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Diabetic nephropathy (DN) involves serious lipid metabolism disorder, and

renal ectopic lipid deposition aggravates DN progression. However, the

molecular mechanism of renal lipid deposition in DN remains unclear. Lipid

droplets (LDs) are lipid pools in cells that change dynamically in response to the

cellular energy needs. The LDs and mitochondria are connected through a part

of the mitochondria known as the peridroplet mitochondria (PDM). In this

review, we summarize the definition, detection methods, and function of the

PDM. Finally, we discuss the research status of PDM in DN and the possibility of

its use as a therapeutic target.
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1 Introduction

Presently, the number of diabetes patients is increasing worldwide. As a systemic

metabolic disease, diabetes may cause serious microvascular complications such as

diabetic nephropathy (DN) (1). DN has gradually become the leading cause of end-

stage renal disease (ESRD) in developed countries. However, specific drugs for DN are

not available till date; therefore, DN pathogenesis should be explored urgently to develop

new therapeutic drugs (2–4). Lipid metabolism disorder is a key factor in DN

progression. Ectopic lipid deposition is aggravated in DN, which further promotes

tubule cell inflammation and apoptosis and ultimately aggravates the pathological

changes of DN (5–7). However, the mechanism of abnormal lipid deposition in DN

remains unclear.
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The cell is an organic entity and the organelles are not

completely separated; in particular, organelles such as

mitochondria-associated endoplasmic reticulum membranes

(MAMs) are connected (8, 9). MAM integrity maintenance is

essential for signal communication and cell homeostasis (10–

12). Lipid droplets (LDs), as energy-storing organelles in cells,

are also closely linked to the mitochondria. The mitochondria

part closely connected to the LDs is also called peridroplet

mitochondria (PDM) (13–15). The PDM plays a key role in

maintaining lipid homeostasis and energy metabolism, and its

abnormality can cause metabolic disorders (16, 17). In this

review, we systematically summarized the progress of studies

on PDM and discussed its potential role in DN.
2 LD structure

LD is a dynamic organelle, and this dynamic behavior

reflects the overall cellular metabolic level (18–21). LD are also

energy storing organelles that rapidly mobilize lipids to release

fatty acids to provide cellular energy through b-oxidation.
Moreover, LDs inhibit lipotoxicity caused by free fatty acids by

isolating lipids (22–24). LDs are ubiquitous in cells and have a

single phospholipid bilayer that insulates neutral lipids from the

cytoplasm, protecting cells from the toxicity of free fatty acids

(25). Furthermore, various proteins are embedded in the

phospholipid bilayer to mediate different functions of the LDs

(26–28). Approximately 200 proteins located on LDs have been

identified (29), such as Rab GTPase (30, 31), PNPLA family (32,

33), and LXRa (34), with the development of biological

techniques. These proteins play a key role in maintaining the

stability of LD structure and timely response to nutritional

status. There are two main mechanisms of LD decomposition:

lipolysis (35, 36) and lipophagy (37–39). Lipolysis is the release

of free fatty acids from triacylglycerol under the sequential action

of adipose triglyceride lipase (ATGL), hormone-sensitive lipase

(HSL), and monacylglycerol lipase (MAGL), whereas lipophagy

is a form of selective autophagy in which lipid droplets are

swallowed by the autophagosome membrane and fused with

lysosomes, which are degraded by hydrolases (40). Several

studies have indicated that LDs dynamically interact with

other organelles, particularly the mitochondria, endoplasmic

reticulum, endosomes, and peroxisomes, which is essential for

maintaining cellular energy metabolism homeostasis.
3 b-Oxidation in mitochondria

Mitochondria are the center of cellular energy metabolism,

where fatty acids can undergo b-oxidation to provide energy for

cells. Fatty acid oxidation pathway can be divided into a-oxidation,
b-oxidation and w-oxidation, among which a-oxidation and

w-oxidation only exist in eukaryotes, while b-oxidation is the
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main fatty acid degradation pathway in eukaryotes or prokaryotes

(41, 42). The fatty acids are activated by combining with

coenzyme A (CoA) to form fatty acid acyl-CoA esters to

participate in metabolic pathways. In the presence of ATP

and Mg2+, the acyl portion of fatty acids is linked to the sulfur

atoms in CoA through thioester bonds to form fatty acyl-CoA

derivatives, pyrophosphate (PPi), and adenosine monophosphate

(AMP) (43). Subsequently, the fatty acyl-CoA ester is converted to

acyl-carnitine in the presence of L-carnitine, which enters the

outer mitochondrial membrane. L-carnitine acyl-transferases

subtypes, carnitine palmitoyltransferase-1 (CPT1) and carnitine

palmitoyltransferase-2 (CPT2), have been detected in humans.

Acyl-carnitine crosses the inner mitochondrial membrane under

the action of carnitine acyl-carnitine translocase (CACT). Then,

CPT2 regenerates the fatty acyl-CoA ester, which is successively

dehydrogenated, hydrated, dehydrogenated, and thiolyzed to

form acetyl-CoA by the fatty acid b-oxidase system in the

mitochondrial matrix, to participate in energy generation (43).
4 What is the PDM?

In cells, mitochondria are the energy factories and LDs are

energy pools. The latest studies have suggested connections

between the mitochondria and LD, which were first observed

in 1959 (44). With the development of biotechnology, several

studies have revealed the link between LDs and mitochondria,

and the LD-associated mitochondrial part is called PDM (45,

46). In fact, the biological functions, proteins, crest structure,

and dynamics of PDM and cytoplasmic mitochondria are

different (45). Recently, as the PDM has attracted attention,

the quantifiable parameters and definition of PDM has also been

proposed: a. Mitochondria in direct contact with LD that can be

observed by electron microscopy; b. This part of the

mitochondria is tightly linked to the LD, even after mechanical

cell disruption or purification (45).
5 Molecular linkage mechanism and
function of PDM

5.1 Proteins mediating PDM integrity

As dynamic organelle junctions, PDM integrity adjusts itself

according to the cellular energy requirements, which is precisely

regulated by certain proteins. Till date, some proteins involved in

the coupling between LDs and mitochondria have been

identified, and their loss destroys PDM integrity.
5.1.1 SNAP23
SNAP23 belongs to the family of soluble N-ethylmaleimide-

sensitive factor attachment protein receptor (SNARE) proteins
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that share a unique SNARE motif in the form of conserved

sequences of 60–70 amino acids (47). The SNARE motifs

mediate SNARE complexes formation and, thus, play a key

role in intimal fusion in many cells. SNAP23 is also involved in

maintaining PMD integrity. Lim et al. demonstrated that ADP-

ribosylation factor (ARF)-related protein 1 (ARFRP1) recruits

SNAP23 to a site close to LD, thereby promoting LD growth in

hepatitis C virus (HCV) infected cells (48). This suggested that

SNAP23 is essential for LD expansion. Furthermore, Sadh et al.

reported that SNAP23 level was higher in LDs in the fasted mice

liver than in the control mice liver, which is accompanied by

increased LD-mitochondria interactions (49). Similarly, Strauss

et al. showed that SNAP23 co-localizes mainly with the

mitochondria in healthy trained lean human muscles (50).

These studies strongly suggest that SNAP23 is closely related

to LDs and mitochondria. Moreover, Jagerstrom et al.

demonstrated a direct relationship between SNAP23 and

PDM, further suggesting that SNAP23 downregulation reduces

mitochondrial b-oxidation, which is accompanied by PDM

integrity destruction (51).

5.1.2 Perilipin 5 (PLIN5)
PLIN5 is a 463-residue protein that belongs to the perilipin

protein family, which is expressed in highly oxidized tissues such

as the heart and oxidized skeletal muscle. In high fat-fed PLIN5−/

− mice, the liver TAG content and expression of FA synthesis-

related enzymes decreased (52). Moreover, PLIN5 plays an

important role in regulating lipolysis by influencing the

protein-protein interaction between ATGL and 1-acylglycerol-

3-phosphate O-acyltransferase (ABHD5), an ATGL activator

(53–55). Interestingly, PLIN5 is also closely related to

mitochondrial homeostasis. Immunogold electron microscopy

and western blots of isolated mitochondria have indicated that

PLIN5 is also expressed in not only LDs but also the

mitochondria (56). Moreover, PLIN5 expression correlates

with mitochondrial respiration rate for lipid-derived substrates

in rat muscle (56). Interestingly, fatty acid respiration did not

increase in mitochondria isolated from PLIN5-overexpressed

muscles, while lipid oxidation increased in the homogenate

containing PLIN5-coated LDs (56). Similarly, Andersson et al.

showed that PLIN5 deficiency significantly damages the

oxidative capacity of mitochondria in cardiomyocytes, is

accompanied by the changes in lipid acyl composition of

mitochondrial membrane phospholipids, and significantly

reduces mitochondrial membrane depolarization (57). Thus,

PLIN5 is involved in fatty acid oxidation from LDs to

mitochondria. Furthermore, LD accumulation, mitochondrial

dysfunction, and apoptosis increased, while PLIN5 expression

substantially decreased in palmitic acid-treated cardiomyocytes

(58). Acetylcholine treatment significantly upregulated PLIN5
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expression, improved LD lipolysis, and increased LD-

mitochondrial connection integrity, whereas PLIN5 knockout

destroyed the protective effect of acetylcholine (58). Similarly,

PLIN5 mRNA and protein levels were notably upregulated in

hydrogen peroxide or lipopolysaccharide (LPS)-treated HepG2

cells, which increased LD-mitochondrial contact and

downregulated intracellular ROS levels (59). Further studies

determined that PLIN5 is localized at the LD-mitochondrial

junction in human skeletal muscles through stimulated emission

depletion (STED) microscopy and correlative light-electron

microscopy (CLEM) performed (60). Although PLIN5 is

involved in LD-mitochondria connection formation, the

specific molecular mechanism is still unclear. An unidentified

mitochondrial outer membrane protein may be involved in this

process, which should be verified in further studies.

Some studies revealed that in addition to SNAP23 and PLIN5,

other proteins mediate PDM integrity. Caveolin-1 (Cav-1), a

multifunctional membrane protein, is the main component of

caveolae and plays an important role in regulating endocytosis,

stress response, and signal transduction (61). Meanwhile, it is also

a LD envelope protein involved in lipid metabolism and LD

formation. Kuo et al. showed impaired LD formation in Cav-1-

deficient endothelial cells (62). Interestingly, its expression is also

closely related to mitochondrial function. Wang et al.

demonstrated that hippocampal overexpression of neuron-

targeted Cav-1 significantly reduces mitochondrial damage and

enhances mitochondrial respiration (Wang et al., 2021). Similarly,

Cav-1 deficiency notably reduced mitochondrial respiration,

decreased oxidative phosphorylated complex I activity, and

downregulated the NAD+/NADH ratio, ultimately inducing

premature aging (63). In addition, the high-quality electron

micrographs of intact LDs and other adipocyte components by

high pressure and rapid tissue freezing indicated LD-mitochondria

connection, while the absence of Cav-1 resulted in a significant

and almost complete absence of mitochondria in contact with LDs

(64). Moreover, acyl-CoA: diacylglycerol acyltransferase 2

(DGAT2), a key enzyme that catalyzes the synthesis of

triacylglycerol, is primarily located in the endoplasmic reticulum

(ER) under basic conditions, but using oleic acid promotes TG

synthesis, which transfers DGAT2 to the LD surface, where it co-

locates with the mitochondria (65). Mechanistically, DGAT2

interacts with the mitochondria through the 67 N-terminal

amino acids of DGAT2, which could guide a red fluorescent

protein to the mitochondria (65). Furthermore, mitoguardin-2

(MIGA2) (66), an outer mitochondrial membrane protein, and

VPS13D are also involved in LD-mitochondria coupling

(Figure 1). Although the structural proteins of mitochondria and

LDs have been partially revealed, further studies should focus on

the proteins involved in PDM integrity maintenance and the

molecular mechanisms involved.
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5.2 Function of PDM

Currently, the function of PDM is mainly focused on lipid

metabolism. In cells, LDs are the storage organelles and

mitochondria are the energy factories. Thus, as a link between

them, PDM regulation is indispensable in dealing with cellular

energy disturbances. On the one hand, PDM directly connect

LDs with the mitochondria, which can efficiently promote fatty

acids transfer into the mitochondria for oxidation, thus

providing cells with sufficient energy to resist external stimuli;

on the other hand, it also confines free fatty acids to a small

range, thereby reducing the toxicity of free fatty acids to cells.

Rambold et al. demonstrated that labeled fatty acids are stored in

the LDs of nutrient-rich cells, while fatty acids are transferred

from the LDs in starving cells mitochondria for oxidation.

Interestingly, fatty acids are not released from free cytoplasmic

pools, but from LD sources and this process required the LDs to

be close to the mitochondria (67). These findings suggest that

increased PDM integrity significantly promotes fatty acid

translocation from LDs to mitochondria for energy

production. In addition to fatty acid oxidation, PDM is also

involved in LD expansion through providing ATP for TAG

synthesis. Benador et al. showed that the purified PDM showed

stronger pyruvate oxidation, electron transfer, and ATP

synthesis than cytoplasmic mitochondria; moreover, the

PLIN5-induced LD-mitochondrial integrity upregulated the

ATP-synthase-dependent triacylglyceride synthesis (45). This

seemingly contradictory result may be because PDM plays
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different roles in different nutritional states. In nutrient-rich

cells, PDM could mobilize the mitochondria to supply ATP to

speed up LDs synthesis; When exposed to external stress, PDM

ensures rapid fatty acid transfer from LDs to mitochondria for

oxidative energy production.
6 PDM detection methods

Transmission electron microscopy (TEM) is the most direct

detection method of PDM, a sub-organelle structure (45, 66, 68,

69). The high resolution of TEM allows the direct observation of

LD and mitochondria connection. However, quantifying PDM

integrity is difficult and requires instrument precision. In

addition, double staining of living cells is another method of

detecting PDM by direct observation. PDM (colocalization area)

can be observed under confocal microscopy by co-staining living

cells with LD markers (BODIPY) and mitochondrial dye (Mito-

tracker) (45). The advantage of this method is that the

interaction between LDs and mitochondria can be directly

observed, but PDM function and protein expression cannot be

studied. The optimal method for functional studies is to extract

PDM, and Benador et al. have developed a method to isolate

PDM according to degree of PDM attachment to LD (70). This

method allowed the observation of differences in PDM protein

expression under different nutritional or disease states, but the

purity of the extracted PDM is related to many factors. However,

further work is needed to optimize this separation scheme to
frontiersin.org
FIGURE 1

Proteins mediating lipid droplet and mitochondria integrity. Cav-1, PLIN5, MIGA2, SNAP23, DGAT2 and VPS13D maintain lipid droplet–
mitochondria connection, thus facilitating fatty acids transfer in from lipid droplet to mitochondria for b-oxidation and ATP generation.
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accommodate organizational differences. In addition to these

methods, in situ proximity ligation assay (PLA) may also be a

potential way to detect PDM and is an effective method to detect

the connection between ER and mitochondria using marker

proteins (71).
7 Potential role of PDM in DN

DN, as a metabolic disease, is often accompanied by lipid

metabolism disorder and several studies have revealed that lipid

metabolism disorder aggravates DN progression. Edelstein et al.

demonstrated increased lipid deposition and enlarged

intracellular LDs in DN patients undergoing renal biopsy than

those in the control (72). Furthermore, the increased lipid

deposition in DN is associated with the expression of lipid

metabolism disorder-associated genes. In DN state, the

expression of key proteins in the fatty acid b-oxidation
pathway (PPAR-a, carnitine palmitoyltransferase 1, acyl-CoA

oxidase, and L-FABP) and those mediating cholesterol efflux

(ABCA1, ABCG1, and apoE) notably decreased, while the

expression of lipid uptake receptors, such as LDL, oxidized

LDL, and acetylated LDL receptors, are significantly

upregulated (72). Moreover, the degree of lipid disturbance

was closely related to renal inflammation and glomerular

filtration rate (72). Similarly, we have also showed that renal

lipid deposition aggravates with the progression of pathological

stages of DN and is associated with renal tubular interstitial

damage (Yang et al., 2021). However, liraglutide, a novel

hypoglycemic agent, improves renal outcomes in type 2

diabetes patients by inhibiting lipid synthesis and promoting

lipid lipolysis in DN rats (73). These findings strongly suggest

that lipid metabolism disorders are a risk factor for DN
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progression, and that DN patients may benefit from

ameliorating lipid metabolism disorders.

As an organ with high oxygen consumption, adequate

energy supply helps maintain the steady state of kidney

function. Renal proximal tubule cells utilize non-esterified

fatty acids to maximize ATP production through b-oxidation
(74). During DN, increased ROS and hyperglycemia changes the

electron transport chain, thus reducing ATP production and

increasing apoptosis (75). Moreover, Rossi et al. compared the

renal proteomic data and blood metabolic profiles of Timp3-

knockout and control mice, showing abnormal fatty acid b-
oxidation, which is further aggravated after STZ induced DN

(76). Similarly, high glucose treatment induced fatty acid

deposition and downregulated b-oxidation rate in cultured

human proximal tubule cells, thus changing in the phenotype

of epithelial-to-mesenchymal transition (EMT); moreover,

acetyl-CoA carboxylase 2 (ACC2) siRNA treatment accelerated

b-oxidation rate, thus alleviating the adverse effects of high

glucose (77). In fact, the impaired lipids of mitochondrial b-
oxidation could be used as DN progression markers (78). These

studies suggest abnormal fatty acid b-oxidation in the kidney

during DN. Furthermore, accelerated fatty acids b-oxidation
could ameliorate diabetic kidney injury (74, 79). Fenofibrate, a

commonly used drug for DN, plays a protective role by

promoting fatty acid b-oxidation (80, 81) (Figure 2).

Although few studies have focused on PDM in diseases and

the relationship between PDM and DN is unclear, PDM may

have some potential link with DN. On one hand, PDM can

promote fatty acids b-oxidation, which protects against DN. On

the other hand, PDM can also promote LD synthesis, which

restricts the free fatty acids in the cytoplasm to LDs, thus, greatly

reducing the lipotoxicity. This needs to be verified by further

studies, but as an emerging research hotspot, the role of PDM in
FIGURE 2

Potential renal protection of peridroplet mitochondria (PDM) in diabetic nephropathy. High glucose could induce the kidney to produce high
amount of free fatty acids, while PDM generate ATP to promote lipotoxic fatty acids transfer into lipid droplets to be isolated, to protect kidney cells.
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metabolic diseases, particularly diabetic kidney diseases,

deserves further discussion.
8 Conclusion

LDs and mitochondria are important energy storage and

productivity factories in cells and the interaction between LDs

and mitochondria are involved in maintaining of cell energy

metabolism homeostasis. Very few studies have focused on their

interaction till date. DN is a metabolic disorder and lipotoxicity

and mitochondrial energy imbalance play a key role in its

progression. Interestingly, PDM is critical in reducing

lipotoxicity and accelerating energy generation. However, no

studies have focused on the interaction between PDM and DN.

In this review, we have summarized the definition, detection,

and function of PDM and explores the potential protective role

of PDM in DN. However, many questions remain unsolved. In

addition to lipid metabolism and LD synthesis, does PDM

maintain intracellular mitochondrial homeostasis? Besides

lipid deposition, does PDM integrity change in the kidney

tissue of DN patients? What are the molecular mechanisms

mediating PDM integrity destruction? Are there compounds

that specifically regulate PDM integrity? Although many

questions to be addressed in future research, PDM provides a

new perspective for us to further understand and prevent

DN progression.
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