.05 was considered

significantly different. Differential functions were analyzed
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using the Wilcoxon rank-sum test between the two groups, and

statistical significance was set at P-value < 0.05.
Results

Identification of differential expressed of
metabolism-related genes in DN

The workflow of this study was illustrated in the Figure 1. A

total of 20 HC samples and 41 DN samples were extracted from

the GEO database (GSE30122, GSE96804). Under the threshold

set at |Fold change| ≥ 1 and P-value < 0.05, a total of 314 down-

regulated and 135 up-regulated DE-MRGs were identified

(Figure 2A). Heatmap diagram displayed the top 30 up-

regulated and down-regulated DE-MRGs in HC and DN

group (Figure 2B). The principal component analysis (PCA)

showed a clear separation between the HC and DN group based

on the MRGs (Figure 2C).
Functional enrichment analysis

To investigate the potential molecular mechanism of the DE-

MRGs, the functional enrichment analysis was conducted. Biological

process (BP) enrichment analysis showed that the DE-MRGs were

significantly enriched in small molecule catabolic process, ribose

phosphate metabolic process, and organic acid catabolic process

(Figure 3A). Kyoto Encyclopedia of Genes and Genome (KEGG)

enrichment analysis suggested that carbon metabolism, purine
Frontiers in Endocrinology 04
metabolism, and glycolysis/gluconeogenesis were enriched of the

DE-MRGs (Figure 3B). GSEA results illustrated the top 5 KEGG

signaling pathways in the HC and DN group. As shown in the

Figures 3C, D, the calcium signaling pathway, GNRH signaling

pathway, linoleic acid metabolism, long term depression and

melanogenesis were enriched in the HC group, whereas arginine

and proline metabolism, citrate cycle TCA cycle, fatty acid

metabolism, propanoate metabolism, and valine leucine and

isoleucine degradation were significantly enriched in the DN group.
Identification of diagnostic
feature biomarkers

Multiple machine learning algorithms were utilized to screen

the diagnostic feature biomarkers in DN. A gene co-expression

network was established according to weighted gene co-expression

network analysis (WGCNA). The power of b = 6 (scale-free R2 >

0.85) was selected as the soft-thresholding parameter to construct a

scale-free network, and the correlation coefficient of the module

eigengenes and disease characteristics were calculated (Figure 4A).

The results of themodule trait showed the correlation of themodule

eigengenes and the disease characteristics. Of note, the module blue

was positively correlated with DN, and was selected for the

subsequent analysis (Figure 4B). Based on the LASSO algorithm,

26 DE-MRGs were identified as diagnostic feature biomarkers for

DN (Figures 4C, D). 16 DE-MRGs were identified as diagnostic

biomarkers from the DE-MRGs using the SVM-RFE algorithm

(Figure 4E). Additionally, 11 diagnostic feature biomarkers were

selected from the DE-MRGs using the RFE algorithm (Figure 4F).
FIGURE 1

Study flow diagram.
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FIGURE 3

Functional enrichment analysis and GSEA analysis for DE-MRGs. (A) GO enrichment analysis of the DE-MRGs. (B) KEGG enrichment analysis
shows the top 15 enriched signaling pathways of the DE-MRGs. (C, D) The results of GSEA displays the top 5 KEGG signaling pathways in HC
and DN group.
A B

C

FIGURE 2

Identification of DE-MRGs. (A) Volcano diagram shows the DEGs in HC and DN group. The threshold for screening the DEGs is set at |Fold
Change| ≥ 1 and P -value < 0.05. (B) Heatmap shows the top 30 up-regulated and down-regulated DE-MRGs in HC and DN group. (C) Principal
component analysis illustrates a significant difference between the HC and DN samples based on the MRGs.
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Identification and validation of the
diagnostic feature biomarkers

According to the four machine learning algorithms, 4

diagnostic feature biomarkers were identified (Figure 5A). The

expression of the 4 diagnostic feature biomarkers in the training

cohort showed that ADI1 and PTGS2 were expressed higher in

the HC group, however, the DN group showed a higher
Frontiers in Endocrinology 06
expression of DGKH and POLR2B (Figure 5B). In validation

cohort, the expression of ADI1 and PTGS2 were higher in the

HC group, whereas the expression of DGKH and POLR2B were

lower in the DN group compared to the HC group (Figure 5C).

The ROC curve of the ADI1, PTGS2, DGKH, and POLR2B

revealed a satisfactory diagnostic value for the 4 diagnostic

feature biomarkers in the training cohort with AUC was 0.954,

0.994, 0.993, and 0.926, respectively (Figure 5D). The AUC of
E

D

A B

F

C

FIGURE 4

Identification of diagnostic feature biomarkers using multiple machine learning algorithm. (A) Analysis of the scale-free network for various soft-
thresholding powers (b). (B) Heatmap shows the correlation of the module eigengenes and disease clinical characteristics. (C, D) Least absolute
shrinkage and selection operator (LASSO) algorithm shows the optimal coefficient and minimal lambda of the DE-MRGs. (E) Support vector
machine (SVM) algorithm shows the minimal RMSE of the DE-MRGs. (F) The random forest (RFE) algorithm shows the diagnostic feature
biomarkers based on the DE-MRGs, with the importance more than 0.5.
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ADI1, PTGS2, DGKH, and POLR2B in the validation cohort was

0.893, 1, 1, and 0.996, respectively (Figure 5E). Overall, these

above findings demonstrate a satisfactory diagnostic value of the

4 diagnostic feature biomarkers and could be applied to the

clinical diagnosis of DN.
Immune infiltration landscape analysis

In addition to metabolic disorders, immune system

disorders are another important aspect of diabetic

nephropathy (13). To investigate the immune infiltration

landscape of patients, CIBERSORT algorithm was performed

and the fraction of 22-types immune cells were assessed

(Figure 6A). The correlation analysis revealed a remarkable

correlation in the 22-types immune cells (Figure 6B). T cells

CD8 was positively correlated with T cells CD4 naïve, T cells

CD4 memory resting, and T cells CD4 + memory; B cells

memory was positively correlated with B cells naïve;

neutrophils was negatively correlated with T cells CD4 +

memory, B cells naïve, B cells memory, and Monocytes; T cells

CD4 memory resting was negatively correlated with

macrophages M2. As shown in Figure 6C, the violin diagram

showed that the fraction of B cells naïve, B cells memory, T cells

CD8, T cells CD4 naïve, T cells CD4 memory resting,
Frontiers in Endocrinology 07
Macrophages M0, and mast cells resting were significantly

higher in the DN group than HC group. However, the HC

group had a higher proportion of macrophages M2

and neutrophils.
Correlation analysis of diagnostic
biomarkers and immune
infiltration landscape

The correlation analysis of the diagnostic biomarkers and

immune infiltration landscape was further investigated. POLR2B

was positively correlated with B cells naïve, B cells naïve, mast

cells resting, T cells CD4 memory resting, macrophages M0, T

cells CD4 memory activated, T cells gamma delta, and T cells

CD8, but negatively correlated with macrophages M2 and

neutrophils (Figure 7A). PTGS2 was positively correlated with

NK cells activated, but negatively Macrophages M0 (Figure 7B).

DGKH was positively correlated with B cells naïve, Mast cells

resting, B cells memory, T cells CD4 memory resting,

Macrophages M0, but negatively correlated with Macrophages

M2 and Neutrophils (Figure 7C). In addition, ADI1 was

positively correlated with macrophages M2, neutrophils,

dendritic cells activated, but negatively correlated with

macrophages M1, B cells memory, T cells CD4 memory
ED

A B

C

FIGURE 5

Identification and validation of the diagnostic biomarkers. (A) Venn diagram shows the intersection of diagnostic biomarkers based on the four
machine learning algorithms. The expression of the 4 diagnostic biomarkers in training cohort (B, C) validation cohort. (D, E) ROC analysis
shows the diagnostic effectiveness of the 4 diagnostic biomarkers in training cohort and validation cohort.
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resting, T cells CD4 memory activated, T cells gamma delta, T

cells CD8, NK cells activated, monocytes, T cells follicular

helper, macrophages M0, T cells CD4 naïve, and B cells naïve

(Figure 7D). Taken together, these results demonstrate that the

diagnostic feature biomarkers are correlated with immune

infiltration landscape, providing a fresh insight for the future

research in DN.
Discussion

The involvement of metabolic diseases in the development of

DN has attracted increasing attention. In this study, we used a

variety of bioinformatics algorithms to study the role of MRGs in

the pathogenesis of DN. Four MRGs were identified as

diagnostic characteristic biomarkers of DN, indicating the

importance role of MRGs in the DN process.

We observed significantly reduced ADI1 mRNA expression

levels in DN patients. As one of the four genes associated with

prognosis, ADI1 has not been reported in DN. As a metabolism-

related gene, ADI1 has been reported to be associated with the
Frontiers in Endocrinology 08
production of methionine metabolites S-adenosine methionine

(SAM) and methionine sulfoxide (14). Higher plasma levels of

methionine metabolites, including SAM, have been reported in

diabetic nephropathy patients than in diabetic patients without

nephropathy, and are associated with higher morbidity and

mortality in diabetic nephropathy patients (15–17). In

addition, the depletion of ADI1 can be caused by iron

depletion (18). Whereas iron deficiency has been shown to be

beneficial for coronary response, endothelial dysfunction,

insulin secretion, insulin action, and metabolic control in type

2 diabetes mellitus (19). In contrast, ferroptosis caused by iron

overload leads to tubular cell death in diabetic nephropathy (20,

21). However, this does not explain the reduced rather than

increased ADI1 expression levels we found in DN patients. Our

further data showed that ADI1 expression level was positively

correlated with M2 macrophages and neutrophils, and

negatively correlated with B cells, CD4 T cells, and CD8+T

cells, suggesting that ADI1 was associated with inhibitory

immunophenotype. Combined with the reduction in ADI1

expression levels found above in DN patients, our data

support the existence of reduced ADI1 levels and increased
A B

C

FIGURE 6

Immune infiltration analysis in HC and DN group. (A) Bar plot shows the fraction of the 22-types immune cells in the HC and DN group.
(B) Correlation analysis of the 22-types immune cells. (C) Violin diagram shows the fraction of 22-type immune cells in HC and DN group based
on the CIBERSORT algorithm.
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immune system activation levels in DN patients. The

involvement of the immune system as one of the important

pathogenic causes of DN partially confirmed the significance of

reduced ADI1 level in DN patients.

DGKH diacylglycerol kinase (DGK) is a member of the

enzyme family. Members of this family are involved in

regulating the intracellular concentrations of diacylglycerol

and phosphatidic acid. Studies on DGKH mainly focus on

bipolar disorder, unipolar depression and adult attention-

deficit/hyperactivity disorder (ADHD), etc. (22, 23). These

results show that DGKH plays an important role in brain lipid

metabolism. In addition, DGKH is associated with the formation

of kidney stones by affecting calcium sensitive receptor (CasR)

signaling and calcium metabolism in the body (24). Although

there is no relevant study on DGKH in DN, it has been reported

that there is a highly significant correlation between glomerular

filtration rate, inflammation and lipid metabolism genes,

supporting the possible role of abnormal lipid metabolism in

the pathogenesis of DN (9). The role ofDGKH in DN needs to be

further confirmed.

As the second largest subunit encoding RNA polymerase II

(Pol II), POLR2B catalyzes the transcription of DNA into
Frontiers in Endocrinology 09
mRNA, snRNA and microRNA precursors. This subunit and

the largest subunit form opposite sides of the Pol II central cleft.

Its alternative splicing results in multiple transcriptional variants

(25). POLR2B has been reported to be associated with macular

degeneration at home and abroad (26, 27). Because macular

degeneration is closely related to diabetes, POLR2B may be

involved in the process of diabetes. In addition, POLR2B is

involved in the regulation of protein kinase, DNA-activated,

catalytic subunit (PRKDC) and RNA polymerase II. The

recruitment of Pol II to HBV Covalently closed circular DNA

(cccDNA) assists in the phosphorylation of Pol II at Ser5 and

Ser2, thereby promoting HBV transcription (28). Chronic

hepatitis B virus infection as an independent predictor of renal

outcome in patients with type 2 diabetes mellitus (29) also

suggests an important role for POLR2B in DN.

Compared with POLR2B, PTGS2 is convincingly involved in

the development of DN. Immune dysfunction is one of the

important factors of progressive nephropathy. It is traditionally

believed that PTGS2, as an important mediator of inflammatory

injury in diseases, produces prostaglandins (PGs) that are related

to pathologic renal hemodynamics in diabetes and mediate renal

injury caused by hemodynamic changes. (30, 31). However,
A B

DC

FIGURE 7

Correlation analysis between the diagnostic biomarkers and 22-types immune cells. Lollipop diagram reveals the relationship of the 22-types
immune cells and (A) POLR2B, (B) PTGS2, (C) DGKH, and (D) ADI1.
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recent reports suggest that the role of PTGS2 in the development

of DN and other renal injuries is complex. The expression of

PTGS2 in macrophages prevents the development of diabetic

nephropathy (32). Meanwhile, specific knockdown of PTGS2 in

podocytes exacerbates diabetic nephropathy (33). This is

consistent with our observation of lower M2 macrophage

expression levels and lower PTGS2 mRNA expression levels in

DN. Our results support the idea that the role of PTGS2 in renal

injury may depend on the source of PTGS2, the mechanism of

renal injury, and the expression and subtype of PGE 2 receptors

(32). Further data showed PTGS2 expression level was positively

correlated with expressions of M2 macrophages, NK cells and

gamma delta T cells. Meanwhile, it was negatively correlated

with B cell, CD4 T cell, and CD8+ T cell expressions. Similar to

ADI1, the above results also suggest that PTGS2 is associated

with a suppressive immunophenotype. Combined with the

decreased PTGS2 expression level we found in the above-

mentioned DN patients; it is partially confirmed that the

decreased PTGS2 levels in DN patients may be related to the

enhanced activation of the immune system.

The correlation between immune cells and diagnostic

biomarkers was preliminarily discussed. We observed lower

M2 macrophage levels in DN patients as a result of immune

infiltration. In contrast to the pro-inflammatory and pro-DN

effects of M1 (34), polarization of renal M1 macrophages to M2

phenotype can ameliorate experimental diabetic kidney injury

by inhibiting renal M1 macrophages (34, 35). This is associated

with a decrease in proinflammatory cytokines/chemokines,

extracellular matrix/profibrotic proteins, and improved renal

function and histology (36). In addition, PGE 2 production by

PTGS2 is important for macrophage polarization to the M2

phenotype (37). Above, we observed that lower PTGS2 in DN

may also be involved in the regulation of immune infiltration. In

view of the important ameliorative effect of Pentraxin-3 and

other drugs on the polarization of macrophages into M2

phenotype in DN, focusing on macrophage phenotype may

play a more important role in DN treatment in the future (35).

In conclusion, the present study employed a variety of

bioinformatic algorithms to investigate the role of MRGs in

the pathogenesis of DN, and identified 4 MRGs as diagnostic
Frontiers in Endocrinology 10
biomarkers for DN. In addition, the correlation of immune cells

with diagnostic biomarkers was initially discussed. By

combining studies on the relationship between metabolism

and immune microenvironment, this study provides new

perspectives and insights for the future treatment of

DN patients.
Data availability statement

The raw data supporting the conclusions of this article will

be made available by the authors, without undue reservation.
Author contributions

JZ and HZ conceived and designed the study. QL

contributed the data collection and data analysis. LF conceived

the original ideas and composed this manuscript. JH contributed

the table and figures of this manuscript. JH and HZ contributed

equally to this article and all authors contributed to the article

and approved the submitted version.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
References
1. Valencia WM, Florez H. How to prevent the microvascular complications of
type 2 diabetes beyond glucose control. BMJ (2017) 356:i6505. doi: 10.1136/
bmj.i6505

2. Burrows NR, Hora I, Geiss LS, Gregg EW, Albright A. Incidence of end-stage
renal disease attributed to diabetes among persons with diagnosed diabetes - united
states and Puerto Rico 2000-2014. MMWR Morb Mortal Wkly Rep (2017) 66
(43):1165–70. doi: 10.15585/mmwr.mm6643a2

3. Zhang L, Long J, Jiang W, Shi Y, He X, Zhou Z, et al. Trends in chronic
kidney disease in China. N Engl J Med (2016) 375(9):905–6. doi: 10.1056/
NEJMc1602469
4. Stenvinkel P. Chronic kidney disease: a public health priority and harbinger
of premature cardiovascular disease. J Intern Med (2010) 268(5):456–67.
doi: 10.1111/j.1365-2796.2010.02269.x

5. Xue R, Gui D, Zheng L, Zhai R, Wang F, Wang N. Mechanistic insight and
management of diabetic nephropathy: Recent progress and future perspective. J
Diabetes Res (2017) 2017:1839809. doi: 10.1155/2017/1839809

6. Opazo-Rios L, Mas S, Marin-Royo G, Mezzano S, Gomez-Guerrero C,
Moreno JA, et al. Lipotoxicity and diabetic nephropathy: Novel mechanistic
insights and therapeutic opportunities. Int J Mol Sci (2020) 21(7):2632.
doi: 10.3390/ijms21072632
frontiersin.org

https://doi.org/10.1136/bmj.i6505
https://doi.org/10.1136/bmj.i6505
https://doi.org/10.15585/mmwr.mm6643a2
https://doi.org/10.1056/NEJMc1602469
https://doi.org/10.1056/NEJMc1602469
https://doi.org/10.1111/j.1365-2796.2010.02269.x
https://doi.org/10.1155/2017/1839809
https://doi.org/10.3390/ijms21072632
https://doi.org/10.3389/fendo.2022.1026938
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhang et al. 10.3389/fendo.2022.1026938
7. Tambyraja RL. Drugs in feto maternal medicine. Ann Acad Med Singap
(1987) 16(2):281–5.

8. Falkevall A, Mehlem A, Palombo I, Heller Sahlgren B, Ebarasi L, He L, et al.
Reducing VEGF-b signaling ameliorates renal lipotoxicity and protects against diabetic
kidney disease. Cell Metab (2017) 25(3):713–26. doi: 10.1016/j.cmet.2017.01.004

9. Herman-Edelstein M, Scherzer P, Tobar A, Levi M, Gafter U. Altered renal
lipid metabolism and renal lipid accumulation in human diabetic nephropathy. J
Lipid Res (2014) 55(3):561–72. doi: 10.1194/jlr.P040501

10. Vaziri ND. Disorders of lipid metabolism in nephrotic syndrome:
mechanisms and consequences. Kidney Int (2016) 90(1):41–52. doi: 10.1016/
j.kint.2016.02.026

11. Lin YC, Chang YH, Yang SY, Wu KD, Chu TS. Update of pathophysiology
and management of diabetic kidney disease. J Formos Med Assoc (2018) 117
(8):662–75. doi: 10.1016/j.jfma.2018.02.007

12. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an r package for comparing
biological themes among gene clusters. OMICS (2012) 16(5):284–7. doi: 10.1089/
omi.2011.0118

13. Wada J, Makino H. Innate immunity in diabetes and diabetic nephropathy.
Nat Rev Nephrol (2016) 12(1):13–26. doi: 10.1038/nrneph.2015.175

14. Chou HY, Lin YH, Shiu GL, Tang HY, Cheng ML, Shiao MS, et al. ADI1, a
methionine salvage pathway enzyme, is required for drosophila fecundity. J BioMed
Sci (2014) 21:64. doi: 10.1186/s12929-014-0064-4

15. Poirier LA, Brown AT, Fink LM, Wise CK, Randolph CJ, Delongchamp RR,
et al . Blood s-adenosylmethionine concentrations and lymphocyte
methylenetetrahydrofolate reductase activity in diabetes mellitus and diabetic
nephropathy. Metabolism (2001) 50(9):1014–8. doi: 10.1053/meta.2001.25655

16. Herrmann W, Schorr H, Obeid R, Makowski J, Fowler B, Kuhlmann MK.
Dis turbed homocyste ine and methionine cycle intermediates s-
adenosylhomocysteine and s-adenosylmethionine are related to degree of renal
insufficiency in type 2 diabetes. Clin Chem (2005) 51(5):891–7. doi: 10.1373/
clinchem.2004.044453

17. Jiang Z, Liang Q, Luo G, Hu P, Li P, Wang Y. HPLC-electrospray tandem
mass spectrometry for simultaneous quantitation of eight plasma aminothiols:
application to studies of diabetic nephropathy. Talanta (2009) 77(4):1279–84.
doi: 10.1016/j.talanta.2008.08.031

18. Bae DH, Lane DJR, Siafakas AR, Sutak R, Paluncic J, Huang MLH, et al.
Acireductone dioxygenase 1 (ADI1) is regulated by cellular iron by a mechanism
involving the iron chaperone, PCBP1, with PCBP2 acting as a potential co-
chaperone. Biochim Biophys Acta Mol Basis Dis (2020) 1866(10):165844.
doi: 10.1016/j.bbadis.2020.165844

19. Fernandez-Real JM, Lopez-Bermejo A, Ricart W. Cross-talk between iron
metabolism and diabetes. Diabetes (2002) 51(8):2348–54. doi: 10.2337/
diabetes.51.8.2348

20. Goldberg IJ, Handley DA, Vanni T, Paterniti JRJr., Cornicelli JA.
Membrane-bound lipoprotein lipase on human monocyte-derived macrophages:
localization by immunocolloidal gold technique. Biochim Biophys Acta (1988) 959
(3):220–8. doi: 10.1016/0005-2760(88)90194-4

21. Wang Y, Bi R, Quan F, Cao Q, Lin Y, Yue C, et al. Ferroptosis involves in
renal tubular cell death in diabetic nephropathy. Eur J Pharmacol (2020)
888:173574. doi: 10.1016/j.ejphar.2020.173574

22. Takata A, Kawasaki H, Iwayama Y, Yamada K, Gotoh L, Mitsuyasu H, et al.
Nominal association between a polymorphism in DGKH and bipolar disorder
Frontiers in Endocrinology 11
detected in a meta-analysis of East Asian case-control samples. Psychiatry Clin
Neurosci (2011) 65(3):280–5. doi: 10.1111/j.1440-1819.2011.02193.x

23. Weissflog L, Becker N, Bossert N, Freudenberg F, Kittel-Schneider S, Reif A.
Expressional profile of the diacylglycerol kinase eta gene DGKH. Eur Arch
Psychiatry Clin Neurosci (2017) 267(5):445–54. doi: 10.1007/s00406-016-0695-4

24. Howles SA, Wiberg A, Goldsworthy M, Bayliss AL, Gluck AK, Ng M, et al.
Genetic variants of calcium and vitamin d metabolism in kidney stone disease. Nat
Commun (2019) 10(1):5175. doi: 10.1038/s41467-019-13145-x

25. Langelier MF, Baali D, Trinh V, Greenblatt J, Archambault J, Coulombe B.
The highly conserved glutamic acid 791 of Rpb2 is involved in the binding of NTP
and Mg(B) in the active center of human RNA polymerase II. Nucleic Acids Res
(2005) 33(8):2629–39. doi: 10.1093/nar/gki570

26. Arakawa S, Takahashi A, Ashikawa K, Hosono N, Aoi T, Yasuda M, et al.
Genome-wide association study identifies two susceptibility loci for exudative age-
related macular degeneration in the Japanese population. Nat Genet (2011) 43
(10):1001–4. doi: 10.1038/ng.938

27. Zhou J, Wang D, Zhang J, Zhang M, Lu F, Qiu G, et al. RAD51 gene is
associated with advanced age-related macular degeneration in Chinese population.
Clin Biochem (2013) 46(16-17):1689–93. doi: 10.1016/j.clinbiochem.2013.07.002

28. Fan Y, Liang Y, Liu Y, Fan H. PRKDC promotes hepatitis b virus
transcription through enhancing the binding of RNA pol II to cccDNA. Cell
Death Dis (2022) 13(4):404. doi: 10.1038/s41419-022-04852-3

29. Cheng AY, Kong AP, Wong VW, So WY, Chan HL, Ho CS, et al. Chronic
hepatitis b viral infection independently predicts renal outcome in type 2 diabetic
patients. Diabetologia (2006) 49(8):1777–84. doi: 10.1007/s00125-006-0294-4

30. Komers R, Lindsley JN, Oyama TT, Schutzer WE, Reed JF, Mader SL, et al.
Immunohistochemical and functional correlations of renal cyclooxygenase-2 in
experimental diabetes. J Clin Invest (2001) 107(7):889–98. doi: 10.1172/JCI10228

31. Zatz R, Fujihara CK. Cyclooxygenase-2 inhibitors: will they help us prevent
diabetic nephropathy? Kidney Int (2002) 62(3):1091–2. doi: 10.1046/j.1523-
1755.2002.00542.x

32. Wang X, Yao B, Wang Y, Fan X, Wang S, Niu A, et al. Macrophage
cyclooxygenase-2 protects against development of diabetic nephropathy. Diabetes
(2017) 66(2):494–504. doi: 10.2337/db16-0773

33. Wang L, Sha Y, Bai J, Eisner W, Sparks MA, Buckley AF, et al. Podocyte-
specific knockout of cyclooxygenase 2 exacerbates diabetic kidney disease. Am J
Physiol Renal Physiol (2017) 313(2):F430–9. doi: 10.1152/ajprenal.00614.2016

34. Devaraj S, Tobias P, Kasinath BS, Ramsamooj R, Afify A, Jialal I. Knockout
of toll-like receptor-2 attenuates both the proinflammatory state of diabetes and
incipient diabetic nephropathy. Arterioscler Thromb Vasc Biol (2011) 31(8):1796–
804. doi: 10.1161/ATVBAHA.111.228924

35. Sun H, Tian J, Xian W, Xie T, Yang X. Pentraxin-3 attenuates renal damage
in diabetic nephropathy by promoting M2 macrophage differentiation.
Inflammation (2015) 38(5):1739–47. doi: 10.1007/s10753-015-0151-z

36. Ndisang JF, Jadhav A. Hemin therapy improves kidney function in male
streptozotocin-induced diabetic rats: role of the heme oxygenase/atrial natriuretic
peptide/adiponectin axis. Endocrinology (2014) 155(1):215–29. doi: 10.1210/
en.2013-1050

37. Takayama K, Garcia-Cardena G, Sukhova GK, Comander J, Gimbrone
MAJr., Libby P. Prostaglandin E2 suppresses chemokine production in human
macrophages through the EP4 receptor. J Biol Chem (2002) 277(46):44147–54.
doi: 10.1074/jbc.M204810200
frontiersin.org

https://doi.org/10.1016/j.cmet.2017.01.004
https://doi.org/10.1194/jlr.P040501
https://doi.org/10.1016/j.kint.2016.02.026
https://doi.org/10.1016/j.kint.2016.02.026
https://doi.org/10.1016/j.jfma.2018.02.007
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1038/nrneph.2015.175
https://doi.org/10.1186/s12929-014-0064-4
https://doi.org/10.1053/meta.2001.25655
https://doi.org/10.1373/clinchem.2004.044453
https://doi.org/10.1373/clinchem.2004.044453
https://doi.org/10.1016/j.talanta.2008.08.031
https://doi.org/10.1016/j.bbadis.2020.165844
https://doi.org/10.2337/diabetes.51.8.2348
https://doi.org/10.2337/diabetes.51.8.2348
https://doi.org/10.1016/0005-2760(88)90194-4
https://doi.org/10.1016/j.ejphar.2020.173574
https://doi.org/10.1111/j.1440-1819.2011.02193.x
https://doi.org/10.1007/s00406-016-0695-4
https://doi.org/10.1038/s41467-019-13145-x
https://doi.org/10.1093/nar/gki570
https://doi.org/10.1038/ng.938
https://doi.org/10.1016/j.clinbiochem.2013.07.002
https://doi.org/10.1038/s41419-022-04852-3
https://doi.org/10.1007/s00125-006-0294-4
https://doi.org/10.1172/JCI10228
https://doi.org/10.1046/j.1523-1755.2002.00542.x
https://doi.org/10.1046/j.1523-1755.2002.00542.x
https://doi.org/10.2337/db16-0773
https://doi.org/10.1152/ajprenal.00614.2016
https://doi.org/10.1161/ATVBAHA.111.228924
https://doi.org/10.1007/s10753-015-0151-z
https://doi.org/10.1210/en.2013-1050
https://doi.org/10.1210/en.2013-1050
https://doi.org/10.1074/jbc.M204810200
https://doi.org/10.3389/fendo.2022.1026938
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

	Machine learning-based metabolism-related genes signature and immune infiltration landscape in diabetic nephropathy
	Introduction
	Materials and methods
	Date collection
	Identification of metabolism-related genes and differential expression analysis
	Weighted gene co-expression network analysis
	Diagnostic feature biomarkers screening of DE-MRGs
	Functional enrichment analysis
	Immune infiltration landscape analysis
	Correlation analysis between diagnostic feature biomarkers and immune infiltrating cells
	Statistical analysis

	Results
	Identification of differential expressed of metabolism-related genes in DN
	Functional enrichment analysis
	Identification of diagnostic feature biomarkers
	Identification and validation of the diagnostic feature biomarkers
	Immune infiltration landscape analysis
	Correlation analysis of diagnostic biomarkers and immune infiltration landscape

	Discussion
	Data availability statement
	Author contributions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


