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Differences in protein
expression, at the basal
state and at 2 h of insulin
infusion, in muscle biopsies
from healthy Arab men with
high or low insulin sensitivity
measured by hyperinsulinemic
euglycemic clamp

Ilham Bettahi1,2*, Roopesh Krishnankutty2, Morana Jaganjac3,
Noor Nabeel M. Suleiman1,4, Manjunath Ramanjaneya1,2,
Jayakumar Jerobin1,2, Shaimaa Hassoun1, Meis Alkasem1,
Ibrahem Abdelhakam1, Ahmad Iskandarani1,2,
Tareq A. Samra1,2, Vidya Mohamed-Ali5 and Abdul
Badi Abou-Samra1,4

1Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar,
2Translational Research Institute, Academic Health System, Hamad Medical Corporation,
Doha, Qatar, 3Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia, 4Weill
Cornell Medicine-Qatar, Doha, Qatar, 5Anti-doping Laboratory, Doha, Qatar
Background: Skeletal muscle is the main site for insulin-dependent glucose

disposal. The hyperinsulinemic euglycemic clamp (HIEC) is the gold standard

for the assessment of insulin sensitivity (IS). We have previously shown that

insulin sensitivity, measured by HIEC, varied widely among a group of 60 young

healthy men with normoglycemia. The aim of this study was to correlate the

proteomic profile of skeletal muscles to insulin sensitivity.

Methods: Muscle biopsies from 16 subjects having the highest (M ≥ 13; n = 8,

HIS) and lowest (M ¾ 6, n = 8, LIS) IS were obtained at baseline and during

insulin infusion after stabilization of the blood glucose level and glucose

infusion rate at the end of the HIEC. The samples were processed using a

quantitative proteomic analysis approach.

Results: At baseline, 924 proteins were identified in the HIS and LIS groups.

Among the 924 proteins detected in both groups, three were suppressed and

three were increased significantly in the LIS subjects compared with the HIS

subjects. Following insulin infusion, 835 proteins were detected in both groups.

Among the 835 proteins, two showed differential responsiveness to insulin;

ATP5F1 protein was decreased, and MYLK2 was higher in the LIS group
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2022.1024832/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.1024832/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.1024832/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.1024832/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.1024832/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.1024832/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.1024832/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.1024832/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2022.1024832&domain=pdf&date_stamp=2023-02-17
mailto:IBettahi@hamad.qa
https://doi.org/10.3389/fendo.2022.1024832
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2022.1024832
https://www.frontiersin.org/journals/endocrinology


Bettahi et al. 10.3389/fendo.2022.1024832

Frontiers in Endocrinology
compared with that in the HIS group. Our data suggest that alteration in

mitochondrial proteins and an increased number of proteins involved in fast-

twitch fiber correlate to insulin sensitivity in healthy young Arab men.

Conclusions: These results suggest a change in a small number of differentially

expressed proteins. A possible reason for this small change could be our study

cohorts representing a homogeneous and healthy population. Additionally, we

show differences in protein levels from skeletal muscle in low and high insulin

sensitivity groups. Therefore, these differencesmay represent early events for the

development of insulin resistance, pre-diabetes, and type 2 diabetes.
KEYWORDS

insulin sensitivity, insulin resistance, HIEC, proteomics, mitochondria, diabetes
Introduction

Type 2 diabetes (T2D) represents a significant

international health challenge, with approximately 463

million people having diabetes in 2019—half of whom are

undiagnosed (1). Over the past few years, the prevalence of

T2D has been dramatically increasing in the Middle East and

North Africa region, including Qatar (2). Insulin resistance in

skeletal muscle is recognized as the earliest metabolic defect in

T2D (3). Insulin resistance is a complex heterogeneous

phenomenon influenced by genetic and environmental

factors (4). Several abnormalities can predict insulin

resistance, including impaired insulin activation of glycogen

synthase, impairment of the proximal components of insulin

signaling (5–7), and increased intramuscular triglyceride

content (5). Moreover, insulin-stimulated glucose oxidation

and insulin inhibition of lipid oxidation are impaired in

subjects with insulin resistance and T2D (6). The inability to

switch from lipid to carbohydrate has been described as

“metabolic inflexibility” in insulin-resistant subjects (7).

Moreover, a reduction in the activity of oxidative enzymatic

pathways and dysfunction of the mitochondria have been

observed in skeletal muscle obtained from subjects with T2D

and correlate with the severity of insulin-resistant glucose

metabolism (8). Previous longitudinal studies show that

insulin resistance is familial and occurs many years before

the development of glucose intolerance (9). Whether genetic

or acquired, the resistance of skeletal muscles to insulin may

be associated with alteration in the expression of key proteins

involved in glucose homeostasis.

Several studies have reported the skeletal muscle

proteomic profile from skeletal muscle biopsies of humans

and mice (10–14). Hojlund et al. showed that the abundance of

certain proteins, such as heat shock proteins, which are altered
02
in skeletal muscles, and key mitochondrial metabolic

pathways, such as ATP synthase and creatine kinase B, are

perturbed in patients with T2D (10). Hwang et al.

demonstrated a reduced abundance of several mitochondrial

proteins in the insulin-resistant muscle compared with the

healthy group (11). Another study which looked at the

mitochondria isolated from insulin-resistant skeletal muscle

using one-dimensional gel electrophoreses and high-

performance liquid chromatography/electrospray ionization–

tandem mass spectrometry (HPLC/ESI–MS/MS) showed a

lower abundance of proteins involved in branched-chain

amino acid metabolism in T2D than in the lean control (12).

Previous studies have shown that proteomic markers

of insulin resistance can be determined in T2D subjects.

However, these studies have not elucidated if early changes

in insulin sensitivity (IS) in healthy people are associated

with different protein expression in muscles. Furthermore,

protein responses to hyperinsulinemic euglycemic clamp

(HIEC) in people with low versus high IS have not been

shown previously.

We have recently reported that insulin sensitivity, measured

by HIEC, varied widely among euglycemic young healthy men

(15) and correlated with circulating metabolomic signatures

(16). The goal of the present study was to evaluate the altered

expression pattern of skeletal muscle proteins associated with

reduced insulin sensitivity in muscle biopsies taken at the basal

state and during insulin infusion, at the end of the insulin clamp,

when both glycemia and glucose infusion have stabilized. We

used advanced proteomic techniques to identify a unique list of

candidate proteins both at baseline and during insulin infusion,

allowing identification of the proteins that correlate with insulin

sensitivity, which may provide further information as to the

molecular mechanisms of reduced insulin sensitivity in

apparently healthy euglycemic subjects.
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Materials and methods

Study participants

The overall design of the study flow is summarized in

Figure 1. The details on the subjects and study protocol were

previously reported (15). In brief, healthy young men of Arab

descent (n = 60) were examined for insulin sensitivity using

HIEC. Muscle biopsies were obtained from the vastis lateralis

before the clamp and during insulin infusion at the end of the

clamp, when the plasma glucose level and the glucose infusion

rate were stabilized (15). The study was approved by the

Institutional Review Board protocol (14224/14) of Hamad

Medical Corporation, Doha, Qatar. All participants gave their

signed informed consent. Participants were included in the study

if they satisfied all the following criteria (1): age >18–45 years, (2)

body mass index ≤28 and ≥16, (3) normal CBC, (4) normal

blood chemistry, (5) normal fasting glucose, (6) normal HbA1c,

(7) normal glucose response to 75 g oral glucose tolerance test

performed after 8 h of fasting, (8) normal ECG, and (9)

commitment to the whole study protocol. Proteomic analyses

were performed on muscle biopsies obtained from eight subjects

who showed the highest insulin sensitivity (HIS) and eight other

subjects who showed the lowest insulin sensitivity (LIS)

(Table 1) among the 60 subjects reported previously (15).
Hyperinsulinemic euglycemic clamp

As previously reported (16), the subjects were admitted to

the research study unit at 7 a.m., after 10–12 h of overnight

fasting, and a baseline muscle biopsy was obtained before the
Frontiers in Endocrinology 03
clamp study. Three polyethylene catheters were inserted in the

antecubital fossa and back of the hand veins, enabling insulin/

dextrose infusions, blood glucose measurements, and blood

sampling. The insulin infusion (100 IU/ml insulin solution,

Actrapid) rate was constant throughout the HIEC [40 mU/

body surface area (m2)/min]. The body surface area (m2)

[0.007184 x (height(cm)0.725) x (weight(kg)0.425)] was

calculated as described. The blood glucose level was modulated

by the infusion of 20% dextrose, which was adjusted every 5 min

to achieve a blood glucose level of 90 mg/dl (5 mmol/L). A

second muscle biopsy was obtained under insulin infusion at

120 min (after the glucose infusion was stabilized). Similar to

previous studies, the duration of the HIEC procedure was

120 min (17–19). Insulin sensitivity, as reflected by the whole-

body glucose disposal rate (M-value, milligram of glucose

infused per kilogram of body weight per minute), was

computed after the stabilization of glycemia and of infusion

rate during the last 60 min of the euglycemic clamp; this showed

a wide variation ranging from 2 to 20 (16). Muscle biopsies were

quick-frozen in liquid nitrogen. In this study, we selected only

the subjects with the lowest and the highest insulin sensitivities

for proteomic analyses; the size of the groups was based on

previous human studies (20–23).
Sample preparation for proteomic assay

The frozen muscle biopsy samples of individuals with LIS

(M ≤6, n = 8) and HIS (M >13, n = 8) were ground into fine

powders using a mortar and pestle and liquid nitrogen. Protein

extracts were isolated from the tissue samples using RIPA buffer.

The lysates were centrifuged at 15,000 rpm for 10 min at +4°C,
FIGURE 1

Workflow for the hyperinsulinemic euglycemic clamp, skeletal muscle biopsies, sample processing, and proteomic analysis.
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and the supernatants were transferred to new tubes, with the

protein concentration determined using a BCA Protein Assay

Kit (Pierce). The normalized protein samples were

electrophoretically separated on 10% SDS-PAGE; whole lines

were excised and divided into eight equal parts, as previously

described (24). Gel pieces were then reduced with 10 mM

dithiothreitol in 25 mM ammonium bicarbonate and alkylated

with 10 mM iodoacetamide in 25 mM ammonium bicarbonate,

followed by overnight digestion at 37°C using 20 ng/µl Trypsin/

Lys-C (Promega). The peptides were eluted using 1% formic

acid, and the volume was reduced to 20 ml using a vacuum

centrifuge (Eppendorf, Hamburg, Germany).
Liquid chromatography–tandem mass
spectrometry

Complex peptide mixtures were analyzed by shotgun

proteomics using an Easy n-LC II (Thermo Scientific,

Waltham, MA, USA) coupled to an Orbitrap Elite mass

spectrometer (Thermo Scientific, Waltham, MA, USA), as

previously described (24).
MS data processing and statistical
analysis

MS data processing and analysis were performed according

to Leo et al. in 2019 (25). The MaxQuant software version

1.6.17.0, according to the standard workflow with the built-in

search engine Andromeda using the Uniprot human reference

proteome database (downloaded October 12, 2017), was used for

protein identification. The Max label-free quantification (LFQ)

method, with retention time alignment and match-between-runs
Frontiers in Endocrinology 04
features in MaxQuant, was applied to extract the maximum

possible quantification information. Protein abundance was

calculated based on normal ized spectra l intensity

(LFQ intensity).

MS data analysis was performed using the open-source

software Perseus (version 1.6.14.0) (26). The protein

quantification and the statistical significance between the two

groups were calculated using two-tailed t-test with permutation-

based false discovery rates (FDR) of at least ±1.5 fold (p < 0.05).

Functional enrichment analysis of the differentially abundant

proteins was carried out using the online bioinformatics

resource Database for Annotation, Visualization, and

Integrated Discovery (DAVID). The distribution of proteins

enriched under different categories, such as cellular

components, biological processes, and pathways including

Kyoto Encyclopedia of Genes and Genomes (KEGG) and

Reactome, was identified. Proteomic analysis was performed to

identify proteins differentially expressed between baseline,

before clamp (BC), and under insulin infusion during clamp

(DC) as well as between LIS and HIS subjects both at baseline

and under insulin infusion. The differences in baseline

demographic, clinical, and biochemical data between LIS and

HIS as presented in Table 1 were assessed by t-test.
Functional annotation and pathway
identification

Functional annotation was performed by gene set enrichment

analysis using g:Profiler (27). The statistically significant enrichment

of biological processes and KEGG and Reactome pathways is

extracted and plotted (27) using proteins that are uniquely

expressed or significantly altered (increased or decreased) in HIS

versus LIS at baseline or during insulin stimulation.
TABLE 1 Anthropometric and metabolic characteristics of the subjects with low insulin sensitivity (LIS) and high insulin sensitivity (HIS).

High insulin sensitivity (N = 8) Low insulinsensitivity (N = 8) p-value

Age (year) 31.5 ± 6.0 33.1 ± 6.0 0.23

BMI (kg/m2) 26.2 ± 2.1 24.7 ± 2.1 0.12

M (mg/kg/min) 17.0 ± 1.9 5.3 ± 1.0 0.00*

Fasting glucose (mmol/L) 5.54 ± 0.39 5.25 ± 0.20 0.09

2 h glucose (mmol/L) 5.39 ± 1.08 5.10 ± 0.50 0.53

HB1A1C % 5.2 ± 0.2 5.2 ± 0.2 0.86

TG (mmol/L) 0.86 ± 0.41 1.06 ± 0.41 0.39

Total cholesterol (mmol/L) 4.50 ± 0.93 5.15 ± 1.23 0.37

HDL cholesterol (mmol/L) 1.23 ± 0.30 1.31 ± 0.26 0.62

LDL cholesterol (mmol/L) 2.86 ± 0.73 3.37 ± 1.01 0.40
fron
BMI, body mass index; HB1A1C, hemoglobin A1C; TG, triglyceride; HDL, high-density lipoprotein; LDL, low-density lipoprotein.
Average ± SD. *p < 0.05.
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Results

Effects of insulin infusion on protein
expression in the muscle biopsies

The proteomic profiles of all 16 subjects were analyzed to

study the protein expression pattern between baseline (BC)

and under insulin stimulation DC. The proteomic analysis

resulted in the identification of 1,199 proteins BC and 1,164

proteins under insulin stimulation DC (Figure 2A); 56

proteins were only present in subjects before clamp and 21

proteins were present only under insulin stimulation; 1,143

proteins were present both at basal condition and under

insulin stimulation (Figure 2B). Out of the 1,143 shared

proteins, 564 were present in at least 50% of the subjects

(Figure 2C; Supplementary Table S1). Among the 1,143 shared

proteins, four are differentially expressed—one protein was

increased and three were reduced under insulin stimulation.

The significant difference in protein abundance in response to

insulin after comparative proteome analysis is graphically

represented as a volcano plot, drawn using the fold change

and the p-value (Figure 2D). The LFQ of the proteins with

significant differential abundance is shown in Figure 2E and

the fold changes in Figure 2F.
Differences in protein expression in
muscle biopsies from subjects with low
and high insulin sensitivities at baseline

The proteomic data were analyzed to identify differential

protein expression at baseline (before clamp) between the LIS

and HIS subjects. This analysis identified a total of 1,986 proteins

(Figure 3A) that were reduced to 1,062 different proteins

(Figure 3B). After sorting, 31 unique proteins were detected in

the LIS group, 107 unique proteins were detected in the HIS

group, and 924 proteins were detected in both groups

(Figure 3B). Out of the 924 proteins shared between the two

groups, 550 proteins were found in at least 50% of the subjects of

both groups (Figure 3C; Supplementary Table S2). Among the

shared proteins, six proteins had differential abundance—of

which three showed a higher expression and three a lower

expression in HIS versus LIS. The significant difference

between the groups from the comparative proteome analysis is

graphically represented as a volcano plot, drawn using the fold

change and the p-value (Figure 3D). The LFQ of the proteins

with significant differential abundance is shown in Figure 3E and

the fold changes in Figure 3F. One of the differentially abundant

proteins (complement factor B) was identified as a biomarker for

diabetes after sorting against the list of proteins identified to be

involved in diabetes, as indicated in the peptide atlas

database (28).
Frontiers in Endocrinology 05
Differentially enriched pathways in
relation to insulin sensitivity status [LIS
versus HIS subjects at baseline (“baseline
insulin sensitivity–enriched pathway”)]

Significantly altered biological processes resulted from 107

proteins uniquely expressed in the HIS group (Figure 3B), such

as cellular metabolic process, intracellular transport, and

aerobic/cellular respiration. The most enriched terms under

the category are shown in Figure 4. Among the KEGG

pathways, diabetic cardiomyopathy, metabolic pathways, and

oxidative phosphorylation were found to be the most enriched

pathways (Figure 4; Supplementary Table S6). Functional

enrichment analysis using unique proteins also identified

selenocysteine synthesis, citric acid (TCA) cycle, signaling by

ROBO receptors, mitochondrial protein import, and metabolism

as the pathways active in patients with high insulin sensitivity, as

these were the most enriched terms under the Reactome

pathways (Figure 4; Supplementary Table S6), while no

significant enrichment in any of these pathways was observed

in the low insulin sensitivity group.
Effects of insulin infusion on protein
expression in the muscle biopsies from
subjects with low versus high insulin
sensitivity

The proteomic data of the LIS and HIS subjects under

insulin infusion were analyzed to identify proteins that differ

in their response to insulin between the two groups. After

combining all data, 862 proteins were identified in the LIS

group and 949 proteins in the HIS group, assigned to be

exclusively present in at least one of the eight subjects per

group, respectively (Figure 5A). After sorting, 27 proteins were

found to be uniquely present in the LIS group and 114 proteins

in the HIS group, while 835 proteins were shared between the

two groups (Figure 5B). Out of the 835 proteins shared between

the two groups, 497 proteins were found to be present in at least

50% of the subjects of both groups (Figure 5C; Supplementary

Table S3). Two proteins show a significant difference

(Figures 5D, E). The comparative proteome analysis of shared

proteins is graphically represented as a volcano plot, drawn

using the fold change and the p-value (Figure 5D), LFQ

(Figure 5E), and fold change (Figure 5F).
Pathways differentially enriched in
response to insulin infusion subjects with
low and high insulin sensitivities

The 114 proteins (Figure 5B) uniquely present in HIS

subjects in response to insulin infusion were found to be
frontiersin.org
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involved in biological processes such as response to hypoxia,

ATP metabolic process, aerobic and cellular respiration, and

respiratory electron transport chain as these were the most

enriched terms under the category (Figure 6; Supplementary

Table S7). Among the KEGG pathways, metabolic pathways,

diabetic cardiomyopathy, non-alcoholic fatty liver disease, and

oxidative phosphorylation were found to be the most enriched

terms (Figure 6; Supplementary Table S7). Functional
Frontiers in Endocrinology 06
enrichment analysis using unique proteins also identified class

I MHC-mediated antigen processing and presentation, protein

localization, metabolism TCA cycle, and respiratory electron

transport as the pathways active in high insulin sensitivity

patients in response to insulin clamp, as these were the most

enriched terms under the Reactome pathways (Figure 6;

Supplementary Table S7), while no significant enrichment in

any of the pathways was observed in the LIS group.
B

C

D

E

F

A

FIGURE 2

Proteins levels at the baseline and at 2 hours of insulin infusion in the 16 subjects. (A) Bar chart representing the number of proteins identified in
each condition. (B) Venn diagram showing the unique and common proteins in response to clamp. (C) Proteins sorted for their presence in at
least half of the subjects. (D) Volcano plot showing the differential abundance of proteins in response to insulin infusion. (E) Box plots
representing the proteins with significant differential abundance. *p=0.02, **p=0.001. BC: Before Clamp (basal values); DC: During Clamp
(insulin infusion for 2 hours). (F) Fold changes in the proteins significantly increased during insulin stimulation versus baseline".
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Effects of insulin infusion on protein
expression in the muscle biopsies from
each group (LIS and HIS)

The differentially abundant proteins in response to insulin

stimulation were analyzed in each group (LIS and HIS). Only

one protein was found to be increased, while six proteins were

identified to be decreased in response to the clamp in the LIS

group (Table 2; Supplementary Table S4). In the case of the HIS
Frontiers in Endocrinology 07
group, three proteins were increased in response to the clamp,

while only two proteins were found to be decreased (Table 2;

Supplementary Table S5).
Discussion

Skeletal muscles, liver, and fat are the main insulin target

tissues; however, muscles play a major role in glucose clearance
B

C

D

E

F

A

FIGURE 3

Baseline protein levels in the subjects with low insulin sensitivity (LIS) versus the subjects with high insulin sensitivity (HIS). (A) Bar chart
representing the number of proteins identified in each group. (B) Venn diagram showing the unique and common proteins in LIS and HIS.
(C) Proteins sorted for presence in at least 50% of the subjects. (D). Volcano plot showing the differential abundance of proteins present in both
the groups. (E) Box plots representing the proteins with significant differential abundance. *p=0.02, **p=0.002, *** p=0.0003. (F) Fold changes
in the proteins showing statistically significant differential abundance in LIS versus HIS at baseline.
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under insulin stimulation and strongly correlate with whole

body insulin sensitivity (29). We have previously shown that

whole body sensi t iv i ty to insul in , measured by a

hyperinsulinemic euglycemic clamp, varies widely among

healthy young men (15). We therefore hypothesized that the

skeletal muscle proteome profile may show variations between

high and low insulin sensitivity subjects (HIS and LIS). At the

basal state, multiple proteins were uniquely detected in the HIS

and LIS subjects, and over 85% of total proteins were commonly

detected in the two groups. Few of them showed differential

expression levels. Based on Gene Ontology using DAVID

software, the most abundant unique proteins present in the

HIS group before and during insulin infusion showed a

significant enrichment of the biological pathways involved in

the mitochondria function and TCA and b-oxidation cycle

(Figures 4–6).

Under fasting conditions, three common proteins are

significantly downregulated, and three others are upregulated

in the LIS group compared with the HIS group [p < 0.05, −1.5 ≥

fold change (FC) ≥1.5, FDR <0.05%]; these were involved in

mitochondria function, Glut4 translocation, and structural and

contractile proteins. Interestingly, we observed a significant

downregulation of creatine kinase B (CKB) as a marker for

anaerobic ATP resynthesis enzyme in the LIS group compared

with the HIS group. Consistent with our study, Højlund et al.

showed that, in the human skeletal muscle, the level of CKB was

reduced in T2D (10). CKB may play a specific role in

mitochondrial fuel oxidation (10, 30). A significant

observation of our analysis is that the Ras-related protein

Rab10 showed a low abundance in 50% of the LIS group. It is

well established that the insulin activation of protein kinase B
Frontiers in Endocrinology 08
(also known as AKT) leads to the stimulation of the GTP-bound

Ras-related protein (Rab10) and thereby triggers GLUT4 vesicle

movement to the membrane (31). In addition to Glut4

translocation, Rab-GAP was shown to control the uptake of

saturated and unsaturated fatty acid into the skeletal muscle

(32) . Several studies showed the dysregulat ion of

intramyocellular fatty acid metabolism in the offspring of

patients with T2D and obese patients with T2D. Recently, our

group performed a metabolomic analysis of circulating plasma

metabolites from the same cohort, and found that molecules

involved in lipid metabolism, predominantly fatty acids, were

upregulated in the LIS group compared with the HIS group (16).

A previous study in insulin-resistant muscle revealed reduced

protein expression to be involved in mitochondrial function

(33). Hence, our results support that the abundance of proteins

involved in mitochondrial functions is also downregulated (34).

Prohibitin 2 (PHB2), which represents the integrity of the

mitochondrial inner membrane (35), was significantly reduced

in LIS. The deletion of PHB2 results in the dysfunction of the

mitochondria (36). Additionally, at fasting conditions, we found

several slightly downregulated proteins (Supplementary Table

S2) that were involved in mitochondria function and TCA cycle,

such as cytochrome b-c1 complex subunit (UQCRFS1; complex

III), cytochrome c1 (CYC1; complex II), NADH dehydrogenase

(NDUFS3; complex I), and ATP synthase subunit O,

mitochondrial (ATP5O; complex V) (Supplementary Table

S2). In fact, proteins involved in the TCA cycle (37, 38) and

ATP synthase (39) tend to be less abundant in the insulin

resistance of skeletal muscle.

Mitochondria are the intracellular sites of skeletal muscle

fuel oxidation and ATP production, and mitochondrial
FIGURE 4

Functional annotation and classification by enrichment analysis of proteins uniquely present in the high insulin sensitivity group. Top enriched
terms and their distribution categorized into biological processes, Kyoto Encyclopedia of Genes and Genomes pathways, and Reactome
pathways (Supplementary Table S6).
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dysfunction may play a critical role in impaired glucose

metabolism observed in the skeletal muscle of T2D patients

and their insulin-resistant offspring (40). Furthermore, under

insulin stimulation, proteins involved in mitochondrial energy

metabolism were downregulated in the LIS group compared

with the HIS group. We observed a significantly decreased

ATP5F1 protein related to mitochondria synthase, involved in

the respiratory chain protein (complex V) complex. Consistent

with our finding of altered mitochondria function, most human
Frontiers in Endocrinology 09
studies showed mitochondrial dysfunction in skeletal muscle

from insulin-resistant offspring of patients with T2D (10, 39, 41,

42), obesity, and T2D (11, 33, 43). Indeed, it has been shown that

in skeletal muscle, mitochondrial ATP and mRNA levels and

protein synthesis are responsive to insulin infusion in

nondiabetic subjects (40); this indicates that insulin signaling

modulates certain pathways which may influence mitochondrial

proteins and functions. In our proteomic analysis, we observed a

slightly low abundance of several proteins involved in
B

C

D E

F

A

FIGURE 5

Effects of insulin (2 h infusion) on protein levels in the subjects with low insulin sensitivity (LIS) versus the subjects with high insulin sensitivity
(HIS). (A) Bar chart representing the number of proteins identified in each group. (B) Venn diagram showing the unique and common proteins in
response to clamp. (C) Proteins sorted for their presence in at least 50% of the subjects. (D). Volcano plot showing the differential abundance of
proteins between the groups after 2 hours of insulin infusion during the HIEC. (E) Box plots representing the proteins with a significant
differential abundance. *p=0.01, **p=0.001. (F) Fold changes in the proteins showing statistically significant differential abundance in LIS versus
HIS under-insulin stimulation.
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mitochondria function in subjects with LIS compared with those

in the HIS group, such as ATPC1 (complex V) (FC ≤-1.1)

(Supplementary Table S3). Yang et al. showed that ATP5C1 is

reduced in insulin-resistant non-diabetic Pima Indians (44).

Using magnetic resonance spectroscopy, several studies

showed that the ATP synthesis rates were lower in the insulin-

resistant offspring of T2D patients (39, 41). Hojlund et al.

demonstrated a decreased content of the ATP synthase

subunit in the skeletal muscles of T2D patients (10). Taken
Frontiers in Endocrinology 10
together, these data indicate that the insulin-stimulated rates of

ATP synthesis are negatively affected very early in the

pathogenesis of insulin resistance (39, 45, 46) and in T2D (47).

The current study also reveals alteration in proteins involved in

the TCA cycle, such as succinate dehydrogenase (FC ≤-1.2;

Supplementary Table S3). The SDH complex plays a vital role

in cell metabolism, considering its participation in the TCA cycle

and the electron transport chain. Sreekumar et al. showed a

decreased SDHB expression in skeletal muscle after insulin
FIGURE 6

Functional annotation and classification by enrichment analysis of proteins uniquely present in HIS or LIS group and those showing differential
abundance. The top enriched terms and their distribution categorized into biological processes, KEGG pathways and Reactome pathways.
TABLE 2 Proteins showing the highest response to insulin stimulation statistically significant (p value at least <0.05) differential abundance (more
than 1.5 fold) among 16 volunteers between the subjects with low insulin sensitivity (LIS) and high insulin sensitivity (HIS) both at base line and
after insulin stimulation.

Gene name Protein name Fold change Group

MYL1 Myosin light chain 1/3, skeletal muscle isoform −2.0 Low insulin sensitivity

APOB Apolipoprotein B-100 −3.5

UBE2V2 Ubiquitin-conjugating enzyme E2 variant 2 −1.8

MYL3 Myosin light chain 3 −2.9

NDUFS2 NADH dehydrogenase (ubiquinone) iron–sulfur protein 2, mitochondrial −2.1

CENPF Centromere protein F −1.9

BCAM Basal cell adhesion molecule 1.7

GRB2 Growth factor receptor-bound protein 2 −1.6 High insulin sensitivity

NDUFS5 NADH dehydrogenase (ubiquinone) iron–sulfur protein 5 −2.2

EPB42 Erythrocyte membrane protein band 4.2 1.6

PLG Plasminogen 1.5

CFH Complement factor H 1.8
The data are fold changes (FC) comparing level of protein under insulin stimulation during the hyper insulinemic euglycemic clamp versus baseline.
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treatment in T2D patients (48). He et al. also showed that, within

each type of fiber, skeletal muscle from obese and T2D had a

lower SDH oxidative enzyme activity and increased lipid content

compared with those of lean subjects (49). Our data are

consistent with the finding of He et al. who showed decreased

oxidative enzyme activity and unchanged glycolysis in the

skeletal muscle of T2D patients (49).

Human skeletal muscles are constituted of three major fiber

types: type 1 (slow oxidative), 2A (fast oxidative glycolytic), and

2X fibers (fast glycolytic), defined by the presence of MYH7

(myosin heavy chain 7), MYH2, and MYH1, respectively. In the

fasting state, our analysis showed an upregulation of MYH2

(Supplementary Table S2) and myosin light chain kinase 2

(MYLK2) in the LIS group compared with the HIS group;

MYLK2 was also significantly upregulated by insulin in the

LIS group (Figures 3E, F). The MYLK2 gene encodes the skeletal

muscle myosin light chain kinase, with higher expression in fast

skeletal muscles than in slow muscles. MYLK2 is linked to fast

muscle proteins such as myosin light chain 1 (MYL1) (50). At

baseline, Giebelstein et al. reported that the upregulation of fast-

muscle proteins negatively correlates with insulin sensitivity

(33). A study on fiber proportion in human skeletal muscle

showed an increase of type 2A fiber (twofold) compared with

type 1 in metabolic syndrome subjects.

Another important finding of our analysis is that perilipin 4

(PLIN4) was slightly upregulated under insulin stimulation (FC

≥1.4, Supplementary Table S3) in the LIS group compared with

the HIS group. Perilipin 4 is expressed in skeletal muscle, heart,

and adipose tissues, and it is preferentially located in lipid

droplets containing cholesterol ester (51). PLIN4 is recruited

to the lipid droplet during droplet formation (52). Poureymour

et al. showed that PLIN4 is localized to intramuscular adipocytes

and more highly expressed in slow-twitch muscle fibers

compared with fast-twitch muscle (52). PLIN4 mRNA is

expressed in vastus lateralis biopsies from a healthy individual,

and its levels are higher in slow-twitch than fast-twitch muscles.

Unlike the PLIN3 protein, PLIN4 expression is reduced in

response to prolonged endurance training (53). These data are

supported by a previous study that showed an increased intra-

myocyte triglyceride level in insulin-resistant first-degree

relatives of individuals with T2D (54). Accumulation of intra-

myocellular lipid is associated with reduced insulin

sensitivity (55).

Moreover, several proteins were altered in the LIS group

during insulin infusion compared with the baseline (Table 2;

Supplementary Table S4). Those proteins, the sarcomere

proteins myosin light chain1 (MYL1) and myosin light chain 3

(MYL3), were downregulated under insulin stimulation; this is

consistent with a previous study that showed downregulation of

the slow myosin light chain isoform protein in T2D patients

(56). Interestingly, our proteomic analysis revealed (Table 2;

Supplementary Table S4) the downregulation of NDUFS2

(complex I) in the LIS group by insulin; complex I is involved
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in mitochondrion respiration. Insulin infusion also

downregulated apolipoprotein B (APOB); APOB is an

important component of LDL and VLDL, which distribute fat

molecules to peripheral tissues such as skeletal muscle tissues

(57). Excess VLDL secretion has been indicated to deliver

increased fatty acids and triglycerides to muscle and other

tissues, further inducing insulin resistance (34). Other proteins

were altered following insulin stimulation in the LIS group

compared to a baseline, such as Centromere protein F, which

is involved in skeletal myogenesis, and basal cell adhesion

molecule, which is involved in intracellular signaling. Some

proteins identified in the HIS group following insulin infusion

were different from those in the LIS group (Table 2;

Supplementary Table S5), such as erythrocyte surface protein

band 4.2, plasminogen, complement factor H, growth factor

receptor-bound protein 2, and NADH dehydrogenase.

Interestingly, our study identified a number of proteins

involved in the mitochondrion respiratory chain, which were

slightly altered in the LIS group compared with the HIS group,

including complex I, II, III, and V at fasting condition

(Supplementary Table S2), whereas following insulin infusion,

we detected only two proteins that were altered, one in complex

V and the other in TCA. Moreover, our study found that

MYLK2 was upregulated in the LIS group compared with the

HIS group in both conditions.

The strength of this study was the homogenous

representative population of men with normal glycemia levels.

Muscle biopsies from the same patients in whom circulating

metabolites were measured were also used for proteomic

analysis. A limitation of the study is the low number of

subjects. Although we screened many participants, most of

them failed to meet the criteria for participation in our study.

Another limitation of the present study is that biopsies at later

time points were not obtained; thus, we may have missed several

protein changes that might have occurred at later times,

particularly for proteins with a long half-life. Further,

obtaining a skeletal muscle biopsy is a complex process and is

very difficult to do in a large-scale population, and obtaining

multiple timepoint samples is very challenging.

In conclusion, we have demonstrated that human skeletal

muscles in apparently healthy male subjects of Arab descent

show changes in a small number of proteins related to insulin

sensitivity levels. In the fasting state, we found that 12 proteins

were differentially expressed in the LIS group compared with the

HIS group. Under insulin stimulation, a number of proteins,

such as myosin chain and mitochondrial ATP synthase,

remained altered in the LIS group. However, we did not detect

any changes in glycolytic proteins in both conditions, as also

shown in previous studies (11, 58). Collectively, these data

provide novel information regarding the metabolic pathways

that correlate with insulin sensitivity levels in skeletal muscle and

may represent early events for developing insulin resistance, pre-

diabetes, and type 2 diabetes.
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