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Since the Human Genome Project was successfully completed, humanity has

entered a post-genome era, and the second-generation sequencing

technology has gradually progressed and become more accurate.

Meanwhile, circRNAs plays a crucial role in the regulation of diseases and

potential clinical applications has gradually attracted the attention of

physicians. However, the mechanisms of circRNAs regulation at the cellular

and molecular level of diabetic foot ulcer (DFU) is still not well-understood.

With the deepening of research, there have been many recent studies

conducted to explore the effect of circRNAs on DFU. In this mini-review, we

discuss the potential role of circRNAs as therapeutic targets and diagnostic

markers for DFU in order to gain a better understanding of the molecular

mechanisms that underlie the development of DFU and to establish a

theoretical basis for accurate treatment and effective prevention.

KEYWORDS
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Introduction

Diabetic foot ulcer (DFU) is one of the most common lower limb complications of

diabetes mellitus (DM) (1). According to relevant studies, the 5-year and 10-year

mortality of DFU patients is 22% and 71% respectively, and the amputation rate is

29.3% (2). The etiology of DFU is attributed to a variety of causes, including chronic

inflammation, diabetic peripheral neuropathy, and vascular endothelial damage of the

distal arterial vasculature. However, the lack of typical signs and symptoms in the early

stages of the disease makes misdiagnosis and under diagnosis a common occurrence in

clinical work. Although there are many medical and surgical treatments in clinic, the risk

of chronic ulcer or even amputation is easy to occur due to the lack of effective diagnostic
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markers and treatment targets. Therefore, it is important to

explore the etiological mechanism to provide theoretical basis

for accurate treatment and diagnosis.

CircRNAs are important regulators in the cellular life cycle.

It is a class of non-coding RNA formed by covalent cyclization,

which is abundantly expressed in eukaryotic organisms and has

high stability. Studies have shown that circRNAs play an

important role in cell proliferation, apoptosis, metabolism,

inflammation and other biological processes (3). In addition,

circRNAs are closely related to the development of many

diseases, such as DM and cancer (4). Therefore, this mini-

review provides a comprehensive review of the biological role

of circRNAs in DFU and explores the possibility of circRNAs as

a therapeutic target and diagnostic marker for DFU by reviewing

the literature and related materials.
Pathophysiology of DFU

Normally, wound healing undergoes several phases,

including hemostasis, inflammation, proliferation, migration,

re-epithelization and remodeling (5). However, there are

several factors that contribute to the non-healing of DFU.

Hyperglycemia, chronic inflammation, dysfunction of

microcirculation and macrocirculation, hypoxia, sensory

neuropathy and neuropeptide signal damage are the main

factors that lead to the difficulty of wound healing (6).

However, hyperglycemia may be the most critical point of

non-healing of wounds. I t has been reported that

hyperglycemia can promote vascular endothelial cell (ECs)

dysfunction and induce apoptosis (7). ECs dysfunction leads

to a decrease in various angiogenic and vasoactive factors

secreted by it, as well as a decrease in new blood vessel

formation (8–10). Studies have shown that endothelial

dysfunction is the intrinsic cause of impaired wound healing

(11–13). In addition, hyperglycemia directly affects the activity

of keratinocytes (HEKs) and fibroblasts (FBs), leading to

changes in protein synthesis, proliferation, and migration (14).

It will seriously affect the re-epithelization and remodeling of the

wounds, which in turn leads to non-healing of wounds. Recently,

there is increasing evidence that hyperglycemia leads to

impaired cell response to hypoxia (15). Hypoxia can prolong

the damage by increasing the level of free oxygen radicals.

Meanwhile, inflammation caused by chronic hyperglycemia

will further increase oxidative stress and pro-inflammatory

chemokines to reduce cell proliferation and migration then

ultimately delay wound healing (16, 17). Studies have shown

that diabetic peripheral neuropathy is one of the main causes of

foot ulcers (18). It is believed that glial cell apoptosis and

autophagy in the peripheral nervous system caused by

hyperglycemia stimulation are the main causes for the

occurrence and development of peripheral neuropathy (19–

21). In brief, the main characteristics of diabetic wound non-
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healing are decreased angiogenesis, decreased recruitment of

bone marrow-derived endothelial progenitor cells (EPC),

decreased proliferation and migration of FBs and HEKs, and

apoptosis of nerve cells (22). Interestingly, recent studies have

shown that circRNAs play an important role in the

pathophysiology of DFU wound healing. This may provide a

novel idea for finding diagnostic marks and therapeutic targets

of DFU.
CircRNA

Overview of circRNA molecules

CircRNAs is a class of non-linear RNA molecule, which is

not easily degraded by nucleic acid exonucleases and is formed

by covalent cyclization. circRNAs are mainly produced by

covalent connection of upstream and downstream sites during

back-splicing. Most of the circRNAs were earlier undetected in

RNA sequence due to the lack of 3 ‘ poly tails, and as the

technology has evolved, over 183,000 have been identified now

(23). Broadly, circRNAs can be classified into 4 types, EcircRNA

composed of exons and mainly located in the cytoplasm;

EIcircRNA with the combination of introns and exons and

mainly located in the nucleus; CiRNA composed of introns,

mainly located in the nucleus (24–27); circRNA produced

by cyclization of viral RNA gene, tRNA, rRNA or

snRNA (Figure 1).
The main biological functions of circRNA

Understanding the ways which circRNAs participates in

regulating biological processes further broadens our horizons.

circRNAs has various biological functions, such as affecting the

splicing of linear RNA and regulating transcription. ① Acting as

a transcriptional regulator; CircRNAs can interact with U1

snRNA to form circRNA-U1 snRNP complex, and then

further interact with RNA Pol II transcription complex at the

promoter of parent gene to alter gene transcription and

expression (28). For example, circ_ANKRD52, generated from

gene ANKRD52, is capable of accumulating to its transcription

sites and regulates elongation Pol II machinery acting as a

positive regulator for transcription (29). ② Acting as miRNA

sponges; MiRNA can bind directly to target mRNA in a base-

pair fashion and trigger cleavage of mRNA or inhibit translation

of mRNA (30). CircRNAs located in cytoplasm also contain

complementary miRNA binding sites, and thus serve as

competitive inhibitors for miRNA. In human cells,

circ_ASAP1 can act as a sponge of miR_326 and miR_532_5p

to promote hepatocellular carcinoma under hypoxic conditions

(31). In addition, new circRNA sponges are continually being

discovered in various disciplines. Circ_ITCH sponges miR-7,
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miR-17 and miR-214 in esophageal squamous cell carcinoma

(ESCs) and inhibits tumor proliferation (32). CiRS-7 acts as a

miR-7 sponge in many pathophysiological processes, including

myocardial infarction, hepatocellular carcinoma (HCC) and

gastric cancer (GC) (32–34). These results suggest that

circRNAs as miRNA sponges might be a common function of

circRNAs. ③ Protein templates; At first, people thought that

circRNAs was a non-coding RNA (24, 35). However, recent

studies have found that extensive N6-methyladenosine (m6A)

modification is enough to drive circRNAs to translate in a cap-

independent manner, as well as m6A reader YTHDF3 and

translation initiation factors eIF4G2 and eIF3A (36). And

further analysis indicates that translatable circRNAs may be

common in human transcriptome (37). However, the translation

ability and efficiency of circRNA are still remains controversial.

④ Binding with RBP (RNA-binding protein); CircRNAs have

also been reported to act as sponges for proteins to alter

pathophysiological progress. For example, circ_ZFR can

promote the proliferation of hepatocellular carcinoma by
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binding with MAP2K1 (38). Circ_Foxo3 has high binding

affinity with anti-aging ID-1, transcription factor E2F1, and

anti-stress proteins FAK and HIF1A, and keeps them in the

cytoplasm, leading to the aggravation of cell aging (39). ⑤ Act as

a biomarker for clinical diagnosis or treatment; It is mainly due

to the highly conservative nature and unique molecular structure

of circRNAs, and researchers are still studying whether it can be

a mature marker for the treatment and diagnosis of diseases.

Therefore, the physiological characteristics of circRNAs may

provide some idea for us to explore the etiology, treatment and

diagnosis of DFU (Figure 1).
Correlation between DFU and circRNAs

With the rapid development of the circRNA field, circRNAs

in the wound tissues or blood of DFU patients has been detected

by RNA-sequencing or gene microarray analysis, and the

potential correlation between DFU and circRNAs expression
FIGURE 1

The function and classification of circRNA. EcircRNA, exonic circRNA. EIcircRNA, exon - intron circRNA. CiRNA, intronic circRNA. TircRNA, tRNA
intronic circRNA. RNA pol II, RNA polymerase II. RBP, RNA-binding protein. miRNA, microRNA.
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levels has been detected. For example, Zhao et al. (40) detected

circRNAs in the serum of 3 patients with DFU and 9 patients

with DM, and found that compared with DM patients, the serum

of DFU patients showed 10 upregulated and 23 downregulated

circRNAs. Tian et al. (41) analyzed a set of microarray data and

found 65 differentially expressed circRNAs, including 25

upregulated and 40 downregulated circRNAs, in 8 non-DM

patients’ (normal group) tissues and 9 DFU patients’ (DFU

group) tissues. Liao et al. (42) analyzed 5 non-DM patients’

tissues and 5 DFU patients wound tissues by using a set of

microarray data, and found 8 differentially expressed circRNAs.

All evidence indicated that circRNAs are differentially expressed

in DFU and may be involved in certain academic biological

processes and signaling pathways to the healing process of DFU

by regulating some target genes.
The role of circRNAs in ulcer tissue

We comprehensively summarized all circRNAs related to

DFU, and found that circRNAs can regulate various cells

involved in DFU wound healing, and regulate its downstream

substances through some specific signaling pathways, thus acting

as biological regulators (Table 1).
Effect of circRNAs on human epidermal
keratinocytes

Human Epidermal Keratinocytes (HEKs) are a class of

epithelial cells that synthesize keratin and gradually proliferate

and differentiate from deeper layers to form keratinized HEKs

that act as barrier. Re-epithelization is the process of wound

healing and restoration of intact epidermis, which is closely

regulated by the migration and proliferation of HEKs (65, 66).

Evidence suggests that migration of HEKs plays a vital role in

covering the wound surface during wound re-epithelization (67,

68). Therefore, elucidating the mechanism of HEKs driving from

the wound edge to the wound bed may provide crucial novel

insights for the treatment of DFU. Wang et al. (43) showed that

circ_0084443 was significantly expressed in DFU patients’

wound tissues and was found to be most highly expressed in

HEKs, followed by FBs, ECs, and silencing circ_0084443

increased migration of HEKs, while over-expression of

circ_0084443 promoted proliferation of HEKs. In addition,

they found that hsa_circ_0084443 in HEKs can mediate the

biological effects of PI3K, EGFR and ERK signaling pathways,

but blocking these signaling pathways can inhibit the migration

of HEKs (43). PI3K, EGFR and ERK signaling pathways are

relatively mature and well-recognized effective pathways in the

DFU healing process (69–71), which also laterally proves that

circ_0084443 may play a key role in ulcer healing. SRTING

database is a powerful online website for analyzing protein
Frontiers in Endocrinology 04
interactions (PPI network). Wang et al. (43) found HBEGF

and HIFA in PPI network regulated by circ_0084443. Previous

studies have also shown that HBEGF and HIF1A can regulate

the migration and proliferation of HEKs (72–74). Furthermore,

the downstream targets of circ_0084443 may not be limited to a

specific one or several. For example, circ_0084443 also can

inactivate TGF-b signaling pathway through miR-17-3p/

FOXO4 axis, and then promote migration of HEKs (44). Han

et al. (45) found that knocking down circ_PRKDC (also called

circ_0084443 based on the circRNA ID of circRNA database)

changes the expression of two main extracellular matrix proteins

(MMP2 and MMP9) related to cell migration through miR-31/

FBN1 axis, and then promotes wound healing. Jiang et al. (46)

found that circ_PRKDC can directly target miR-20a-3p to

regulate the expression of RASA1 and promote the migration

of HEKs. This may provide strong evidence that circ_0084443

promotes the migration of HEKs. Re-epithelization requires not

only the migration but also the proliferation and differentiation

of HEKs. However, some studies have shown that circRNA has

the biological function of regulating proliferation and

differentiation. Chen et al. (47) found that circ_0008450 could

activate TGF-b/Smad signaling pathway by down-regulating

Runx3 expression while promoting proliferation, migration

and epithelial-mesenchymal transformation of HEKs. In

addition, the increase of hypoxia conditions and the damage

of cells’ response to hypoxia are important reasons for the delay

of wound healing (15). Yu et al. (48) found that circ_Ttc3

alleviated hypoxic injury and activated NF-kB and PI3K/AKT

signaling pathways by downregulating miR-449a in HEKs.

Although a small amount of circRNAs has been found in

wounds today, these targets provide us with great value in the

treatment of chronic wounds or in the exploration of

etiological mechanisms.
Effect of circRNAs on vascular
endothelial cells

Endothelial cell (ECs) dysfunction is the initial stage of DFU.

The cause of endothelial dysfunction may be due to prolonged

hyperglycemia (75). Due to hyperglycemia, impaired

chemotaxis, cell proliferation, and migration, the healing

process is badly disturbed (14). Therefore, ameliorating

endothelial dysfunction is essential for the healing of chronic

wounds. It has been found that various kinds of circRNAs can

regulate endothelial dysfunction. For example, Zhang et al. (49)

found that high glucose (HG)-induced upregulation of

circ_BPTF in ECs, and circ_BPTF regulated endothelial

dysfunctions, including cell apoptosis, inflammatory responses

and oxidative stress, by mediating the miR-384/LIN28B axis.

Shan et al. (50) found high expression of circ_HIPK3 in HG-

induced ECs, and circHIPK3 acts as an endogenous miR-30a-3p

sponge to inhibit miR-30a-3p activity, thereby leading to
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increased expression of vascular endothelial growth factor-C

(VEGFC), FZD4, and WNT2. Further study has also found that

silencing circ_HIPK3 resulted in the accumulation of miR-124

and eventually endothelial dysfunction, including promotion of

apoptosis, delay of the migration of ECs and inhibition of

tubulation (51). A sustained HG environment promotes

oxidative stress, apoptosis, and inflammatory factor expression,

which result in the dysfunction of ECs (76–78). Furthermore,

enhanced proinflammatory chemokines disturb wound healing,
Frontiers in Endocrinology 05
leading to diabetic ulcers (17). Cheng et al. (52) found that the

down-regulation of circ_0068087 ameliorated the HG-induced

TLR4/NF-kB/NLRP3 inflammasome-mediated inflammation

and dysfunction of ECs by sponging miR-197. Previous studies

have also shown that suppression of the NF-kB and NLRP3

inflammasome pathways ameliorate HG-induced inflammatory

responses and endothelial dysfunction (79–81). This indicates

that some circRNAs have regulatory effects on the well-known

targets for alleviating endothelial dysfunction and inflammatory
TABLE 1 Regulatory effects of different circRNAs on key genes and signaling pathways.

Authors circRNAs miRNAs Targets Signaling pathways Function

Wang et al.
(43)

circ_0084443↓ – HBEGF/
HIF1A↓

PI3K、 EGFR and ERK
Signaling Pathway

Promoting proliferation and inducing migration of HEKs

He et al.
(44)

circ_0084443↓ miR17-3p↑ FOXO4↓ TGFb Signaling Pathway Inducing migration of HEKs

Han et al.
(45)

circ_PRKDC ↓ miR-31↑ FBN1/MMP2/
MMP9↑

– Inducing migration of HEKs

Jiang et al.
(46)

circ_PRKDC↓ miR-20a-
3p↑

RASA1↓ – Inducing migration of HEKs

Chen et al.
(47)

circ_0008450↓ – Runx3 ↑ TGF-b/Smad signaling
pathway

Inhibiting proliferation, migration and epithelial-mesenchymal
transformation of HEKs

Yu et al.
(48)

circ_Ttc3↑ miR-449a↓ NF-kB、PI3K-AKT signaling
pathway

Raising viability and reducing apoptosis of HEKs

Zhang et al.
(49)

circ_BPTF↑ miR-384↓ LIN28B↓ – Inducing endothelial dysfunction, including apoptosis,
inflammatory responses, oxidative stress

Shan et al.
(50)

circ_HIPK3↑ miR-30a-
3p↓

VEGFC/FZD4/
WNT2↑

– Increasing acellular capillary number

Cao et al.
(51)

circ_HIPK3↓ miR-124↑ – – Promoting apoptosis, inhibiting migration and tube formation of
ECs

Cheng
et al. (52)

circ_0068087↓ miR-197↑ TLR4/NF-kB/
NLRP3↓

– Ameliorating the inflammatory response and endothelial
dysfunction of ECs

Yang et al.
(53)

circ_101238↑ miR-138-
5p↓

CDK6↑ – Promoting the proliferation of FBs

Liu et al.
(54)

circ_0043688↑ miR-145-
5p↓

FGF2↑ – Promoting the proliferation, migration, invasion and ECM
production of FBs

Wu et al.
(55)

circ_PDE7B↑ miR-661↓ FGF2↑ – Promote the proliferation, migration and invasion of FB, and
inhibit apoptosis.

Zhang et al.
(56)

circ_0008259↑ – COL1A1/
COL3A1↓

– Inhibiting collagen (II and III) synthesis

Lv et al.
(57)

circ_COL5A1↑ miR-7-5p↓ Epac1↑ PI3K-AKT signaling pathway Promote the proliferation, migration and invasion of FBs

Su et al.
(58)

circ_AMD1↑ miR-27a-
3p↓

COL1A1↑ – Promoting the proliferation and collagen synthesis of FBs

Bai et al.
(59)

circ_LRP6↑ miR545-
3p↓

HMGA1↑ – Promoting the proliferation, migration and invasion of VSMCs

Shi et al.
(60)

circ_0008028↑ miR-182-
5p↓

TRIB3↑ – Induce proliferation, calcification and autophagy of VSMCs

Wang et al.
(61)

circ_0077930 ↓ miR_622↓ KARS↑ – Promoting senescence of VSMCs and keeps them in G1 phase for
a long time

Chen et al.
(62)

circ_WDR77
(circ_0013509) ↑

miR-124↓ FGF-2↑ – Promoting the proliferation and migration of VSMCs

Liu et al.
(63)

circ_ACR↓ miR-145-
3p↑

– PI3K/AKT/mTOR signaling
pathway

Leading to apoptosis, autophagy, oxidative stress in SCs

Liu et al.
(64)

circ_0002538 ↑ miR-138-
5p↓

PLLP↑ – Promoting the migration and myelin formation of SCs
Symbols ↑ means "Increase expression". Symbols ↓ means “Decrease expression”.
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response. However, due to the lack of exploration of circRNAs,

we still can’t fully know its regulatory role in ECs.
Effect of circRNAs on fibroblasts

Fibroblasts (FBs) play an important role in wound tissue

repair. They move to the wound area during wound formation

and synthesize collagen and fibronectin with other extracellular

matrix (ECM) to generate the forces needed to shrink the

wound. Studies have shown that differential expression of

extracellular matrix produced, assembled and reshaped by FBs

also leads to poor wound healing in DFU (82). The latest studies

have shown that circRNAs can regulate the proliferation,

migration and apoptosis of FBs. Yang et al. (53) found that

high expression of circ_101238 promoted the FBs proliferation

via miR-138-5p/CDK6. FBs are the primary factors of wound

healing through which they respond to the proliferation,

migration, and myofibroblast differentiation capabilities of

specific cytokines such as fibroblasts growth factor (FGF) (83).

Liu et al. (54) found that circ_0043688 can regulate the

proliferation, migration, invasion and ECM production of FBs

by targeting miR- 145- 5p/FGF2 axis. Another study also showed

that the circ_PDE7B/mir-661 axis accelerated the proliferation,

migration and invasion of FBs by up-regulating FGF2 (55).

Collagen can promote the migration of FBs to the wound area,

thus accelerating wound healing and enhancing re-epithelization

(84–86). Zhang et al. (56) found that over expression of

circ_0008259 in FBs inhibited the production of collagen (I

and III). Lv et al. (57) found that circ_COL5A1 regulates the

proliferation, migration and invasion of FBs through the

circ_COL5A1/miR-7-5p/Epac1 axis. In addition, circ_AMD1

can regulate p63 mutation via miR-27a-3p, which in turn

promotes proliferation and collagen synthesis of FBs (58).

Although research on circRNAs in FBs is still in its infancy,

these circRNAs may still be important targets for DFU wound

healing. At the same time, the above-mentioned FBs-related

circRNAs were not found in DFU wounds, but their value in

wound healing studies is indisputable.
Effect of circRNAs on vascular smooth
muscle cells

Vascular Smooth Muscle Cells (VSMCs), the main cells that

constitute the middle membrane of blood vessels, and play an

important role in various pathophysiological processes. VSMCs

are known for their plasticity, which can change their

morphology and growth state to exert contraction and

synthesis functions (87). VSMCs exhibit a contractile

phenotype under physiological conditions, and they can switch

to a proliferative phenotype under extracellular stimulation (88).
Frontiers in Endocrinology 06
Studies have shown that HG may induce the excessive

proliferation and migration of VSMCs, leading to vascular

occlusion (89). Therefore, preventing abnormal proliferation

and migrat ion of VSMCs and promoting vascular

recanalization may be a valuable direction for the treatment of

DFU. It was found that circRNAs can regulate VSMCs. Bai et al.

(59) found that circ_LRP6 was upregulated in HG-induced

VSMCs, which promoted the proliferation, migration and

invasion of VSMCs, whereas knocking down circ_LRP6

eliminated the capability of proliferation, migration and

invasion via miR545-3p/HMGA1.Shi et al. (60) found that

cic_0008028 induces proliferation, calcification and autophagy

of HG-induced VSMCs via miR-1825P/TRIB3. In addition,

Wang et al. (61) found that circ_0077930 caused senescence of

VSMCs via miR_622-KARS and kept VSMCs in G1 phase for a

long time. Chen et al. (62) found that circ_WDR77

(circ_0013509) targeted FGF-2 through miR-124 to regulate

the proliferation and migration of VSMCs, while silencing

circ_WDR77 played an inhibitory role.
Effect of circRNAs on Schwann cells

Schwann cells (SCs), also known as nerve sheath cells, are

myelin cells surrounding neuronal axons in the peripheral

nervous system and secrete a variety of neurotrophic factors,

which are closely related to peripheral neuropathy in DFU. HG-

induced apoptosis and autophagy in neuroglial cells of the

peripheral nervous system are considered to be the main

causes for the occurrence and development of DFU

neuropathy (19, 20). Liu et al. (63) observed in vitro that

circ_ACR reduced apoptosis, autophagy and oxidative stress in

HG induced SCs by downregulating miR-145-3p. And has effect

on PI3K/AKT/mTOR signaling pathway. In addition, Liu et al.

(64) found that downregulation of circ_0002538 expression in

DFU peripheral neuropathy regulates migration and myelin

formation of SCs through miR-138-5p/PLLP axis, which in

turn improves symptoms. Although it provides new ideas in

the pathogenesis and treatment of DFU. However, it is still

necessary to conduct a comprehensive and holistic studies.
Prospective applications of circRNAs
in the diagnosis and treatment
of DFU

circRNAs as a diagnostic marker

The diagnosis of DFU is still mainly based on the clinical

manifestations of patients and other auxiliary examinations, but

due to the lack of typical symptoms and signs in the early stage of
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DFU, it is easy to be missed and misdiagnosed the disease. In

recent years, with the development of gene sequencing

technology, circRNA has gradually become a new exploration

direction, and its potential as a diagnostic marker of DFU has

been discovered. For example, the level of circ_102958 in gastric

cancer tissues positively correlated with TNM staging (p= 0.032)

and the area under ROC curve (AUC) was 0.74 (90). Compared

with obtaining tissues, blood samples collected fromDFUpatients

may more ethical and more acceptable. Exosomes are vesicles

containing a variety of RNAs and proteins, which naturally exist

in extracellular fluid and act as information exchange and

substance transfer vector between cells (91). In addition, with

the development of technology, it has been found that exosomes

play an indispensable role in the early diagnosis, treatment and

prognosis of some diseases, such as cancer andmetabolic diseases

(92). Chen et al. (93) analyzed a set of microarray data

(GSE114248) with circ_0000907 and circ_0057362 as candidate

markers and found that the AUC values of circ_0000907 and

circ_0057362 in serum exosomes for the diagnosis of early stage

and DM were 0.7564 and 0.8327, respectively. Meanwhile,

expression of circ_0000907 and circ_0057362 was negatively

correlated with ankle-brachial index (ABI) and percutaneous

partial pressure of oxygen (TcPO2) (93). Based on the above

research, circ_0000907 and circ_0057362 showed specificity in

distinguishing DFU from diabetes in serum. Secondly,

circ_0000907 and circ_0057362 in serum positively correlated

with the severity of DFU, which may provide important clinical

significance for Wagner stage for DFU patients in early stage. It

may also be necessary to have stability and a long half-life as

diagnostic markers. Han et al. (45) found that circ_PRKDC was

significantly resistant to RNase R compared with PRKDCmRNA,

and its half-life was longer. Zhang et al. (49) also found that RNase

R hardly changed the expression of circ_BPTF, but significantly

weakened the expression of linear mRNA BPTF. Although

circRNA has been shown to be valuable as a diagnostic marker

in DFU, it still requires strict clinical studies to detect circRNA in

serum as an accurate and effective diagnostic marker of DFU.

There are still some problems need to be solved, such as (a) how to

select the most effective therapeutic targets; (b) evaluating the

specificity and sensitivity of the screened targets; (c) specific

regulatory mechanisms of targets.
circRNA as a DFU therapeutic target

Recent studies have shown that circRNA plays an important

role in DFU, and some drugs have potential binding sites with

circRNA, which provides a basis for exploring drugs with

circRNA as a therapeutic target. For example, Xiang et al. (94)

found that circ_Krt13 and circ_Krt14 down regulated Ltga3 and

Mylk4 expression through downstream miR-665-3p and miR-

706 in traditional Chinese medicine (Sheng-ji Hua-yu formula)
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for the treatment of DFU. At the same time, this plays a key role

in the inflammatory phase as well as in the maturation phase to

improve the wound healing rate of DFU.

In addition, the difficulty in wound healing for DFU may be

due to abnormal expression of some circRNAs, and

supplementation or inhibition of some circRNAs or their

downstream targets by exogenous sources may be a

therapeutic method for DFU. For example, Shang et al. (95)

transplanted the overexpressed circ_Klhl8 into a wound of DFU

patient using ECs as a vector and found that it promoted

angiogenesis by miR-212-3p/SIRT5. In addition, Cheng et al.

(96) found that the expression of circ_0058092 was decreased in

ECs under HG conditions, and transfection of plasmids

overexpressing circ_0058092 inhibited the release of

inflammatory cytokine and restored the proliferation and

migration capacity of ECs via miR-217/FOXO3. Feng et al.

(97) used PLCDH-circ_ACR-carrying lentivirus to transfect

wound of DFU and found that it alleviated apoptosis,

autophagy and oxidative stress in SCs by reducing miR-144-3p

and thus promoting activation of PI3K/AKT/mTOR pathway.

Finally, circRNA can also be used as a key point of stem cell

therapy to regulate theDFUhealing process. Zhang et al. (98) found

that circ_0075932 in adipocyte-derived exosome mediates

AuroraA/NF-kB pathway activation by directly binding to

PUM2, thereby inducing inflammation and apoptosis of HEK.

However, silencing PUM2, AuroraA, or blocking NF-kB has the

opposite effect. Shi et al. (99) found that exosomes derived from

mmu_circ_0000250 modified adipose derived mesenchymal stem

cells ADSCs promoted wound healing in DFU by inducing miR-

128-3p/SIRT1-mediated autophagy. In addition, Wang et al. (100)

found that circ_Gcap14 regulated miR-18a-5p/HIF-1a to enhance

the expression of vascular growth factor (VEGF) in DFU (Table 2).
Challenges of circRNAs in clinical
applications

CircRNA may play different roles at different stages of DFU

wound healing. For example, Han et al. (45) found that the

expression level of circ_PRKDC did not decrease immediately

after skin injury, but decreased by about 1.2 times on the first day

after injury (inflammatory phase) and rapidly decreased about

3.4 times on the seventh day after injury (proliferative phase).

This indicates that circ_PRKDC is dynamic and not static, and

its role in inflammatory phase may be limited, but it plays an

important role in the proliferation phase. However, many

studies are still committed to studying the regulatory

mechanism of circRNA as sponge of miRNA in DFU rather

than studying its dynamics at various stages of wound healing.

This may be due to the fact that the study of circRNAs in DFU is

just beginning. The expression of circRNAs at each stage of DFU

wound healing is dynamic, and there is a large number of
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circRNAs during DFU wound healing. It may affect specificity of

circRNAs as diagnostic markers. This indicates that although the

diagnostic potential of circRNA for DFU is well known, it is

difficult to apply clinically due to its dynamics and instability in

DFU healing process. In addition, the activities of circRNAs may

overlap and the interactions are complex. CircRNAs have

multiple downstream targets, regulate multiple signaling

pathways, and participate in multiple physiological processes

in different cells and tissues, so their functions may be different

depending on the cells, tissues and target sites (43). For example,

Wanni Zhao et al. (101) found that compared with the DM

patients, the DFU patients had 33 circRNAs differentially

expressed, of which circ_FBXO7, ATM and LMBRD1 were the

most significant, and signalling pathway enrichment analysis

revealed that multiple pathways such as lysosomal pathway,

Chagas disease pathway, herpes simplex virus infection pathway,

and methane metabolism played important roles in the

development of DFU. It reveals that the expression level of

circRNAs in DFU was significantly changed and a complex

interaction network was formed with its downstream target gene

and signaling pathway. Therefore, it is possible to act in various

cells by interacting with or overlapping with different signaling

pathways. For this reason, it is a great challenge to sort out the

most critical circRNAs for clinical application. Although our

mini review has been discussed the role of circRNAs in different

cells, the current research is still not enough to clarify its role in

different cells. Therefore, as the study progresses, it is necessary

to conduct an objective and reasonable comprehensive analysis

of the expression differences of these circRNAs in the next step.

In terms of accurate therapy, the selection of circRNAs as a

therapeutic target for DFU requires an appropriate method. For

example, the use of gene modification techniques or methylation
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enzyme modifications to alter expression level of circRNAs for

therapeutic purposes, but there is a lack of reliable gene

modification techniques in clinic (102). Another method is to

change the expression of circRNAs in DFU tissues using

circRNA mimics or viral vectors, but due to biosafety concerns, it

is not suitable for clinical treatment at this stage (103). Although

circRNAs are more conservative and stable than other non-coding

RNAs, circRNAs are easily hydrolyzed in the wound

microenvironment and enters the cell membrane in a free state

with difficulty (104). This may have had little or no effect on the

treatment of DFU wound healing. Therefore, if circRNAs are to be

used clinically, they must be delivered in a safe, reliable, effective,

and less side-effect delivery system. Unfortunately, such an effective

delivery system is still lacking at this stage. Recently, several studies

have shown that exosomes have the potential to become new

effective delivery vectors because they can protect payloads from

chemical and enzymatic degradation and escape recognition by the

immune system (98, 99, 105). However, the difficulty of exosome

extraction and high cost limit its clinical application and there is a

lack of techniques for transferring circRNAs to exosomes at present

(106, 107). Therefore, research on circRNAs is still in the basic

research stage, and it is still a long way from clinical application.
Conclusion

With the advancement of technology and deepening of study,

circRNAs are expected to be accurate and effective biomarkers

and targets for the diagnosis and treatment of DFU. However, the

study of circRNAs is still in its infancy and is mostly based on

basic research, so preclinical or clinical studies are needed to

validate its future clinical application. In addition, it requires
TABLE 2 Regulatory effects of different circRNAs in the treatment of DFU.

Authors Drugs/
Vectors

circRNAs miRNAs Targets Signaling pathways Function

Xiang et al.
(94)

Sheng-ji Hua-yu
formula

circ_Krt13↓
circ_Krt14↓

miR-665-
3p↑
miR-706↑

Ltga3↓
Mylk4↑

– Shorten inflammation period and accelerating
maturation period of DFU wound

Shang et al.
(95)

ECs circ_Klhl8
(circ_0001373) ↑

miR-212-
3p↓

SIRT5↑ – Promoting angiogenesis

Cheng et al.
(96)

Plasmid circ_0058092↑ miR−217↓ FOXO3↑ – Restore the proliferation and migration capabilities of
ECs

Feng et al.
(97)

Lentivirus circ_ACR↑ miR-144-
3p↓

– PI3K/AKT/mTOR
signaling pathway

Inhibiting apoptosis of SCs

Zhang et al.
(98)

Exosome circ_0075932↑ – PUM2↑ AuroraA/NF-kB signaling
pathway

Inducing inflammation and apoptosis of HEKs

Shi et al.
(99)

Exosome mmu_circ_0000250↑ miR-128-
3p↓

SIRT1↑ – Promote wound angiogenesis and inhibiting apoptosis of
ECs

Wang et al.
(100)

Exosome circ_Gcap14↑ miR-18a-
5p↓

HIF-1a/
VEGF↓

– Promoting angiogenesis
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researchers to identify more specific circRNAs, and provide more

evidence for diagnostic markers and therapeutic targets of DFU.
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