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Bin Wang1, Wei Zhang1* and Ming Qiu1*

1Department of General Surgery, Changzheng Hospital, Navy Medical University, Shanghai, China,
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Shanghai, China
Background: Papillary thyroid cancer (PTC) is the most common pathological

type of thyroid cancer with a high incidence globally. Increasing evidence reported

that fibroblasts infiltration in cancer was correlated with prognostic outcomes.

However, fibroblasts related study in thyroid cancer remains deficient.

Methods: Single-cell sequencing data of PTCwere analyzed by Seurat R package

to explore the ecosystem in PTC and identify fibroblasts cluster. The expression

profiles and prognostic values of fibroblast related genes were assessed in TCGA

dataset. A fibrosis score model was established for prognosis prediction in thyroid

cancer patients. Differentially expressed genes and functional enrichment

between high and low fibrosis score groups in TCGA dataset were screened.

The correlation of immune cells infiltration and fibrosis score in thyroid cancer

patients was explored. Expression levels and prognostic values of key fibroblast

related factor were validated in clinical tissues another PTC cohort.

Results: Fibroblasts were highly infiltrated in PTC and could interact with other

type of cells by single-cell data analysis. 34 fibroblast related terms were

differentially expressed in thyroid tumor tissues. COX regression analysis

suggested that the constructed fibrosis score model was an independent

prognostic predictor for thyroid cancer patients (HR = 5.17, 95%CI 2.31-11.56,

P = 6.36E-05). Patients with low fibrosis scores were associated with a

significantly better overall survival (OS) than those with high fibrosis scores in

TCGA dataset (P = 7.659E-04). Specific immune cells infiltration levels were

positively correlated with fibrosis score, including monocytes, M1 macrophages

and eosinophils.

Conclusion:Our research demonstrated a comprehensive horizon of fibroblasts

features in thyroid cancer microenvironment, which may provide potential value

for thyroid cancer treatment.
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Introduction

Thyroid cancer remains to be the most common endocrine

malignant tumor globally (1). It is estimated that 3% females in

the United states were newly diagnosed with thyroid cancer in

2021 (2). Papillary thyroid cancer (PTC) is the most common

pathological type of the disease. Though mortality of PTC is

comparatively low, 5-30% of patients with PTC suffer from

recurrence (3, 4). The risk stratification system proposed by

the American Thyroid Association (ATA) integrates the

perioperative clinicopathological data, which mainly provides

prognostic information (5). It’s difficult to select individualized

therapy based on the traditional risk stratification system to

avoid over-treatment. and thus, a molecular diagnosis of

suspicious nodules is more recommended for decision-making

before intervention (6, 7). Approximately 45% of PTC patients

are detected with BRAF-V600E mutation, which is associated

with poor prognosis (8). However, the role of BRAF inhibitors in

non-BRAF mutated cancers is reported to be controversial (9).

Consequently, a combined molecular diagnostic test is necessary

for decision making in the future.

The tumor microenvironment (TME), consisting of stroma

cells, immune cells, chemokines as well as extracellular matrix

(ECM), has been shown to play significant roles in prognosis of

disease (10, 11). Immune cells were reported to play a critical pro-

or anti-tumor role in PTC progression, such as macrophages,

MDSC (myeloid-derived suppressor cells), neutrophils, Tregs

(regulatory T cells), dendritic cells (DCs) (12, 13). Fibroblasts

are one of the significant stroma cells in TME. The interactive

relationship of fibroblasts and immune cells during PTC

development were largely unclear. In cancer stroma, resident

fibroblasts could be activated by transforming growth factor-

beta (TGF-beta) and develop into cancer-associated fibroblasts

(CAFs) (14). Moreover, a variety of distant cells, consisting of

epithelial cells, bone marrowmesenchymal stem cells (BM-MSCs)

and adipocytes, could differentiated into CAFs and be recruited to

tumor sites (15). Generally, CAFs have been reported to promote

cell proliferation, invasion, as well as angiogenesis and induce

chemoresistance in several cancers, such as colorectal cancer (16),

breast cancer (17) and pancreatic cancer (18). Recent studies have

revealed that CAF is associated with dedifferentiation, invasion,

and lymph nodes metastasis of thyroid cancer (19–21). However,

the molecular mechanism of CAFs in PTC is still under discussed.

The purpose of this study was to systematically explore

the microenvironment in PTC development and reveal the

expression features of fibroblasts through single-cell and bulk

RNA sequencing technology. We found that fibroblasts were

highly infiltrated in PTC when compared with normal thyroid

tissues, and could widely interact with immune cells. By

analyzing the fibroblast related genes, we constructed a
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novel fibrosis score model for PTC patients, which indicated

satisfactory survival prediction. The differentially expressed

genes (DEGs) and immune cell infiltration changes between

high and low fibrosis score groups were also explored.

Our research provided systematically insights about

fibroblasts features, which might serve as critical targets in

PTC treatment.
Materials and methods

Data acquisition

The papillary thyroid carcinoma (PTC) single-cell RNA

sequencing data of GSE184362 (22) and bulk transcriptional

sequencing data of GSE33630 (23) were downloaded from the

Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/

geo/). Clinical information and RNA sequencing data of thyroid

cancer (THCA) patients were obtained from The Cancer Genome

Atlas (TCGA) database (https://portal.gdc.cancer.gov/).
Single-cell data processing and cell
cluster identification

The single-cell sequencing data of GSE184362 were

downloaded from portal website and 3 tumor and 3 para-

tumor tissues were analyzed by Seurat R (4.0.2) package. The

low-quality cells were filtered with the criteria: mitochondrial

genes more than 8%, nFeature RNA less than 200 and more than

4000. Then we scaled the data and used the “RunPCA” function

for dimension reduction. The “FindNeighbors” and

“FindClusters” functions with the resolution of 0.5 in Seurat

were used for cell clustering. A t-distributed stochastic neighbor

embedding (t-SNE) was applied to visualize single-cell

clustering. To identify the cell clusters, the differently

expressed genes of each cell clusters were screened with the

criteria of log2FC > 0.25 using “FindAllMarkers” function in

Seurat. The marker genes of each cell type were referenced as

previous literatures and CellMarker database (http://bio-bigdata.

hrbmu.edu.cn/CellMarker/).
Cell-cell communication

The CellChat (1.1.3) R package was performed to explore the

communications and the interacting molecules mechanisms

between the 11 cell clusters in thyroid cancer, including CD8

T cells, CD4 T cells, B cells, Treg cells, plasma cells, natural killer

(NK) cells, myeloid cells, monocytes, thyrocytes, fibroblasts, and
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endothelial cells. The communication network was analyzed and

visualized with the “aggregateNet” function in CellChat package

based on the interacting counts and weight between cell clusters.

The incoming and outgoing signaling roles of the aggregated

cell-cell communication network were explored by the function

“netAnalysis_signalingRole_heatmap” in CellChat package.
Derivation and analysis of fibroblasts
gene list in thyroid cancer

Based on the single-cell analysis data, the specific gene list in

fibroblasts cluster was selected using the criteria log2FC>2 and P

value<0.05. A total of 100 terms were identified as fibroblast

related genes (FRGs). To compare the expression levels of FRGs

in thyroid carcinoma and normal tissues, the TCGA-TPCA

dataset was explored using limma and edgeR packages in R.

The differentially expressed FRGs (DEFRGs) between thyroid

tumor and normal tissues were visualized by heatmap R package.

To analyze the correlations of DEFRGs, corrplot R package was

applied by Pearson correlation analysis. We further divided the

THCA patients into early-stage (I and II) and advanced stage

(III and IV) groups, and compared the expression of DEFRGs

between two groups.
Fibrosis score model construction in
thca patients

Univariate Cox regression analysis was conducted to evaluate

the independent prognostic values of DEFRGs. We further

performed least absolute shrinkage and selection operator

(LASSO) regression analysis with glmnet R package to pick the

critical prognosis related DEFRGs and calculate the regression

coefficient. Six DEFRGs (PCOLCE2, APOD, APOE, TIMP1,

HTRA3 and MT1A) were selected to evaluate the fibrosis score

of each patient in TCGA-THCA dataset. The formula for fibrosis

score calculation as follow: fibrosis score = 0.236*PCOLCE2 +

0.033*APOD - 0.274*APOE - 0.065*TIMP1 + 0.237*HTRA3 -

0.065*MT1A. Receiver operating characteristic (ROC) curve

analysis was applied to validate the prognostic signature of

fibrosis score. Subsequently, patients with THCA were divided

into high fibrosis score and low fibrosis score groups based on

the median fibrosis value. The overall survival rates between two

groups were analyzed using Kaplan−Meier survival analysis with

log−rank test. The nomogram plot model was constructed to

predict the prognostic outcomes of THCA patients based on the

fibrosis scores and clinical features using survival and rms packages
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in R. The calibration curves of 1-year, 5-year and 10-year survival

proportion were plotted to assess the predicting efficiency

of nomogram.
Cox regression analysis

Univariate and multivariate Cox regression analysis were

performed with coxph function in survival R package to evaluate

the prognostic values of fibrosis score and clinical features of

patients, including age, gender, cancer type, BRAF mutation

and stage.
Correlation analysis between fibrosis
score and cancer associated fibroblast
(CAF) marker genes

The myofibroblastic CAF (myoCAF) and inflammatory

CAF (iCAF) are two main types of CAFs. According to the

previous researches, 10 markers of myoCAF (ACTA2, TAGLN,

MMP11, MYL9, HOPX, POSTN, TPM1, TPM2, IGFBP7, and

CST1) and 10 markers of iCAF (PLA2G2A, CCDC80, MCL1,

S100A10, LMNA, UAP1, DPT, ABL2, EFEMP1 and TNFAIP6)

were selected in TCGA-THCA dataset. The correlation between

the expression of myoCAF and iCAF marker genes and fibrosis

score were analyzed using corrplot R package.
DEGs analysis and functional enrichment
between two fibrosis score groups

Limma and edgeR packages of R were applied to investigate

the transcriptional difference of THCA patients between high and

low fibrosis score groups. The DEGs were selected with an absolute

Log2 (FC) value>0.5 and p value<0.05. Expression of DEGs and

other clinical information were visualized using heatmap R

package. Gene ontology (GO) terms and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway enrichment analysis were

performed with The R clusterProfiler package.
Immune cell infiltration analysis

CIBERSORT R package containing 22 gene sets of immune

cell types was applied to evaluate the infiltrating abundance of

each type of immune cells in THCA patients. Infiltration levels

of immune cells were further compared between high and low

fibrosis score groups. The correlation between immune cell
frontiersin.org
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infiltration and fibrosis score was investigated using Pearson

correlation analysis in GraphPad Prism 9.0. The ESTIMATE

algorithm was used to quantify the immune and stromal score in

each tumor sample. Recent evidence identified that a 12

chemokines signature (CCL2, CCL3, CCL4, CCL5, CCL8,

CCL18, CCL19, CCL21, CXCL9, CXCL10, CXCL11, and

CXCL13) was highly correlated with tertiary lymphoid

structures (TLS). As previously reported, we calculated TLS

score according the level of 12 genes of each sample using

ssGSEA method by R-package (24, 25).
Clinical samples

PTC tissues and normal thyroid tissues were obtained from

20 surgery PTC patients with informed consent at the

Department of General Surgery, Changzheng Hospital

(Shanghai, China). All clinical tissues were immediately frozen

in liquid nitrogen after surgery and stored at – 80 °C. This study

was approved by the Research and Ethics Committee of

Changzheng Hospital. The clinical information of PTC

patients was listed in Table S3.
RNA extraction and RT-qPCR

Total RNA of clinical tissues was isolated Trizol (Invitrogen,

USA) according to the manufacturer’s protocols. The

concentration isolated RNA was analyzed by NanoDrop1000

(ThermoFisher, USA). The purified RNA was reverse-

transcribed using Hifair® II 1st Strand cDNA Synthesis Kit

(Yeasen, China). The cDNA was used for qPCR analysis using

Hieff UNICON® qPCR SYBR Green Master Mix (Yeasen,

China). The expression of b-actin was applied as endogenous

control. The primers for qPCR are shown in Table S4.
Statistics

All analyses in this study were performed with R software

4.0.3 and GraphPad Prism 9.0. The t-test and Mann-Whitney U

test were applied for comparisons between two groups. Kaplan–

Meier method with log-rank test was used for survival analysis.

Time-dependent ROC curves were applied to assess the accuracy

of the fibrosis score model. Univariate and multivariate Cox

regression analysis were used to determine the independent

prognostic values of fibrosis score and key FRGs. The Pearson

correlation analysis was used to analyze the correlation
Frontiers in Endocrinology 04
coefficient between two variables. P value < 0.05 was

considered statistically significant.
Results

Single-cell atlas of thyroid
cancer patients

To investigate the tumor heterogeneity of thyroid cancer, we

analyzed the single-cell data of 6 thyroid tissues, including 3 tumor

tissues and 3 para-tumor tissues. After filtering low-quality data

and reducing the dimension, we identified a total of 44538 cells and

11 cell clusters, including CD4 T cells, CD8 T cells, B cells, Treg

cells, plasma cells, natural killer (NK) cells, myeloid cells,

monocytes, thyrocytes, fibroblasts, and endothelial cells in 6

samples (Figures 1A, B). CD4 T, CD8 T and Treg cells were

labeled with the markers CD8A, CCR7, CTLA4 and FOXP3. B

cells and plasma cells were labeled with CD79A, CD79B, MS4A1

and IGHM.NK cells were labeled with NKG7, KLRD1, KLRF1 and

FCGR3A. Myeloid cells and monocytes were labeled with LYZ,

S100A8, S100A9, CD14, CD163, CD68, HLA−DPA1 and HLA

−DRB5. Thyrocytes were labeled with TG, TPO, EPCAM and

KRT18. Fibroblasts were labeled with COL1A1, COL1A2,

COL3A1 and ACTA2. Endothelial cells were labeled with

PECAM1, CD34, CDH5 and VWF. The expression dot plot and

violin plot of marker genes were shown in Figures 1C, S1A. The

cell proportions of each sample and cell cluster were presented at

Figure 1D. We further explored the 11 cell clusters in each sample

and compared cell proportions between tumor and para-tumor

tissues (Figures 1E, F, S1B). We found relative low proportions of

CD4 T cells, B cells and plasma cells in tumor tissues, while high

proportions of Treg, monocytes, thyrocytes, fibroblasts, and

endothelial cells were seen in tumor tissues (Figure 1F).
Cell-cell communication analysis in
thyroid cancer

CellChat R package was performed to explore the cell-cell

communications and delineate the interacting signal pathways in

single-cell data. The aggregated cell-cell communication networks

were constructed by interaction weights (Figure 2A) and

interaction numbers (Figure S1C). The interaction heatmap

between each cell cluster was shown in Figure 2B, indicating the

significant interacting strengths of different cell types. The cell

outgoing and incoming interaction strengths were plotted at

Figure 2C, which suggests that myeloid cells mostly receive

messages from other cells, while thyrocytes and fibroblasts play

critical roles as message sender. The separate communication
frontiersin.org
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network showed that fibroblasts had widespread interactions with

other cell types (Figures 2D, S1D). To further clarify the potential

cell-cell communications between fibroblasts and other cell types,

we analyzed the different outgoing and incoming signal pathways

of fibroblasts based on the relative expression of ligand-receptor

(L-R) pairs (Figures 2E, F, S2A). We found that fibroblasts could

significantly interact withmost of immune cells via CD74-CXCR4

and CD74-CD44 complexes in macrophage migration inhibitory

factor (MIF) signal pathway, CXCL12−CXCR4 interactions and

MDK−NCL interactions (Figure 2E), while fibroblasts received

interactions from other cells via MIF-AKCR3 pathway

(Figure 2F). The MIF signal pathway communication networks

between cell clusters were selected and shown in Figures 2G, S2B.
Frontiers in Endocrinology 05
Fibroblast related genes (FRGs) analysis
and fibrosis model establishment

We further analyzed the expression set of fibroblasts in

single-cell data and identified 100 fibroblast related genes

(FRGs) with the criteria log2FC>2 and P value<0.05 (Table

S1). The expression of FRGs was explored in TCGA-THCA

dataset (Figure S3A), and 34 terms were differentially expressed

between tumor and normal thyroid tissues, including 12 up-

regulated genes and 22 down-regulated genes in thyroid cancer.

The heatmap of 34 DEFRGs was plot in Figure 3A. We further

analyzed the correlations between DEFRGs and found that most

of DEFRGs were significantly positively correlated with others
A

B D

E
F

C

FIGURE 1

Tumor environment in thyroid cancer. t-SNE visualization of tumor ecosystem in thyroid cancer. Colored by cell clusters (A) and sample tissues
(B). (C) Violin plots of cell markers in 11 clusters. (D Cell proportions in each sample and cell cluster. (E) t-SNE visualization of cell clusters in
each sample. (F) Proportions of different cell clusters in tumor and para-tumor thyroid tissues.
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(Figure 3B). To explore the association between the expression

of the 34 DEFRGs and clinical stages, we divided the patients

into early-stage group, which contains stage I and II patients,

and advanced stage group, containing stage III and IV patients.

We found the expression levels of 25 DEFRGs were associated

with clinical stage (Figure 3C). Univariate Cox regression

analysis was further applied to assess the prognostic value of

DEFRGs, and we found that 4 DEFRGs (APOE, P = 0.004;

TSC22D1, P = 0.025; TIMP1, P = 0.029; HTRA3, P = 0.007) may
Frontiers in Endocrinology 06
act as independent factors for overall survival of thyroid

cancer (Figure 3D).

We performed LASSO regression analysis and selected 6

critical prognostic DEFRGs (PCOLCE2, APOD, APOE, TIMP1,

HTRA3 and MT1A). Based on the expression value and

regression coefficient of 6 DEFRGs, we calculated fibrosis score

for each case in TCGA-THCA dataset, and further divided the

patients into high fibrosis score group and low fibrosis score

group by median value of fibrosis score (Figure S3B). Survival
frontiersin.org
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FIGURE 2

Cell-cell communications in thyroid cancer. (A) Integrated cell-cell communications network plotted by interaction weights. (B) The cell-cell
communications heatmap. (C) The dot plot of outgoing/incoming interaction strength for 11 cell clusters. (D) Cell-cell communications network
of fibroblasts. The dot plot of fibroblasts outgoing (E) and incoming (F) interaction signal pathways. (G) MIF signaling pathway network.
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curves indicated that high fibrosis score group patients were

associated with relatively poor overall survival (OS) outcomes in

TCGA-THCA dataset (Figure 4A). The distribution of fibrosis

scores and prognostic status of patients were shown in Figure 4B.

The receiver operating curve (ROC) suggested that fibrosis

scores displayed powerful efficacy for predicting the overall

survival (OS) probability, as the area under the curve (AUC)

of 1-year, 3-year, and 5-year OS probability were 0.987, 0.836,

and 0.782, respectively (Figure 4C). By performing univariate

and multivariate Cox analysis, we found that the fibrosis score

(HR = 5.17, 95%CI 2.31-11.56, P = 6.36E-05) along with stage

(HR = 3.75, 95%CI 1.19-11.79, P =0.024) might serve as critical

factors in predicting thyroid cancer prognosis (Table 1). We

further constructed a nomogram combining the clinical
Frontiers in Endocrinology 07
characteristics and fibrosis score to assess the survival

status for patients in TCGA-THCA (Figure 4D). The

calibration curve indicated that the nomogram exhibited

optimal predicating performance (Figure 4E). As pervious

reports, cancer associated fibroblasts (CAFs) had two main

types, myofibroblastic CAF (myoCAF) and inflammatory CAF

(iCAF). To explore the association between different types of

CAFs and fibrosis score, we selected 10 marker genes expressed

in myoCAF and iCAF. Pearson correlation analysis showed that

fibrosis score was positively correlated with most of markers,

which negatively correlated with LMNA expression, a marker

gene of iCAF (Figure 4F). No significant difference of fibrosis

score was found between different thyroid cancer types and

BRAF mutation states (Figures 4G, H).
B

D
C

A

FIGURE 3

Expression profiles of fibroblast related genes in TCGA-THCA dataset. (A) The expression heatmap of DEFRGs between normal and tumor
thyroid cancer. (B) The correlation between DEFRGs. (C) Comparing the expression of DEFRGs in early stage and advanced stage of thyroid
cancer. (D) Univariate Cox regression analysis the prognostic values of DEFRGs. *P < 0.05; **P < 0.01; ***P < 0.001.
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DEGs analysis and signaling pathways
enrichment between high- and low-
fibrosis score groups

To investigate the potential biological differences of the two

fibrosis score groups, we compared the transcriptional

expression between two groups and screened 186 DEGs, which

included 147 up-regulated genes and 39 down-regulated genes in

high fibrosis score group (Figures 5A, B). The fold change and

mean expression of DEGs in two groups were listed in Table S2.
Frontiers in Endocrinology
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The GO terms were identified based on the DEGs, and the top 15

biological process (BP), cellular component (CC) and molecular

function (MF) were showed in bubble plot (Figure 5C). We

detected several interested GO terms, such as “endocrine system

development”, “enzyme inhibitor activity” and “fibroblast

growth factor receptor binding”. The top 20 KEGG signal

pathways were presented in Figure 5D, which involved in

“regulation of actin cytoskeleton”, “IL−17 signaling pathway”,

“thyroid hormone signaling pathway” and “transcriptional mis-

regulation in cancer”.
A B

D E

F

G

H

C

FIGURE 4

High fibrosis score was associated with poor overall survival in thyroid cancer patients. (A) Kaplan–Meier plot of fibrosis scores showed high
fibrosis score patients had poor prognostic outcomes. (B) The distribution of fibrosis scores and survival status of cases in TCGA-THCA dataset.
(C) The time dependent ROC plot of fibrosis score. (D) A nomogram plot for survival predication in thyroid cancer patients. (E) The calibration
curve of nomogram showed optimal prognosis predicating efficiency. (F) The correlation between fibrosis score and marker genes of myoCAF
and iCAF. Fibrosis score showed no significant difference between PTC and follictalar thyroid carcinoma (FTC) (G), as well as BRAF-V600E
mutation (H). *P < 0.05; **P < 0.01; ***P < 0.001.
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High fibrosis score was associated with
immune cell infiltration

We assessed the immune cell infiltration levels in each

patient from TCGA-THCA dataset using CIBERSORT

algorithm, and the results were shown in Figure S4A. The

heatmap of immune cell infiltration in two fibrosis score
Frontiers in Endocrinology 09
groups were presented in Figure 6A. We further compared

the infiltration changes of immune cells between the two

groups (Figure 6B) and found that CD4 memory resting T

cells, follicular helper T cells, monocytes, M1 macrophages and

eosinophils exhibited high infiltration levels, while M2

macrophages showed attenuated infiltration level in high

fibrosis score group. Correlation analysis revealed that
A

B

D

C

FIGURE 5

DEGs between high and low fibrosis score patients. (A) The volcano plot of DEGs between high and low fibrosis score patients. (B) The
expression heatmap of DEGs and clinical features in thyroid cancer patients. (C) GO enrichment of DEGs. (D) KEGG enrichment of DEGs.
TABLE 1 Univariate and multivariate Cox regression analyses of fibrosis score in TCGA-THCA database.

Variables Univariate Cox Multivariate Cox

HR (95%CI) P value HR (95%CI) P value

Age (≥ 55 vs. < 55) 2.67E+09 (0-inf) 0.99 – –

Gender (female vs. male) 0.51 (0.18-1.41) 0.19 – –

Tumor type (others vs. PTC) 0.29 (0.04-2.23) 0.24 – –

BRAF mutation (yes vs. no) 1.09E-07 (0-inf) 0.99

Stage (III + IV vs. I + II) 7.26 (2.34-22.57) 6.11E-04 3.75 (1.19-11.79) 0.024

Fibrosis score 5.93 (2.84-12.38) 2.14E-06 5.17 (2.31-11.56) 6.36E-05
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fibrosis score was positively related to the high infiltrated

immune cells and negatively related to low infiltrated

immune cells (CD4 memory resting T cells: R = 0.1081, P =

0.0157, follicular helper T cells: R = 0.1001, P = 0.0253,

eosinophils: R = 0.1677, P = 0.0002, monocytes: R = 0.1492,

P = 0.0008, M1 macrophages: R = 0.1034, P = 0.0209, M2

macrophages: R = -0.1919, P < 0.0001) (Figures 6C–H). We

calculated the immune and stromal scores of thyroid cancer

patients in TCGA and found that stromal score was increased

in high fibrosis group and positively correlated with the fibrosis
Frontiers in Endocrinology 10
score, but no significant difference of immune score was

detected between high and low fibrosis score groups

(Figures 6I, J). Tertiary lymphoid structures (TLS) are the

lymphoid tissue harboring architecture that highly associated

with adaptive immune response (25). Recent studies reported

that the presence of TLS indicated favorable outcomes in

multiple tumors (25–27). According to the expression levels

of 12 chemokines, we calculated TLS score of each TCGA-

THCA cases. No significant difference of TLS score was

displayed between high and low fibrosis groups (Figure 6K).
A B
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FIGURE 6

Correlation analysis of immune cells and fibrosis scores in thyroid cancer patients. (A) The heatmap of immune cells infiltration and clinical
features in thyroid cancer patients. (B) Comparing the infiltration levels of immune cells between high and low fibrosis score patients. (C–H)
Correlation analysis between fibrosis scores and monocytes, M1 macrophages, M2 macrophages, CD4 memory resting T cells, follicular helper T
cells and eosinophils. (I) Stromal scores were increased in high fibrosis score group, but no significant difference was found in immune scores.
(J) Stromal scores were positively correlated with fibrosis scores in thyroid cancer patients. (K) No significant difference of TLS score was found
between high and low fibrosis score groups. *P < 0.05; **P < 0.01; ***P < 0.001.
frontiersin.org

https://doi.org/10.3389/fendo.2022.1019072
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Li et al. 10.3389/fendo.2022.1019072
Expression and survival analysis of 6 key
fibrosis factors in thyroid cancer

We validated the transcriptional expression of identified 6

key fibrosis factors (PCOLCE2, APOD, APOE, TIMP1, HTRA3

and MT1A) in tumor and normal tissues obtained from 20 PTC

patients (Table S3). Results showed that the expression of

PCOLCE2, APOD and MTIA were increased, TIMP1 were

down-regulated in tumor tissues, and no significant differences

of APOE and HTRA3 were found between tumor and normal

tissues (Figure 7A). Moreover, in an independent sequencing

dataset, GSE33630 (23), including 49 PTC and 45 normal

tissues, we found that PCOLCE2, APOD and HTRA3 were

highly expressed in tumor tissues, the expression of APOE and

TIMP1 were down-regulated (Figure S4B). The expression of

MT1A was not found in GSE33630 dataset. The protein levels of

6 key fibrosis factors were explored in thyroid tumor and normal

thyroid tissues using The Human Protein Atlas (HPA).

Immunohistochemical indicated that APOE stained highly in
Frontiers in Endocrinology 11
thyroid tumor, while HTRA3 and MT1A showed the reverse

staining results (Figure 7B). The protein expression of

PCOLCE2, APOD and TIMP1 displayed no significant

changes in tumor and normal thyroid tissues (Figure 7B).

Kaplan–Meier plots suggested that high expression of

PCOLCE2 and HTRA3 were associated with poor prognostic

outcomes of thyroid cancer patients in TCGA (Figures 7C, D).

However, no significant correlation was found between the

expression of APOD, APOE, MT1A, TIMP1 and patients

overall survival status (Figures S4C–F).
Discussion

Fibroblasts are one of major stromal cells in the

microenvironment of various tumors and have been proven to

be critical in tumor development, including cell proliferation,

immunosuppression, extracellular matrix remodeling and

chemotherapy resistance (28–30). There are abundant of
A

B

DC

FIGURE 7

Expression validation and survival analysis of 6 key fibroblast related genes in thyroid cancer. (A) Transcriptional expression of PCOLCE2, APOD,
APOE, TIMP1, HTRA3 and MT1A in 20 pairs clinical PTC and normal thyroid tissues. (B) Protein expression of PCOLCE2, APOD, APOE, TIMP1,
HTRA3 and MT1A in normal and tumor thyroid tissues from Human Protein Atlas. (C, D) Kaplan–Meier plots showed that high expression of
PCOLCE2 and HTRA3 were associated with poor overall survival probability for thyroid cancer patients.
frontiersin.org

https://doi.org/10.3389/fendo.2022.1019072
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Li et al. 10.3389/fendo.2022.1019072
evidences indicating that highly infiltrated fibroblasts are

associated with poor survival outcomes in various solid tumors

(31–33). Previous research found that cancer-associated

fibroblasts (CAFs) were highly enriched in dedifferentiated

thyroid cancer (DDTC) and correlated with the aggressive

outcomes of thyroid cancer patients (20). Pu, et al. identified

two main fibroblast subpopulations in thyroid cancer,

myofibroblastic CAFs (myoCAF) and inflammatory subtype

(iCAF). Meanwhile, iCAF could interact with other type of

cells in tumor environment (TME). Therefore, analyzing

fibroblasts and exploring its molecular feature might provide a

promising therapeutic target for thyroid cancer.

Single-cell RNA sequencing (scRNA-seq) technology has

provided a powerful strategy to explore the intratumor

heterogeneity and reveal the complex mechanisms in tumor

environment (22, 34). In this study, we combined the scRNA

and bulk RNA sequencing data of thyroid cancer and

constructed a fibrosis related model to predict the prognosis

for thyroid cancer patients. By analyzing the scRNA-seq data of

3 tumor and 3 normal thyroid tissues, we identified 11 cell

types in the ecosystems of thyroid. For immune cells, we found

CD4 T cells, B cells and plasma cells were low infiltrated

in tumor tissues, while the infiltration levels of Treg,

monocytes and myeloid cells were increased, indicating an

immunosuppressive phenotype. Fibroblasts were highly

infiltrated in tumor tissues, suggesting its critical function in

thyroid cancer development. We explored the cell-cell

interaction in thyroid tumor environment and found that

fibroblasts could widely interact with other immune cells via

Macrophage Migratory Inhibition Factor (MIF) signaling

pathway. Previous studies reported that MIF was a

multifunctional cytokine and inhibited immune functions in

TME (35, 36). MIF interacted with CD74 to promote M2

immunosuppressive shift and inhibit M1 polarization,

resulting in glioma development (37). In multiple myeloma

patients, MIF promoted bone marrow stromal cells to

secret the cytokines IL-6 and IL-8, which associated with

poor prognosis (38). CXCL12−CXCR4 complex was another

significant signaling pathway identified in cel l-cel l

communication. As a receptor of CXCL12, CXCR4 was

widely expressed in multiple cell types, such as lymphocytes,

hematopoietic stem cells, endothelial cells, and malignant cells.

The interacting of CXCL12 and CXCR4 could activate

divergent intracellular pathways related to chemotaxis, cell

proliferation and gene transcription in tumor development

(39, 40). Yu et al. reported that CXCL12−CXCR4 activation

promoted myeloid-derived suppressor cells (MDSCs) and

macrophages infi ltrations and accelerated colorectal

progression (41). CXCL12−CXCR4 pathway antagonists

combining immunotherapy had shown improving antitumor

effects in HCC models (42). These evidences suggested that

fibroblasts could regulate immune cell functions via cell-cell

interactions in TME.
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To investigate the molecular features offibroblasts in thyroid

cancer, we identified the gene list offibroblasts cluster in sc-RNA

seq data and analyzed their expression levels in TCGA-THCA

dataset. Several fibroblasts related genes were differentially

expressed between tumor and normal thyroid tissues, and

associated with clinical stages of thyroid cancer patients.

LASSO regression analysis was commonly applied to assess

the transcriptome data and identify the most relevant factors

associated with survival status of patients for risk model

construction (43, 44). Here, we performed LASSO analysis and

identified 6 critical fibroblasts related factors (PCOLCE2,

APOD, APOE, TIMP1, HTRA3 and MT1A) and calculated

the fibrosis scores based on their expression in patients with

thyroid cancer. High fibrosis scores were associated with

relatively short survival time and predicted optimal prognostic

outcomes for patients in TCGA-THCA. As the most common

genetic alteration in thyroid cancer, BRAF-V600E mutation

existed in 57% patients from TCGA-THCA dataset (45, 46).

Early researches reported BRAF mutation was associated with

papillary thyroid carcinoma (PTC) long-term recurrence,

metastasis, and advanced clinical stage (45–47). In south-east

Asian thyroid cancer patients, no significant correlation was

found between BRAF mutation and prognostic outcomes (46).

Yang et al. found that CAFs infiltration was increased in thyroid

cancer patients with BRAF-V600E mutation (48). However, in

our study, the fibrosis score showed no significant difference

between BRAF-V600E mutation and non-mutation groups. The

DEGs between high and low fibrosis score groups in thyroid

cancer were further identified. Functional enrichment analysis

suggested that these DEGs might participate in various

biological processes in thyroid cancer, such as endocrine

system development, enzyme inhibitor activity and receptor

binding. KEGG enrichment analysis identified several critical

signal pathways including IL−17 signaling pathway, thyroid

hormone signaling pathway and transcriptional mis-regulation

in cancer.

Thyroid cancer development was often associated with

chronic inflammation, which indicated that the immune cells

were critical components in TME and played critical roles in

cytokines secretion to maintain immune response (49). Thyroid

cancer cells could suppress the cytolytic function of NK cells by

secreting prostaglandin E2 and cyclooxygenase-2 to promote

tumor progression (50). By bioinformatic analysis, early

researches studied the TME changes and found that several

types of immune cell were dis-regulated in thyroid cancer, such

as CD8 T cells, macrophages, Tregs, monocytes and neutrophils

(13, 48). Moreover, researchers demonstrated that the tertiary

lymphoid structures (TLS) scores were decreased in thyroid

cancer along with down-regulated chemokines (48). As an

ectopic lymphoid structures, TLS was a T cell zone consisted

of T cells, B cells, follicular dendritic cells, neutrophils, and so on

and act as antitumor roles in adaptive immune response (51).

The presence of TLS was often correlated with beneficial clinical
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outcomes in patients with cancer (51). To evaluate the

association between immune cells and fibrosis score, we

compared the infiltration levels of immune cells between high

and low fibrosis score thyroid cancer patients. We found that

fibrosis score was positively related to monocytes, M1

macrophages and eosinophils infiltration, but negatively

correlated with M2 macrophages. Meanwhile, the stromal

score rather than immune score or TLS score of thyroid

cancer patients was increased in high fibrosis score group

patients due to fibroblasts belonging to stromal cells in TME.

The expression levels of 6 critical fibroblasts-related factors

were validated in 20 pairs clinical PTC tissues and another

independent cohort. The protein levels of HTRA3 and MT1A

were significantly attenuated, but APOE protein level was

increased in thyroid tumor. Survival analysis suggested that

high expression level of PCOLCE2 and HTRA3 were related to

poor overall survival results for thyroid cancer patients. HTRA3

was a serine peptidase and had been reported to participate in

multiple signal pathways in malignancies. High expression of

HTRA3 was associated with advanced clinical stage and

indicated poor overall survival proportion in gastric cancer

(52). In colorectal cancer, researchers identified that HTRA3

could be expressed by tumor cells and peritumoral stromal cells

(53). MT1A was a member of metallothioneins and played a

critical role in metal homeostasis and oxidative stress (54).

However, the expression and function of MT1A in tumor

progression remains controversial. It has been reported that

MT1A was highly expressed and associated with shorter survival

time in astrocytoma and lung cancer patients (55, 56). But in oral

squamous cell carcinoma, MTIA expression was significantly

decreased (57). PCOLCE2 was reported to mainly expressed in

heart and participated in procollagen processing and fibrillar

collagen deposition (58). Besides, PCOLCE2 was identified as a

key factor in tumor epithelial-mesenchymal transition (EMT)

and ferroptosis (59, 60). Here, we showed that PCOLCE2 and

HTRA3 were mainly expressed by fibroblasts in thyroid cancer

and decreased in tumor tissues. However, low expression of

PCOLCE2 and HTRA3 suggested favorable clinical outcomes

for thyroid cancer patients. There are still some limitations in

our study. Firstly, we constructed the fibrosis score model for

thyroid cancer patients only from TCGA cohort due to the

difficulty to obtain public datasets containing both

transcriptomic and survival data, which might lead to selection

bias. Therefore, large numbers of clinical samples are required to

evaluate the clinical applicability of fibrosis score model.

Secondly, the expression of PCOLCE2 and HTRA3 were

decreased in thyroid tumor and indicated favorable prognosis

for thyroid cancer patients, which is contradictory to the

conventional perception. Insights into the molecular

mechanisms of PCOLCE2 and HTRA3 need to be further

elucidated by experimental researches.
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Conclusions

In conclusion, our study revealed the expression profile and

prognostic values of fibroblasts in thyroid cancer combining

single-cell and bulk RNA sequencing data. We constructed a

novel fibrosis score model including 6 key fibroblasts related

factors (PCOLCE2, APOD, APOE, TIMP1, HTRA3 and

MT1A). High fibrosis score is characterized with specific

immune cells infiltration and leads to poor clinical survival

for thyroid cancer patients. Our research may provide novel

horizons about fibroblasts and potential therapeutic targets for

PTC patients.
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SUPPLEMENTARY FIGURE 1

The dot plot of cell markers and cell-cell communications in thyroid

cancer. (A) The dot plot of cell markers for different cell clusters. (B)
Frontiers in Endocrinology 14
Proportions of different cell clusters in each sample tissue. (C) Integrated
cell-cell communications network plotted by interaction numbers. (D)
Cell-cell communications network of each cell cluster.

SUPPLEMENTARY FIGURE 2

Cell-cell communications heatmap in thyroid cancer. (A) The heatmap of

incoming and outgoing signaling patterns. (B) The heatmap of MIF
signaling pathway network.

SUPPLEMENTARY FIGURE 3

Expression heatmap of fibroblast related genes and fibrosis scores in

TCGA-THCA dataset. (A) The expression heatmap of FRGs between
normal and tumor thyroid cancer. (B) The samples in TCGA-THCA

dataset were divided into high and low fibrosis groups based on the
median score.

SUPPLEMENTARY FIGURE 4

Immune cells infiltration and 6 key genes analysis in thyroid cancer

patients. (A) Immune cells infiltration proportions in each thyroid cancer
patients. (B) Expression levels of PCOLCE2, APOD, APOE, TIMP1 and

HTRA3 in GSE33630. (C–F) The expression of MT1A was not found in
this cohort. Kaplan–Meier plots showed the expression of APOD, APOE,

MT1A and TIMP1 were not associated with overall survival of thyroid

cancer patients.
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