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The pubertal development onset is controlled by a network of genes that

regulate the gonadotropin releasing hormone (GnRH) pulsatile release and the

subsequent increase of the circulating levels of pituitary gonadotropins that

activate the gonadal function. Although the transition from pre-pubertal

condition to puberty occurs physiologically in a delimited age-range, the

inception of pubertal development can be anticipated or delayed due to

genetic and epigenetic changes or environmental conditions. Most of the

genetic and epigenetic alterations concern genes which encode for

kisspeptin, GnRH, LH, FSH and their receptor, which represent crucial factors

of the hypothalamic-pituitary-gonadal (HPG) axis. Recent data indicate a

central role of the epigenome in the regulation of genes in the hypothalamus

and pituitary that could mediate the flexibility of pubertal timing. Identification

of epigenetically regulated genes, such as Makorin ring finger 3 (MKRN3) and

Delta-like 1 homologue (DLK1), respectively responsible for the repression and

the activation of pubertal development, provides additional evidence of how

epigenetic variations affect pubertal timing. This review aims to investigate

genetic, epigenetic, and environmental factors responsible for the regulation of

precocious and delayed puberty.
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Introduction

Puberty represents a significant period in the stages of

growth and development that defines the transition from

childhood to adulthood due to psycho-physical changes. In

addition, the reproductive capacity is acquired. Physiologically,

the start of the puberty is caused by the reactivation of signals

already developed during fetal life. Indeed, the hypothalamic-

pituitary-gonadal axis (HPG) activity ranges from birth to 4-6

months and 2 years, in males and females respectively (1). This

phenomenon called “mini-puberty” is due to a decrease in the

levels of placental sex hormones, and the resulting loss in

negative feedback on gonadotropin releasing hormone

(GnRH). After this period, there is a halt of GnRH pulse

generator until puberty, which slows reproductive function.

The mechanisms that trigger the reinitiating of the GnRH

pulse generator and the inception of puberty are not yet clear,

although several factors are involved in regulating pubertal

timing (2, 3) (Figure 1).

Genetic background explains about 50-80% of the variability

in pubertal onset and progression (4). Some ethnics groups,

particularly African American and Hispanic, show an earlier

onset of puberty due to genetic and nutritional factors (5).

Prenatal conditions, such as intrauterine growth restriction

(IUGR) and small for gestational age (SGA) birth, may affect

pubertal development (6). Maternal breastfeeding appears to

inhibit the early onset of puberty, mainly due to the positive

effect on the childhood overweight (7). Nutritional conditions

such as excess of energy intake, macro/micronutrient imbalance

and dietary styles can determine the early activation of the HPG

axis (7). Childhood obesity may impact on the early onset of

pubertal development, albeit no statistical evidence exists on the

difference in the age of menarche occurrence between obese and
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normal weight girls (8). Maternal education, social level, age of

menarche occurrence, pre-pregnancy body mass index (BMI),

ethnicity, age upon delivery, smoking habits, and alcohol/coffee/

tea consumption during pregnancy, are reported to correlate

with pubertal timing variations in the offspring (9).

Environmental factors, such as substances capable of

interfering with the endocrine system (phthalates, dioxins,

polybrominated biphenyls, and polychlorinated biphenyls)

seem to have a role in influencing pubertal timing (4, 10, 11).

Finally, epigenetic mechanisms are assumed to have a central

role in regulating the pubertal onset through a balance between

repression and activation of gene expression (12).

The aim of this review is to focus on the new insights on

genetic, epigenetic, and environmental regulations in the context

of precocious and delayed puberty.
GnRH pulse generator and the KNDy
SYSTEM: the role of stimulatory and
inhibitory signals

Pubertal timing is the result of the interaction among

hormones, neuronal signals and environmental factors that

begins in the earlier stage of development. This interaction

leads to the activation of the HPG axis (2, 13). Different

hypothalamic factors and excitatory and inhibitory neuronal

signals modulate the GnRH pulse generator function (Figure 2).

KNDy system, which includes kisspeptin/neurokinin B/

dynorphine A (KNDy), represents the most important

regulator of GnRH secretion. Kisspeptin encoded by the Kiss1

gene and generated by Kiss1 neurons is the key element of the

GnRH pulse generator, together with the neurokinin B and
FIGURE 1

Exogenous and endogenous factors involved in the regulation of the puberty onset.
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dynorphin A, which exert respectively stimulatory and

inhibitory signals that tune kisspeptin oscillation (14). Kiss1

neurons are found in the arcuate nucleus (ARC) and in the

anteroventral periventricular/periventricular nucleus (AVPV/

PeN) and are controlled by sex gonadal steroids. In the

females, AVPV/PeN Kiss1 neurons drive the increase in

preovulatory luteinizing hormone (LH) in response to the

positive feedback of estradiol. On the other hand, ARC Kiss1

neurons regulate the tonic release of GnRH/LH in response to

sex steroid negative feedback, thus sending hormonal,

neuroendocrine and metabolic informations (14). Kiss1

neurons has also been recognized in the posterodorsal part of

the medial amygdala in mice. These neurons regulate the GnRH

pulse generator, as well as influence emotional and sexual

behavior, pubertal timing, and ovulation (15, 16). In humans,

the role of KNDy system has been clarified by the association of

loss-of-function mutations in the kisspeptin (KISS1), kisspeptin

receptor (KISS1R), neurokinin B (TAC3), or neurokinin B

receptor (TACR3) genes and delayed puberty and

hypogonadism (17–19). On the other hand, gain of function

mutations of KISS1R gene have been correlated with precocious

puberty (20–22).

Although the KNDy system plays an essential role in the

GnRH pulse generator activity, several observations showed that
Frontiers in Endocrinology 03
this is not the only system involved in the regulation of pubertal

timing (23). Recently, the kisspeptin-nNOS-GnRH or “KiNG”

network that is responsible for generating the “GnRH pulse” and

“GnRH surge” is emerging among the regulators of pubertal

development (24). In fact, nNOS and kisspeptin seem to act as

the Yin and Yang, thanks to their ability to integrate and

coordinate distinct signals in order to inhibit or promote

GnRH secretion, respectively (Figure 2). Before the discovery

of the crucial role of kisspeptin in the control of GnRH release, in

vitro and in vivo studies identified the nitric oxide (NO) as a key

modulator for the GnRH secretion and preovulatory GnRH/LH

surge (25, 26). Neurons which express neuronal NO synthase

(nNOS) are involved in the modulation of GnRH neuronal

excitability and secretion. In mice, nNOS are expressed early

in the hypothalamus, suggesting a role of NO in the maturation

of GnRH neurons during postnatal life through the regulation of

GnRH mRNA expression (27). Knock-out mouse for NOS1 gene

encoding for the nNOS resulted in hypogonadotropic

hypogonadism, infertility and dose-dependent defects in

olfaction, hearing, and cognition (28). Furthermore, by using a

transgenic Gpr54-null IRES-LacZ knock-in mouse model, the

expression of kisspeptin receptor GPR54 in the nNOS neurons

of preoptic region of the hypothalamus has been demonstrated

(29). In humans, differently to mice, some kisspeptin neurons of
FIGURE 2

Modulation of the GnRH pulse generator by mechanisms influencing the pubertal timing. ARC, arcuate nucleus; AVPN/PeN, anteroventral
periventricular/periventricular nucleus; Dyn, dynorphine A; FSH, Follicle-stimulating hormone; GnRH, Gonadotropin Releasing Hormone; HPG,
hypothalamic-pituitary-gonadal; KiNG network, Kisspeptin-nNOS-GnRH; Kiss1, kisspeptin; KNDy, kisspeptin/neurokinin B/dynorphine A; LH,
luteinizing hormone; MKRN3, macorin-3; NKB, neurokinin B; nNOS, neuronal nitric oxide synthase.
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the infundibular nucleus express NOS1 (30). Recently, NOS1

loss-of-function mutations have been found in six subjects with

congenital hypogonadotropic hypogonadism (CHH), anosmia,

hearing loss, and intellectual disability (30). Thus, interactions

between kisspeptin and nNOS neurons may play a central role in

regulating the hypothalamic–pituitary–gonadal axis in vivo.

Among the inhibitory signals that regulate KNDy-GnRH

secretion, the Makorin Ring Finger Protein 3 (MKRN3) has a

central role, as its expression in the hypothalamic ARC rapidly

declines before the onset of puberty, followed by a stable

decrease during the pubertal advancement (31, 32).

This is an imprinted gene as the maternal allele is silenced,

and only the paternal allele is expressed. Loss-of-function

mutations of MKRN3 gene cause the most cases of familial

central precocious puberty (CPP) (33–35). Furthermore, whole

genome analysis studies (GWAS) demonstrated that single

nucleotide polymorphisms (SNPs) of the MKRN3 region can

regulate the age of menarche occurrence in healthy girls (36).

Girls with MKRN3 gene mutations show a more marked

advancement in early pubertal signs and at a younger age than

boys, indicating a sexually dimorphic effect of MKRN3 on

pubertal development (37). Regarding the genotype-phenotype

correlation, the median age at diagnosis is lower in patients with

more deleterious mutations (stop or frameshift) than those with

missense variants (38).

The MKRN3 gene encodes a protein implicated in

ubiquitination and cell signaling. Recently, Li et al. (39)

identified the methyl-CpG binding domain (MBD) 3, an

epigenetic reader which regulates gene expression, as the target

of MKRN3 ubiquitination. MKRN3-mediated ubiquitination

attenuates the binding of Poly(A)-binding proteins (PABPs),

which regulate the stability of RNA messengers, to the poly(A)

tails of mRNA. Therefore, the poly(A) tail-length of

Gonadotropin-Releasing Hormone 1 (GNRH1) mRNA is

shortened, and the formation of translation initiation complex

(TIC) is compromised. Three members of PABPs (PABPC1,

PABPC3 and PABPC4) have been identified as novel substrates

for MKRN3. Thus, MKRN3 epigenetically regulates the

transcription of GNRH1 gene through conjugating poly-

ubiquitin chains on MBD3 (39). The MKRN3 ubiquitination

of MBD3 disrupts the interaction between MBD3 and the DNA

demethylase ten eleven human translocation methylcytosine

dioxygenase, 2 (TET2), as well as the MBD3 binding to

GNRH1 promoter, thus epigenetically silencing the GNRH1

transcription and inhibiting puberty initiation (39).

Adipokines like leptin and other factors, such as glutamate

and glial signaling molecules are also implicated in the control of

GnRH secretion. These activator signals are enhanced by the loss

of inhibitory signals within the ARC such as gamma

aminobutyric acid (GABA), dynorphin A and MKRN3,

resulting in positive feedback on GnRH pulse generator (23).
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GABA is the most important neurotransmitter which inhibits

GnRH release during childhood by both indirectly acting on

neurons connected to the GnRH neuronal network, or directly

stimulating GnRH neurons through activation of GABA

receptors alpha1-subunit (40). GABA receptors are expressed

on GnRH neurons; thus, GABA antagonists increase GnRH

secretion, leading to early menarche (41).

Furthermore, experimental studies have shown that the

hypothalamic GABA tone inhibition leads to precocious

puberty, and SNPs of the GABA signaling are related with the

age at menarche (42).
Genetic regulation of central
precocious puberty

The first CPP-associated gene alteration was an activating

mutation (Arg386Pro) in the G protein coupled receptor 54

(GPR54), also referred to as KISS1R, which binds the kisspeptin

(20). This mutation prolongs the reactivity to kisspeptin by

decreasing the degradation of KISS1R (43). Two heterozygous

missense mutations in the ligand, the kisspeptin, encoded by the

gene KISS1, were identified in unrelated subjects affected with

idiopathic CPP. This variant resulted in a higher kisspeptin

resistance to degradation compared with the wild type,

determining greater kisspeptin bioavailability (44). On the

contrary, the MKRN3 gene, located within the Prader-Willi

syndrome (PWS) region (15q11.2), is the first gene in which

loss-of-function mutations have been related to CPP (34). It acts

as inhibitor of the pathways leading to puberty beginning,

upstream or at the level of kisspeptin and/or GnRH neurons.

Low MKRN3 serum levels have been demonstrated before

pubertal onset (32, 45) and in girls with CPP compared to

controls (35, 46).

Like MKRN3, Delta-like 1 homolog (DLK1) is a maternally

imprinted gene. It is a member of the Notch/Delta/Serrate family

belonging to imprinted genes positioned on chromosome 14q32

in humans. This region is associated with Temple syndrome

which is characterized by pre- and post-natal growth failure,

hypotonia, motor delay and small hands. Interestingly, CPP has

been described in 86% of individuals with Temple syndrome

(47). DLK1 is expressed in several tissues during embryonic

development, while in postnatal life only in (neuro)endocrine

tissues and stem/progenitor cells (48). The Notch signaling

pathway is one of the most conserved within species, acting in

a context-dependent manner by promoting embryonic cell

proliferation and apoptosis (49). Notch signaling is crucial to

maintaining the homeostasis in regeneration and damage repair

by inducing the differentiation and transformation of mature

cells (50). Several ligands and receptors are involved in Notch

signaling and have specified temporal and spatial expression in
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various organs and tissues, including the hypothalamus. How

the Notch signaling pathway affects the onset of puberty remains

unknown. Recent findings suggest that the Notch regulates

progenitor cell differentiation in the pituitary gland, delaying

the gonadotrope differentiation (51). The DLK1 intracellular

domain has been shown to negatively regulate Notch signaling

by disrupting the RBPJ-k/Notch signaling pathway (52).

Paternally inherited DLK1 genetic defects have been

identified in four families with CPP and metabolic alterations

such as obesity, early-onset glucose intolerance, type 2 diabetes

mellitus and hyperlipidemia (53, 54). Moreover, DLK1mutation

has been found to be associated with polycystic ovary syndrome

and infertility suggesting a novel link between reproduction and

metabolism (54).

The exact role of DLK1 in regulating the timing of puberty is

not yet understood; however, DLK1 is likely to regulate

hypothalamic neurogenesis and the formation of kisspeptin

throughout the activation or inhibition of Notch target genes.

Indeed, the Notch signaling pathway could represent a link

between the KISS1, MKRN3 and DLK1 genes.
Genetic regulation of delayed
puberty

Delayed puberty (DP) consists of the absence of pubertal

development from the age of 13 years for girls and 14 years for

boys. The most frequent phenotype is represented by isolated

and self-limiting DP (also described as constitutional retardation

of growth and puberty) (55). Most of the subjects with self-

limited DP have a family history of late puberty (56, 57). The

self-limited DP is inherited in an autosomal dominant,

autosomal recessive, or X-linked manner. Furthermore,

sporadic cases are also reported. However, few patients with

DP have mutations in genes causing abnormalities of the HPG

axis, such as FGFR1, GNRHR andHS6ST1, and most of these are

relatives of patients with CHH (56–58). Mutations in the

Immunoglobulin Superfamily member 10 (IGSF10) gene have

been found in six unrelated families (59). IGSF10 is important

for the appropriate migration of GNRH neurons from the nose

to the forebrain during embryonic development. The affected

subjects showed pubertal delay without features of constitutional

growth delay. A functional defect in the GnRH neuroendocrine

system with an increased “threshold” for the onset of puberty,

has been hypothesized.

Additionally, loss-of-function mutations in IGSF10 gene

have been found in subjects with hypothalamic amenorrhea

(60), suggesting common genetic background with functional

central hypogonadism. Subjects affected with both premature

ovarian failure and neuronal conditions showed IGSF10 gene
Frontiers in Endocrinology 05
mutations (61). It is not known if these patients also have

deficiency of reproductive capacity or sexual lifespan.

To reinforce the concept that the alteration of GnRH

neuronal migration during embryonic development can alter

pubertal timing, there is a recent preclinical study which

demonstrated that the deletion of neuropilin-1 (Nrp1)

signaling in GnRH neurons enhances their survival and

migration, and their accumulation in the accessory olfactory

bulb. In female mice, these alterations result in early prepubertal

weight gain, premature attraction to male odors, and precocious

puberty (62).

Variants in genes associated with CHH, particularly

GNRHR, TAC3 and its receptor TACR3 have been observed in

in cohorts of subjects with self-limited DP (63). However, the

pathogenetic role of these variants it is not known. Among other

genes involved in the HPG axis function, LEP encoding for

leptin, LEPR encoding for leptin receptor, and GHSR encoding

for the ghrelin receptor could influence the pubertal timing too.

Some studies identified rare variants of these genes; however, it is

not clear the association with DP (56).

Pubertal timing seems to be influenced by some genes

involved in energy metabolism such as FTO NEGR1, TMEM18

and SEC16B genes that have been identified by GWAS (64).

Variants of the FTO gene have been associated with the

regulation of satiety. Rare heterozygous FTO variants have

been discovered in pedigrees with self-limited DP combined

with extreme low BMI by using next generation sequencing (65).

Furthermore, knockout mice for the FTO gene showed

significantly delayed pubertal onset (66).

During the first stages of pubertal development, the loss of the

neurobiological brake is managed by several transcription factors

organized hierarchically. Therefore, there are transcriptional

repressions containing zinc finger motifs that can manage this

complex network of genes. The best known are represented by

EAP1, Oct-2, Ttf-1, Yy1. EAP1 causes the onset of female puberty

through the transactivation of the GnRH promoter. One in-frame

deletion (Ala221del) and one rare missense variant (Asn770His)

in EAP1 have been detected in two unrelated families. This

condition would result in a reduced transcriptional activity of

GnRH resulting in self-limited DP (67).
Epigenetic control of puberty

The concept of epigenome plasticity explains the adaptation

to the environment to regulate the expression of genes that can

exert deep effects on the phenotype without modifying the DNA.

This reactivity of the epigenome to different signals represents

the “epigenetic memory”. Although most of the pathways

leading to such changes are still unclear, it is known that these
frontiersin.org
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changes can schedule puberty to a specific stage of

development (68).

There is evidence on the role of the epigenetic mechanisms

in regulating the expression of key actors in the HPG axis, along

with its probable role in adapting pubertal timing according to

the environment (69).
DNA methylation

The mechanisms of epigenetic regulation consist in the

methylation of CpG (cytosine-guanine) DNA dinucleotides or

in the modification of histone proteins (70). DNA methylation

and demethylation are catalyzed by DNA methyltransferases

(DNMT) and demethylases (TET), respectively, through active

or passive mechanisms (71). Active demethylation is an enzymatic

reaction that leads to the removal of the 5-methyl group from 5-

methyl cytosine through oxidation catalyzed by members of TET

family (72). TET2 promotes transcription and peptide release of

GnRH thus maintaining reproductive role (73). In addition, DNA

methylation and demethylation support the genomic integrity in

somatic cells, across silencing or activation of transposable

retroelements (REs). The role of DNA methylation in regulating

the expression of KNDy system remains unclear (74, 75). DNA

methyltransferase inhibitor (DNMTi) has been shown to arrest

pubertal onset and this could be reversed by treatment with Kiss1

(76). There are studies showing that the onset of puberty is not

regulated by changes in Kiss1 DNA methylation (77, 78).

Conversely, although it is not yet clear whether MKRN3 DNA

methylation regulates pubertal onset, some studies proposed a

potential role for demethylation-mediated expression of Zinc

finger protein 57 (ZFP57) which regulates genomic imprinting

(79). The promoter region of the ZFP57 gene is hypomethylated

in pubertal girls, and its expression increases in the hypothalamus

of female rhesus monkeys at the time of pubertal inception, in line

with the increase in KISS1 and GNRH levels (39). Further insights

into the epigenetic role of MKRN3 have recently been proven in

the MKRN3 knock out mouse which displays CPP.MKRN3 gene

regulates the switch in the onset of mammalian puberty through

the ubiquitination of the MBD3 which silences GNRH1 through

disrupting the MBD3 binding to the GNRH1 promoter and

recruitment of TET2 (80). These observations support the role

of TET2 in direct regulation of GNRH1. Another important

regulator of puberty is GnRH receptor (GNRHR) which

mediates the GnRH response. The GNRHR gene expression is

r egu l a t ed by DNA methy l a t ion dur ing neurona l

development (81).

Previous studies demonstrated that that Fibroblast growth

factor 8 (FGF8) signaling is required for GnRH neuron

ontogenesis in the olfactory placode (OP) (82, 83). FGF8 and

FGFR1 deficiency is associated with Kallmann Syndrome (KS), a
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congenital disease characterized by hypogonadotropic

hypogonadism and anosmia. Recently, i t has been

demonstrated that TET1, which converts 5-methylcytosine

residues (5mC) to 5-hydroxymethylated cytosines (5hmC),

controls transcription of Fgf8 during GnRH neuron

ontogenesis (84). This study demonstrated the importance of

epigenetic-dependent timing of Fgf8 expression during GnRH

neuron emergence, and that epigenetic dysfunction can start

from the ontogenesis of GnRH neurons onwards and is not

limited only to postnatal GnRH neuron organization, potentially

contributing to the development of CPP or DP.
MicroRNAs

GWAS demonstrated an association between menarche age

occurrence and LIN28B gene polymorphisms, providing the first

evidence of an association between miRNAs, epigenetic

regulators of gene expression, and pubertal onset (36, 85).

Lin28B, and its related Lin28A, are RNA-binding proteins

which inhibit the processing of miRNAs of the let-7 family.

The role of Lin28 has been confirmed by functional genomic, as

transgenic mice overexpressing this protein had overt DP (86).

However, the exact repressive mechanism of Lin28 proteins on

pubertal development is not known. Furthermore, it is not clear

the eventual role of let-7 miRNAs in the central control

of puberty.

It has been demonstrated that a microRNA switch regulates

the increase in hypothalamic GnRH production before puberty,

thus if this event does not occur accurately it may lead to the loss

of GnRH expression or alteration of the rhythm of GnRH release

and cause hypogonadotropic hypogonadism and infertility in

mice (27). Two critical factors of this switch, miR-200 and miR-

155, regulate GNRH1 expression through post-transcriptional

control of ZEB1 and CEBPB expression, which in turn exert a

role in GNRH1 transcriptional repressors in GnRH neurons

(27). Recently, in a model of Down syndrome (Ts65Dnmice) the

GnRH control appears to be related to an imbalance in a

microRNA-gene network which regulate GnRH neuron

maturation and hippocampal synaptic transmission (87).

Considering the previously mentioned studies on NOS1 gene

alterations, in which both mice and humans show comorbidities

such as sensory and cognition impairments, which can be

corrected in mice at minipuberty, it can be hypothesized that

the maturation of the GnRH system may also play a role in brain

development in general, as well in the development of the

HPG system.

In addition, miR-7a2 controls the development of the

murine pituitary and the function of the HPG axis in mice;

thus, its deletion leads to hypogonadotropic hypogonadism and

infertility (88). Recently, the expression of miR-411-3p, miR-
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382-5p, and miR127-3p has been demonstrated to contribute to

variability in age at menarche (89).
Endocrine disruptors and pubertal
timing

Endocrine disrupting chemicals (EDCs) are considered

responsible of changes in pubertal time (90). Several elements

have been recognized as possible EDCs, such as polybrominated

biphenyls, bisphenol A (BPA), atrazine (herbicides) (90–92).

EDCs can interfere with reproductive functions by mimic or

block endogenous hormone function, or by competing with

endogenous hormones to bind to carrier proteins (93).

Furthermore, they act through G protein-coupled receptors

(GPRs) by altering gene expression as well as intracellular signal

transduction (94, 95). A relation between early exposure to EDCs

and alteration in pubertal timing or concentrations of circulating

reproductive hormones has been observed (96–100). They can act

in various time windows of development. During fetal life, EDCs

can cross the placenta via passive or active transport (101–103).

The exposure of zebrafish embryos to 17a-ethinylestradiol (EE2)

or nonylphenol (NP) disturbs the ontogenesis of GnRH neurons

in the forebrain via estrogen-receptor pathway (104). In rodents,

GnRH neurons use a prostaglandin D2 receptor signaling

mechanism during infancy to recruit newborn astrocytes which

guide them into adulthood. It has been demonstrated that the

exposure to bisphenol A damages postnatal hypothalamic

gliogenesis and disrupts the GnRH neurons, impairing

minipuberty and delaying the acquisition of reproductive

capacity (105). Moreover, epigenetic alterations in testis and

other systemic consequences have been observed in pregnant

rodents after EDC exposure (106).

Another critical window for EDC exposure is the period of

puberty. Kisspeptin neurons are particularly sensitive to early

EDC exposure, as mice exposed to low doses of BPA show a

reduction in these neurons and a reduced expression of KISS1

and TAC2 in ARC (107). In addition, variations in the pubertal

progression have been observed in rodents exposed to EDC

during puberty (108, 109).

The exposure to dibutyl phthalate in female rats affects

hypothalamic kisspeptin/GPR54 expression determining early

puberty and higher levels of serum estradiol (109). Furthermore,

EDCs may indirectly damage the transcriptional control of gene

expression (110). In pubertal boys and girls, high levels of

phthalates in urine have been related with epigenome

modifications such as higher DNA methylation levels in the

promoter region of the thyroid hormone receptor interactor 6

(TRIP6) gene, which regulates pubertal onset (111).

Furthermore, children who were exposed to the estrogenic
Frontiers in Endocrinology 07
insecticide DTT and then adopted showed precocious

puberty (112).

These findings would explain the transgenerational EDC

effects. However, although EDCs are known to affect the

organization of DNA, the mechanisms by which the epigenetic

modifications induced by environmental disruptors are

transmitted to the hypothalamic neurons that regulate

pubertal initiation must be decoded.
Conclusions and future perspectives

The genetic and epigenetic mechanisms underlying the

physiological variation of the timing of pubertal development

are complex and still only partially understood. It may be that

some genes act as promoters of the pubertal process, while others

act as a brake. Furthermore, early and delayed puberty share some

pathogenetic mechanisms, and the epigenetic regulation of the

expression of genes involved in pubertal development can begin in

fetal life, or during postnatal development and in infancy, with

consequent modulation of pubertal time. Reproductive function

in humans adapts to adjusting environmental conditions. There

are “windows of susceptibility” during the different stages of

development that are particularly vulnerable to events or

exposures that can determine a long-term reprogramming of

the reproductive function of the adult. Furthermore, animal

data demonstrate a remarkable sensitivity of the GnRH network

to EDCs with the possibility of transmitting phenotypic traits

across generations. Molecular and human tissue, animal and

cellular models are needed to understand how epigenetic

modifications lead to phenotypic variations.

Although recent findings have clarified the influence of

epigenetics and mRNAs in the regulation of the pubertal

onset, further efforts are needed to better understand how

these mechanisms work and which is the role of metabolic

and environmental influences, in particular nutritional, on the

epigenome. The identification of new neuroendocrine system

regulators and the development of preclinical models, together

with the application of new technologies for a strict functional

activation or inhibition of selected neuronal populations, will be

crucial for the acquisition of a deeper mechanistic knowledge of

the central systems responsible for the onset of puberty.
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