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Multiomics signatures of
type 1 diabetes with and
without albuminuria
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Signe A. Winther3†, Peter Henriksen3, Mina Ali3, Yong Fan1,
Evelina Stankevic1, Liwei Lyu1, Josef K. Vogt1,5,
Torben Hansen1, Cristina Legido-Quigley3,
Peter Rossing3,6 and Oluf Pedersen1,7*

1Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical
Sciences, University of Copenhagen, Copenhagen, Denmark, 2LEITAT Technological Center,
Terrassa, Spain, 3Complications Research, Steno Diabetes Center Copenhagen, Herlev, Denmark,
4The Bioinformatics Center, Department of Biology, University of Copenhagen, Copenhagen,
Denmark, 5Clinical Microbiomics, Copenhagen, Denmark, 6Department of Clinical Medicine,
University of Copenhagen, Copenhagen, Denmark, 7Center for Clinical Metabolic Research,
Gentofte University Hospital, Copenhagen, Denmark
Aims/hypothesis: To identify novel pathophysiological signatures of

longstanding type 1 diabetes (T1D) with and without albuminuria we

investigated the gut microbiome and blood metabolome in individuals with

T1D and healthy controls (HC). We also mapped the functional underpinnings

of the microbiome in relation to its metabolic role.

Methods: One hundred and sixty-one individuals with T1D and 50 HC were

recruited at the Steno Diabetes Center Copenhagen, Denmark. T1D cases were

stratified based on levels of albuminuria into normoalbuminuria, moderate and

severely increased albuminuria. Shotgun sequencing of bacterial and viral

microbiome in stool samples and circulating metabolites and lipids profiling

using mass spectroscopy in plasma of all participants were performed.

Functional mapping of microbiome into Gut Metabolic Modules (GMMs) was

done using EggNog and KEGG databases. Multiomics integration was

performed using MOFA tool.

Results: Measures of the gut bacterial beta diversity differed significantly

between T1D and HC, either with moderately or severely increased

albuminuria. Taxonomic analyses of the bacterial microbiota identified 51

species that differed in absolute abundance between T1D and HC (17 higher,

34 lower). Stratified on levels of albuminuria, 10 species were differentially

abundant for the moderately increased albuminuria group, 63 for the severely

increased albuminuria group while 25 were common and differentially abundant

both formoderately and severely increased albuminuria groups, when compared

to HC. Functional characterization of the bacteriome identified 23 differentially

enriched GMMs between T1D and HC, mostly involved in sugar and amino acid

metabolism. No differences in relation to albuminuria stratificationwas observed.

Twenty-five phages were differentially abundant between T1D and HC groups.
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Six of these varied with albuminuria status. Plasma metabolomics indicated

differences in the steroidogenesis and sugar metabolism and circulating

sphingolipids in T1D individuals. We identified association between sphingolipid

levels and Bacteroides sp. abundances. MOFA revealed reduced interactions

between gut microbiome and plasma metabolome profiles albeit polar

metabolite, lipids and bacteriome compositions contributed to the variance in

albuminuria levels among T1D individuals.

Conclusions: Individuals with T1D and progressive kidney disease stratified on

levels of albuminuria show distinct signatures in their gut microbiome and

blood metabolome.
KEYWORDS

multiomics, type 1 diabetes, albuminuria, metabolomics, microbiome,
lipidomics, phageome
1 Introduction

Chronic kidney disease (CKD) is a major health burden with

a prevalence of about 15% in the United States (1) with a record

global rise of 41.5% mortality rates among CKD reported during

the past 3 decades (2). Elevated albuminuria is strongly

associated with end stage renal disease, cardiovascular disease,

and death among CKD (3). Diabetes is the leading cause of end

stage kidney disease, and about one third of individuals with type

1 or type 2 diabetes develop CKD, also referred to as diabetic

nephropathy or diabetic kidney disease (2). Diabetic

nephropathy progression in type 1 diabetes can be clinically

characterized by stages of increasing albuminuria (a) moderately

increased albuminuria (previously called microalbuminuria)

(urinary albumin 30 to 300 mg/g creatinine), (b) severely

increased albuminuria (macroalbuminuria or proteinuria)

(>300 mg/g), (c) loss of renal function (glomerular filtration

rate), and (d) finally need for kidney replacement therapy.

The intestinal microbiome constantly interacts with its host,

constituting a dynamic balance and synergy, and thereby playing

a role in maintaining and complementing metabolic and

physiological functions (4). Studies in animal models of T1D

support the hypothesis that an altered gut microbiome may lead

to a “leaky” intestinal mucosal barrier, an imbalance in innate

and adaptive immune systems and eventually triggering various

chronic non-communicable diseases (5, 6). A low diversity of the

gut microbiome is associated with dysmetabolism and (7) a state

of dysbiosis is hypothesized to worsen the metabolic status of

individuals with T1D (8, 9). Furthermore, a pathophysiological

role of an imbalanced gut microbiota in diabetic nephropathy

has been suggested (6).
02
A recent study has proposed a mechanism by which the gut

microbiota impacts host’s insulin resistance and albuminuria

development by upregulating G protein-coupled receptor 43

(GPR43) (10). Furthermore, the impact of the gut microbiota

upon host’s metabolic status is not limited to direct interaction

between organisms, but also through specific bacterial

metabolites. In this context, it is of interest that a role of

bacteria-derived phenyl sulfate has been reported to induce

albuminuria in experimental models of diabetes (11). As for

the plasma metabolome, few studies including our previous

work (12) have reported associations between albuminuria and

sphingomyelins, phosphatidylcholines (13) and unsaturated

fatty acids and phospholipids (13–16).

In this framework, we previously identified differences in the

gut bacteriome of T1D individuals stratified by albuminuria levels

using a 16S rRNA gene marker approach (12). However, due to the

modest taxa resolution provided by this method we failed to gain

deeper insights into the bacteriome and phageome at species level

and bacteriome functional potentials. The present study included

the same study participants (T1D and HC) (12) but with high-

resolution whole microbiome sequencing combined with

untargeted plasma lipidomics and polar metabolite profiling to

further investigate the single and multi-omics profiles, and their

functional relationship. Thus, the objectives of the current study

were: (i) to analyze both the taxonomical composition and

functional potential of the metagenomic communities in T1D

stratified by albuminuria levels, and in HC; (ii) to characterize the

untargeted plasma metabolome of T1D, stratified by albuminuria

levels; and (iii) to associate metabolome with metagenomic features,

to investigate pathophysiological multiomic signatures of

longstanding T1D with and without albuminuria.
frontiersin.org

https://doi.org/10.3389/fendo.2022.1015557
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Clos-Garcia et al. 10.3389/fendo.2022.1015557
2 Results

2.1 Characteristics of study participants

The study comprised 161 T1D individuals (50 with

normoalbuminuria, 50 with moderately increased albuminuria

and 61 with severely increased albuminuria and 50 healthy

controls (HC). A study overview is given in Figure 1.

The study participants were aged 60 ± 11 years (mean ± SD),

42% being women. The mean diabetes duration was 42 ± 15

years with an eGFR of 75 ± 25 ml min−1 (1.73 m)−2 among

individuals with type 1 diabetes (T1D). Detailed clinical

characteristics of the study groups have been reported (12)

and are again presented in Supplementary Table 1.

T1D individuals with elevated albuminuria were treated with

anti-hypertensive and proton pump inhibitor drugs more

frequently than others (Supplementary Table 1). HbA1c, and

fasting plasma hs-CRP levels were expectedly higher and

hemoglobin, and fasting plasma concentrations of total

cholesterol and LDL cholesterol were lower in the T1D

individuals upon stratification for increasing albuminuria and

when compared to HC (Supplementary Table 1).
Frontiers in Endocrinology 03
Serum creatinine was higher and corresponding eGFR levels

lower in moderate and severely increased albuminuria groups

compared to T1D with normoalbuminuria. The Bristol stool

scale score and estimated bowel movement frequency were

comparable in each T1D albuminuria group. The daily dietary

macronutrient intake differed significantly between the

albuminuria groups as described previously (12).
2.2 Community, taxa, and functional
modules of the gut bacterial microbiota

In total 9,229 genes were mapped for the gut bacteriome

using KEGG Orthology (KO) annotation. The gene richness

distribution (Supplementary Figure 1) and the alpha (or

intragroup) diversity (Supplementary Figure 2) were not

distinctive of the four study groups when using the rarefied

data (QMP count; Supplementary Figure 3; Supplementary

Table 2), except when using Shannon index (p = 0.02).

However, pairwise comparison showed lower diversity in

moderately and severely increased albuminuria groups

compared to controls when using Shannon (pmicro= 0.015 and
FIGURE 1

Study design and analytical overview. The study cohort comprised 50 healthy and 161 individuals with T1D, who stratified on albuminuria levels:
normo-albuminuria (n=50, albuminuria levels =<3.39 mg/mmol), moderately increased albuminuria (n=50, albuminuria levels =3.39–33.79 mg/
mmol) and severely increased albuminuria (n=61, albuminuria levels =≥33.90 mg/mmol). For each study participant 1) plasma samples were
collected to perform non-targeted metabolomics analysis, including both polar metabolites and lipids, and 2) faecal samples collected for
metagenomics analysis. For the metagenomic samples, differences between the clinical groups at both taxonomical and functional level were
assessed. Lipidomics data was clustered into highly correlated lipid clusters in order to reduce dimensionality. Finally, different omics data types
were integrated with the Multi Omics Factor Analysis (MOFA+) tool and metabolite origin screened to identify bacterial- and host-related
metabolites through Least Shrinkage Selector Operator (LASSO) regression models. QMP, Quantitative Microbial Profiles; GMM, Gut Metabolic
Modules.
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FIGURE 2

Differential bacterial abundance at metagenomic species (MGS) level, between T1D and healthy individuals. (A) Volcano plot showing difference in ab
individuals (n=161) and the healthy controls (n=50). X-axis indicates Cliff’s Delta effect size; Y-axis represents FDR-corrected (negative log) p–values.
towards increasing direction of effects (right). MGS circle color depicts the corresponding annotated phylum. Circle size corresponds to the number
Transparency of the circle corresponds to the average relative abundance in which each MGS is found within participants. (B) Significant contrasts in
with the bar length corresponding to Cliff’s Delta effect size: green for higher and red for lower MGS abundances within T1D individuals. (C) Differen
on levels of albuminuria. Individual distribution of the log10 transformed QMP counts (absolute abundance) is depicted for each MGS in violin and d
subgroup is depicted with a boxplot, indicating median value of the distribution with a horizontal line, first and third quartile with the limits of the wh
with vertical bars. Significance for pairwise comparison between different study groups is indicated with p-value. (D) Significant correlations between
counts) are depicted as a heat map. Positive correlations are shown in red and inverse correlations in blue.
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pmacro = 0.004), or Simpson (pmicro= 0.08 and pmacro= 0.02)

indices (Supplementary Figure 2).

The community bacteriome dispersion varied between T1D

and HC (padonis=0.001). These differences were mainly driven by

T1D individuals with moderately and severely increased

albuminuria groups (ppermanova = 0.006), respectively.

Furthermore, the T1D individuals were heterogeneously

dispersed on the PCoA plot (Jensen-Shannon divergence

index) compared to controls (Supplementary Figure 4). These

observations were consistent with the 16s rRNA gene marker

results previously reported by Winther et al. (12).

Shotgun sequencing al lowed us to annotate the

bacterial taxonomy to species level (Metagenomic species

or MGS). Taxonomical annotations are provided in

Supplementary Table 3.

We identified 51 bacterial metagenomic species (MGS,

hereafter called species) that were differentially abundant

between T1D and HC (Figures 2A, B; Supplementary Table 4)

where the absolute abundance of 17 species were higher while 34

were lower in T1D individuals. In general lower absolute

abundance of Short-Chain Fatty Acids (SCFA) producers such

as Veilonella rogosae (17), Faecalibacterium sp., Butyricicoccus

spp. Clostridiales sp. and Lachnospiraceae bacterium was

observed in T1D compared to HC. Clostridium spp., including

C. saccharolyticum, known for its saccharolytic activity in

addition to Eisenbergiella tayi, Hungatella hathewayi and

Ruthenibacterium lactatiformans were more abundant in T1D

(Figures 2C, D). Some of the bacterial taxa (MGS) differences

observed between overall T1D and HC individuals were also

observed between T1D individuals with moderate or severe

albuminuria and HC individuals (Figure 2C; Supplementary

Figures 5, 6). Supplementary Figure 7 provides an overview of

MGS absolute abundance within the T1D albuminuria

subgroups and MGS specific and common to moderate and

severely increased albuminuria groups, compared to HC.

Further shotgun sequencing of the metagenome facilitated

mapping of functional metabolic potential and anaerobic

fermentation capacity of the metagenome in form of Gut

Metabolic Modules (GMMs) curation that represent a cellular

enzymatic process defined by input and output metabolites. The

GMMs computed using the Omixer Reference Pathway Mapper

and KEGG Orthology (RPM) (18) differed in abundance

(Supplementary Table 5) in T1D group compared to HC using

univariate analyses (Supplementary Table 6; Supplementary

Figure 8). The T1D bacteriome was enriched for modules of

sugar degradation (most abundantly for ribose, fucose and

trehalose) and for modules of amino acid metabolism,

particularly for non-polar amino acids (alanine, glycine,

isoleucine, methionine, and tryptophan), followed by acidic

(lysine, cysteine, and histidine) and polar (threonine and

glutamine) amino acids (PFDR<0.10; Supplementary Figure 8;

Supplementary Table 6).
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2.3 Gut phageome and type 1 diabetes

We identified 502 highly abundant phages in our study

participants of which 25 were differentially enriched between T1D

and HC (Figure 3A). Interestingly, the relative abundance of six of

these differentially enriched phages (uvig_37554, uvig_280596,

uvig_296393, uvig_436746, uvig_514207, uvig_557689) changed

with increasing level of albuminuria (Figure 3B).

Furthermore, CLR-normalized phage abundances were

associated inversely with multiple clinical factors (adjusted

for age, sex, and diet) including T1D status (25 phages),

diabetes duration (20 phages), eGFR (21 phages) and plasma

creatinine (7 phages) levels (Supplementary Figure 9).

Hematocrit was found to be related to 17 phages overlapping

with hemoglobin and partly glycosylated hemoglobin. All these

associations were partly overlapping with T1D-associated

phages (Supplementary Figure 9). The distribution of the

samples derived from the bacteriome and the phageome

analyses were similar, as assessed by Procrustes analysis

(correlation = 0.67; Figure 3C).
2.4 Plasma metabolome and lipidome

2.4.1 Plasma polar metabolites
We examined the differential abundance of 398 (143 known

and 255 unannotated) plasma polar metabolites (Supplementary

Table 7) between i) T1D versus HC and, ii) albuminuria subgroups

within T1D, using univariate and multivariate approaches.

To identify a subset of T1D - linked metabolites, we used the

partial least squares-discriminant analysis (PLS-DA) approach

(multivariate) splitting the dataset into 70% training and 30%

validation sample subsets. Albeit we achieved a good separation

(R2: 91.8%) using five components, the reproducibility of the

model was limited (Q2: 25%; Supplementary Figure 10). Next,

we selected polar metabolites (n=132) with a VIP (Variable

Importance in Projection score) ≥ 1 in the PLS-DA analysis and

we generated a PCA plot that effectively differentiated between

T1D and HC groups, whereas the score did not provide any

differentiation between albuminuria groups. (Figure 4A).

We identified 58 polar metabolites that were differentially

abundant between T1D and HC (PFDR<10%; Figures 4B, C;

Supplementary Table 8) using the univariate approach. In T1D

individuals, the plasma concentration of 1,5-anhydrosorbitol

was significantly lower followed by cholesterol and butylated-

hydroxytoluene while several sugar derived metabolites like

lyxofuranose and beta-D-tagatopyranose were higher

(Figure 4B; Supplementary Table 8). Within the T1D group a

univariate comparison between moderately and severely

increased albuminuria groups revealed significantly

(PFDR<10%) lower levels of ribitol, benzeneacetic acid,

decanoic acid and 3-phenylpropanoic acid while higher levels
frontiersin.org

https://doi.org/10.3389/fendo.2022.1015557
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


A C

pares the relative phage abundances between T1D and healthy
, (negative log) FDR-adjusted p-value. Significantly contrasted phages
le their transparency is relative to their mean abundance in the cohort.
ignificantly lower abundance in T1D are indicated as green bars while
mparing healthy controls with the three groups of T1D stratified by
s showing the global group distribution. Multi-group comparison
med with Wilcoxon test. (C) Comparison between the global
the disposition of individuals in the corresponding scores plot, for both
Individuals have been colored depending on their clinical group.

C
lo
s-G

arcia
e
t
al.

10
.3
3
8
9
/fe

n
d
o
.2
0
2
2
.10

15
5
5
7

Fro
n
tie

rs
in

E
n
d
o
crin

o
lo
g
y

fro
n
tie

rsin
.o
rg

0
6

B

FIGURE 3

Contrasted relative abundance of bacteriophages in T1D and healthy control individuals. (A) In the left panel, a volcano plot com
individuals. The X-axis represents Cliff’s Delta effect size while the Y-axis represents the association threshold for the comparison
(above the red dotted line) are annotated. Dot size is relative to the global prevalence of phage in the present study sample, whi
In the right panel, significantly contrasted phages are shown as bar plots corresponding to Cliff’s Delta effect sizes. Phages with s
red bars represent phages with significantly higher abundance in T1D. (B) Distribution of abundance of selected phages when co
albuminuria. For each phage, the CLR-transformed abundance distribution is represented in differently colored dots and boxplot
computed with Kruskal-Wallis test is included in each plot, as well as the pairwise comparisons between all study groups, perfor
composition of the phageome and the bacteriome, performed with Procrustes test. Principle coordinates analysis (PCoA) shows
bacteriome (circles) and phageome (triangles) based distance matrix. An arrow has been drawn connecting the same individuals.
Correlation and significance are indicated in the bottom right corner of the plot.
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FIGURE 4

Profiles of plasma polar metabolites and lipids in T1D and healthy control individuals. (A) Scores plot resulting from the partial least square discrimi
contribute highly (Variable influence on project (VIP) > 1) to a T1D signature. Colors depict clinical study groups and ellipses demarcate the spread
principal components (PC1 and PC2) is indicated on the respective X- and Y- axis. Global distribution of the participants from each clinical group i
analysis (volcano plot) depicting differential circulating polar metabolite abundances between healthy and T1D individuals. Significantly contrasted (
effects in direction of controls (right). (C) Functional metabolic pathway identification comparing T1D and healthy controls and depicting enriched
the human metabolome database (HMDB). Bars have been ordered and colored by the enrichment p-value score. (D) Univariate analysis (volcano
between healthy and T1D individuals. Significantly contrasted (FDR < 10%) lipid clusters are colored in red with increasing effects in direction of co
different T1D albuminuria groupings (compared to healthy controls) based on the number of carbon atoms (Y-axis) and the number of double bon
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https://doi.org/10.3389/fendo.2022.1015557
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Clos-Garcia et al. 10.3389/fendo.2022.1015557
of 2,3-dihydroxybutanoic acid in the severely increased

albuminuria group (Supplementary Figure 11).

2.4.2 Functional enrichment of plasma polar
metabolites and metabolic pathways

The functional enrichment analyses of plasma polar

metabolites (T1D vs. HC) led to identification of several

enriched human metabolic pathways. The differentially

enriched pathways mainly comprised of steroidogenesis and

steroid biosynthesis, bile acid biosynthesis, pentose phosphate

pathway and several sugar metabolism pathways, such as

fructose and mannose degradation and galactose metabolism

(Figure 4C; Supplementary Table 9).

2.4.3 Plasma lipidomics
7,470 plasma lipids (476 known and 6,994 unannotated,

Supplementary Table 10) were clustered into 122 strongly

correlated lipid clusters ranging between 3 to 1,054 lipids per

cluster (Supplementary Tables 11, 12).

We identified 60 lipid clusters (PFDR<10%) differentially

abundant between T1D and HC (Supplementary Table 13). The

T1D lipidome was enriched in a set of lysophosphocholines

(LPCs) and unknown lipids containing 20 to 22 carbon atoms

(Figure 4D). Inversely, lipid clusters containing long chain

ceramides (40-44 carbon atoms) and sphingomyelins (30-41

carbon atoms) were highly abundant in HC compared to

T1D individuals.

Further, we analyzed the distribution of the annotated

lipidome stratified by albuminuria status within the T1D and

compared these to HC. Triglyceride (TG) lipid species with large

number of carbon atoms (>55 carbon atoms) were positively

associated with severely increased albuminuria, while

comparatively shorter TGs (40-55 carbon atoms) were inversely

associated to both normo-albuminuria and moderately increased

albuminuria groups (Figure 4E).
2.5 Multi-omics factor analysis based on
albuminuria levels

Multi-Omics Factor Analysis 2 (MOFA2) (19) tool allowed

us to integrate all data on gut microbiome, plasma metabolites

(metabolomics and lipidomics), and clinical biochemistry and,

by a process of factorization, identify which data type was the

most contributing to the individuals’ T1D phenotype (stratified

on albuminuria status).

From the factorization results, we observed that the

lipidomics dataset explained a major part of the factors

composition (~50% variance), followed by the polar

metabolites, bioclinical variables, and the functional bacterial

profiling (GMM) of the gut microbiome (~30% of factor’s

variance) (Figure 5A). Finally, analysis of the taxonomical

composition of the bacteriome (QMP) explained about 15% of
Frontiers in Endocrinology 08
the factors’ composition. Furthermore, we observed a rather

limited interaction between the plasma metabolome and the gut

microbiome data, as no factors were found that combined

effectively these two data types (Figure 5B). Instead, the

combination of biochemistry analysis and polar metabolites

(factors 2 and 3) differentiated well between T1D and HC

individuals. Thus, by splitting all the data combined into 15

factors we observed a trend by which T1D status (and partly

albuminuria levels) influenced the position of the individuals

along the generated principal components (Figure 5C).

Details on clinical and metabolomic components resulting in

Factors 2 and 3 have been presented in (Supplementary Figure 12).

2.5.1 Relationships between the gut
bacteriome and differential blood metabolome

Since metabolome composition explained the factors

composition better than the other data types, we assessed the

relationships of the gut bacteriome and the blood metabolome

(Figure 6). Overall, 30% of the metabolites were associated with

the bacteriome taxonomical profiling, while 40% to 50% of it was

related to the bacter iome via functional profi l ing

(Supplementary Figure 13)

All the differentially abundant polar metabolites in the T1D

individuals were associated to the bacterial abundances of

Faecalibacterium prausnitzii, Clostridium spps., Lachnospiraceae

spp. and Eisenbergiella tayi.

The lipidome composition was mostly associated with the

bacteriome functional profiling (GMMs). In addition, the

lipidome composition was associated to only a small subset of

specific bacterial and/or archaeal species, such as Akkermansia

muciniphila and Methanobrevibacter smithii.
3 Discussion

In the present study, applying deep metagenomic

sequencing-based functional annotation and multi-omics

factorization we identified multiple additional molecular

signatures for T1D in the gut microbiome and plasma

metabolome and lipidome both individually and when

combined, compared to our previous findings (12). Moreover,

we provide a gut phageome profile for T1D. While most

significant differences in the gut microbial abundance and

circulating metabolites and lipids were observed between T1D

and HC, both moderately and severely increased albuminuria

groups also evidenced significantly enriched bacteriome and

plasma metabolite levels when compared to HC. In functional

bacteriome analyses, we identified sugar, amino acid, and short

chain fatty acid (SCFA) metabolizing species differentially

enriched in T1D compared to HC, while no significant

differences in the functional nature of the bacteriome was

observed upon albuminuria stratification. The latter may

suggest that nephropathy development is a continuous
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process, modifying both the microbiome and the metabolome in

a constant manner. Through multi-omics we report that

circulating lipids explained most of the phenotypic variance

for T1D (stratified for albuminuria) followed by polar

metabolites, clinical factors, and functional gut bacterial

profiling (GMM). Albeit a limited interaction between

circulating metabolome and gut microbiome was observed, a

combination of circulating polar metabolites and clinical risk

factors could best differentiate between T1D and HC individuals.

Deep shotgun sequencing of the microbiome allowed us to

annotate the bacterial taxonomy to species or strain level

(Metagenomic species or MGS) facilitating mapping of

functional metabolic potential and anaerobic fermentation

capacity of the metagenome in form of specie-function
Frontiers in Endocrinology 09
relationship or Gut Metabolic Modules (GMMs) (18). The

absolute number of differentially abundant MGS were

relatively higher in the group of severely increased

albuminuria, followed by moderate and reduced in normo-

albuminuria groups within the T1D cases (Supplementary

Figure 7). Overall, a higher number of MGS seemed to occur

with a lower absolute abundance in the T1D group compared

to HC (Figure 2B). This is not surprising as most immune

disorders have been generally associated with a loss of gut

microbia l d ivers i ty , spec ifica l ly Akkermans ia and

Faecalibacterium, both potentially contributing to host

immune tolerance (20). We also report significantly lower

absolute abundance of Faecalibacterium in the T1D group

compared to HC.
A B

C

FIGURE 5

Multi-Omics Factor Analysis (MOFA). Results from multi-omics data integration after combining multiple data types: metagenomics data
(taxonomical and functional), plasma metabolomics data (polar metabolites and clustered lipids) and biochemistry data using the MOFA+ tool.
(A) Global explained variance for each of the data types (included in the integration step) has been represented as a bar chart. (B) Composition
of 15 individual factors generated with the proportion of explained variance by each of the data types, displayed as a white-to-blue gradient in
increasing order. (C) Distribution of the eigenvalues obtained for each of the factors for the combined dataset. Within each of those factors the
individual, eigenvalues are represented as dot plots. Different colors in the dot plot depict different clinical study groups: orange for healthy
controls, dark gray for T1D with normo-albuminuria, light gray for T1D with moderately increased albuminuria and black for T1D with severely
increased albuminuria. Each of the study groups are also labelled in the bottom horizontal axis.
frontiersin.org

https://doi.org/10.3389/fendo.2022.1015557
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Clos-Garcia et al. 10.3389/fendo.2022.1015557
Alteration of the gut microbiota in T1D resulted in lower

SCFA production capabilities and increased saccharolytic

activity. SCFAs are carboxylic acids with aliphatic tails of 1-6

Carbon atoms, acetate (C2), propionate (C3) and butyrate (C4),

being most abundant produced by anerobic fermentation of

polysaccharides or dietary fibers. SCFAs are mainly produced by

Bacteroidetes (C2 and C3) and Firmicutes sp. (C4) further

promoting beneficial bacteria survival (21, 22). Dietary fiber

can upregulate carbohydrate metabolism enzymes, increasing
Frontiers in Endocrinology 10
SCFAs that enhance intestinal epithelial barrier function

(particularly C4) reducing metabolic toxins and expression of

inflammatory molecules (23). The C4 SCFA is also deemed

important for hypoxia inducible factor 1 (HIF1) stability in

maintaining epithelial barrier through C4-based oxygen balance

and maintaining low oxygen concentrations in gut (21). A recent

study also reported that lower SCFAs were associated with

metabolic syndrome (22) and autoimmune disorders like

inflammatory bowel disease (21). The absolute abundance of
FIGURE 6

Differentially abundant circulating metabolites and microbiome origin and functionality assessment. Summary of the circulating metabolites and
lipids data integrated with gut microbiome origin and functionality in the T1D vs healthy controls comparison. The two heatmaps display
significantly contrasted (FDR < 10%) polar metabolites (left) and lipid clusters (right) between T1D and healthy individuals. Column 1 (red green of
each of the two heatmaps shows the Cliff’s Delta effect size for the clinical group comparison, ordered from higher to lower abundance in T1D
individuals and colored from red (higher) to green (lower) gradient depending on its relative abundance in T1D individuals. Column 2 (black-
white) shows the usefulness of the metabolite for discrimination between T1D and healthy individuals based on Area Under the Curve (AUC)
analyses. The black-to-white-to-black gradient for AUC depicts assessment ability with 50% being uninformative AUC, 0% being the limit for the
identification of healthy individuals and 100% being the limit for identification of T1D individuals. Column 3 (purple white) depicts relationship
between the metabolites and bacterial QMP counts (absolute MGS abundance). Cells are colored if there is any significant association with
metabolite levels (based on LASSO modelling) and the white-to-purple color gradient depicts the explained variance by the microbiome.
Column 4 (purple white) depicts the relationship between the circulating metabolites and functional abundance of GMMs. Cells are colored if
there is any significant association with metabolite levels (based on LASSO modelling) and the white-to-purple color gradient depicts the
explained variance by the microbiome metabolic potential (or functionality).
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the majority of Clostridiales sp. belonging to phylum Firmicutes

was significantly lower in the T1D in the current study. A

polysaccharide treatment induced increase in abundance of

SCFA producing Clostridiales sp. has been reported to lower

blood glucose levels, improve glucose tolerance and restore lipid

balance in a rat model of type 2 diabetes (24) further supporting

our findings and the relationship between lower bacterial

abundance, correspondingly lower bacteriome function and

T1D. The absolute abundance of R. lactatiformans, a lactate-

producing bacterium (25), was also higher in T1D partially

aligning with the elevated blood lactate levels recently reported

in T1D (26). In addition, the absolute abundance of Clostridium

Spp., which is known for its sugar degradation capabilities was

higher in the T1D group. Interestingly, abundance of H.

hathewayi, which is reported to be positively associated with

circulating taurine levels (27) was enriched in T1D. Given the

fact that taurine levels reduce hyperglycemia (28, 29), abundance

of H. hathewayi among T1D may explain the body’s

compensatory mechanism to counter hyperglycemia.

Functional classification of the T1D associating plasma

metabolites suggested pathways enriched for steroidogenesis,

bile acid biosynthesis and sugar metabolism. Additionally, the

T1D plasma lipidome profile associated with alterations in the

circulating sphingolipid (SL) levels, especially ceramides,

which were partially produced by the gut microbiota,

particularly Bacteroides sp. (Supplementary Table S14).

Sphingolipids are known for their bioactive role as secondary

messengers especially in metabolic disorders. Recently, it has

been demonstrated that gut bacterial sphingolipids may pass

the intestinal epithelium barrier, modifying the host’s

sphingolipid metabolism (30). Particularly, bacterial

sphingolipids inhibit the processing of the host’s own

sphingolipids, including ceramides, the lipid type most

altered in T1D. In the current study, lipids, especially long

chain sphingolipids (ceramides and sphingomyelins) were

multifold lower in T1D compared to HC, irrespective of the

albuminuria stratifications. Recent studies supporting our

findings observed associations between host circulating long

chain ceramides and reduced kidney function (13) and diabetic

kidney disease (14, 15) in T1D. We recently reported long

chain sphingomyelins, to be inversely associated with

albuminuria (especially severely increased albuminuria vs.

normoalbuminuria) in 669 individuals with T1D (13) which

were also observed in the DCCT/EDIC trial (15) but remained

inconclusive in the current study potentially due to limited

sample size. Animal studies have confirmed the role of

sphingolipids-derived ceramides in insulin resistance of liver

(31) while their pharmacological inhibition improved glucose

homeostasis (32). However, the mechanism by which

sphingolipids may influence albuminuria development is

unclear. Bacteria-derived sphingolipids have been reported to

act as ligands for G protein-coupled receptors (33), including

those found in the intestinal epithelium (34, 35). These results
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are compatible with the albuminuria-inducing gut microbiota

action hypothesis mediated through GPR43 upregulation (10).

The observed metabolomics profile was in accordance with

our previous study looking into the pathophysiology of diabetic

kidney disease (DKD) (36). In the present study we identified

several associations between plasma metabolites and

albuminuria in T1D. The main association was with polyols

where we showed that plasma concentrations of sorbitol and

ribitol both were higher in direct proportion to higher levels of

albuminuria. The same metabolites, pointing to a validation in

an independent cohort, applied to hydroxy butyrate 3,4-

dihydroxybutanoic acids which were associated with moderate

and severely increased albuminuria and have now replicated in

the present study. Most interestingly sorbitol 3,4-

dihydroxybutanoic and quininic acid were among the three

identified metabolites showing strong associations to the

abundance of bacterial species (Figure 2). However, the

outcome of the functional enrichment results of circulating

metabolites in T1D group can mainly be characterized as

alterations related to two metabolic functions: cholesterol

biosynthesis, and glucose metabolism.

The altered cholesterol levels resulted in a specific

enrichment of steroid hormones biosynthesis and related

metabolic pathways. Alterations of sexual hormone levels, with

link to reduced fertility and increased risk for cardiovascular

disease have been previously reported in T1D (20), which might

be related to our results and the specific steroid metabolic

alterations. For the glucose metabolism, the pentose phosphate

metabolic pathway was highly enriched in our dataset.

Interestingly, a protective role against chronic diabetes

complications, including diabetic nephropathy, has been

previously reported for this metabolic pathway (21, 22, 37).

Further factorization of multi-omics data in the current study

demonstrated that the circulating lipidome could explain most of

the (50%) T1D phenotypic variance followed by polar circulating

metabolites, functional bacterial profiles (GMM) and finally 15% by

taxonomical bacterial composition (QMP) (Figure 5). However, no

distinction based on level of albuminuria could be made. We

identified two distinct interactions that differentiated the T1D and

HC groups best. These factors (factor 2 and 3, Figure 5) comprised a

set of polar metabolites and bio-clinical markers. Interestingly the

most significant drivers within these clinical and metabolite features

were diabetes duration and a combination of sugar derivatives

(Supplementary Figure 12). However, only a limited interaction

between plasma metabolome and gut microbiome data was

evidenced. While investigating metabolome origins we found

polar metabolites that were associated with bacterial abundance

reflected in relevant GMMs enriched for amino acids metabolism.

Similarly, the lipidome was associated with bacterial function

through relationships between the lipidome composition and

abundance of GMMs involved in sugar degradation.

On this note, we need to consider the role of medication in

both the gut microbiome (38, 39) and the blood metabolome
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(40), especially considering the amount of time T1D individuals

have received medication (30 to 45 years since diabetes

diagnosis). We observed a strong influence of statins on

abundance of Clostridia and Ruminococcaceae spps., while the

abundance of remaining gut bacteria seemed less influenced by

the prescribed drug regimes.

Our study doesn’t come without limitations, the most

obvoius fact being this is a cross-sectional study, which limits

the evaluation of the gut microbiome's contribution to

albuminuria development. The findings reported here are

based on bioinformatics analysis of combined omics

technologies, which is a recent research field lacking

standardized protocols, hampering reproducibility. The same

holds for the metabolomics data analysis, which could only

annotate a modest fraction of the identified metabolites.

Moreover, identification of phages in the current study was

limited to annotations available in the Gut phage database (19).

Finally, the findings reported here are based on one specific

cohort. Considering that the microbiome and the metabolome

are also affected by a combination of environmental and

biological factors, a validation on a different cohort with

different environmental conditions would provide with more

robust results.

Gut microbiome composition is known to be modifiable by

several environmental factors, such as diet (41) or exercise (42)

and/or through fecal microbiota transplant (FMT). Since this

study demonstrates a relationship between the dysbiotic gut

microbiota and an altered plasma metabolome composition in

T1D cases with albuminuria, and if our findings are replicated in

independent studies, it might serve as a basis for future

microbiota-based interventions in T1D with albuminuria. Such

interventions might include diet modifications or prescription of

second-generation probiotics.
4 Materials and methods

4.1 Study design

A cross-sectional study conducted during 2016-2017

recruited 161 type 1 diabetes (T1D) individuals followed at the

Steno Diabetes Center Copenhagen (SDCC) outpatient clinic

and 50 non-diabetic age and gender matched healthy control

individuals (12). All participants were >18 years of age and type

1 diabetes was diagnosed according to the WHO-criteria.

Exclusion in the current study participation involved presence

of at least one of the following conditions, (a) non-diabetic

kidney disease; (b) renal failure (estimated glomerular filtration

rate or eGFR <15 ml min−1[1.73 m]−2), dialysis or kidney

transplantation; (c) change in renin–angiotensin–aldosterone

system (RAAS)-blocking treatment during the month prior to

study inclusion; (d) treatment with systemic antibiotics in the 3

months prior to recruitment; and (e) treatment with systemic
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immunosuppressive agents. Individuals with T1D were stratified

into three different albuminuria groups based on the highest

urine albumin/creatinine ratio (UACR) level measured on the

study visit or documented previously in two out of three

consecutive urine samples within past 1 year (as 24 h urine

albumin content in samples [UAER] or UACR). Basis

albuminuria groupings, 50 individuals had normoalbuminuria

(<3.39 mg/mmol corresponding to <30 mg/24 h or mg/g), 50

had moderately increased albuminuria (3.39–33.79 mg/mmol

corresponding to 30–299 mg/24 h or mg/g) and 60 had severely

increased albuminuria (≥33.90 mg/mmol corresponding to ≥300

mg/24 h or mg/g). There was no recorded history elevated

a lbuminur ia for par t i c ipants c las s ified as hav ing

normoalbuminuria. For the severely increased albuminuria

group, at least 30 individuals were selected based on

concurrent eGFR <60 ml min−1[1.73 m]−2. The study design

has been described in Supplementary Section (Figure 1, Supp

Text). The study was conducted in accordance with the

Declaration of Helsinki and approved by the Ethics

Committee of the Danish Capital Region (protocol H-

15018107). All participants gave written informed consent and

provided with self-collected fecal sample for posterior

metagenomics analysis (Figure 1).
4.2 Metagenomics

4.2.1 Sequencing
Sequencing and metagenomic species (MGS) generation was

performed as previously described (43). Quality control of raw

FASTQ files was performed using KneadData (v. 0.6.1) to

remove low-quality bases and reads derived from the host

genome as follows: Using Trimmomatic (v. 0.36), the reads

were quality trimmed by removing Nextera adapters, leading

and trailing bases with a Phred score below 20, and trailing bases

in which the Phred score over a window of size 4 drops below 20.

Trimmed reads shorter than 100 bases were discarded. Reads

that mapped to the human reference genome GRCh38 (with

Bowtie2 v. 0.2.3.2 using default settings) were discarded. Read

pairs in which both reads passed filtering were retained; these

were classified as high-quality non-host (HQNH) reads.

4.2.2 Metagenomic species generation
As reference gene catalogue, we used the Clinical

Microbiomics Human Gut 22M gene catalogue (22 459 186

genes), which was created from >5000 deep-sequenced human

gut specimens. For MGS abundance profiling, we used the

Clinical Microbiomics HGMGS v.2.3 set of 1273 MGS, which

has highly coherent abundance and base composition in a set of

1776 reference human gut samples (44).

HQNH reads were mapped to the gene catalogue using

Burrows-Wheeler Alignment (BWA) men (v. 0.7.16a) with

options to increase accuracy (-r 1 -D 0.3). PCR/optical
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duplicates were removed using samtools (v. 1.6). Each individual

read was considered mapped if the following criteria were met:

an alignment of ≥ 100 bases, ≥ 95% identity in this alignment,

and a mapping quality (MAPQ) ≥ 20. However, if a read failed to

align to the gene sequence with > 10 bases at either end, it was

considered unmapped. Reads meeting the alignment length and

identity criteria but not the MAPQ threshold were considered

multimapped. Reads failing the alignment length or identity

criteria were considered unmapped. Read pairs were classified

into one of three possible categories as follows:
Fron
1) Read pairs in which both individual reads were

considered unmapped.

2) Read pairs in which both individual reads were

multimapped, or were mapped to genes in different

MGSs, or one was multimapped and the other was

unmapped, were considered multimapped.

3) Read pairs in which both individual reads mapped to the

same gene; or in which one read mapped to a gene and

the other was unmapped, multimapped, or mapped to

another gene in the same MGS (see below); were

considered mapped. A gene counts table was created

with the number of mapped read pairs (for each gene),

unmapped read pairs, and multimapped read pairs.
For each MGS, the “core” genes were defined as the 100

genes specific for the MGS and with the highest correlation to

the mean and lowest absolute deviation from the mean. A MGS

counts table was created based on the total gene counts for the

100 core genes of each MGS. However, MGS was considered

detected only if read pairs were mapped to at least three of its 100

core genes; counts for MGSs that did not satisfy this criterion

were set to zero. The MGS counts table was normalized

according to effective gene length (accounting for read length)

and then normalized to sum to 100%, resulting in relative

abundance estimates of each MGS. Down-sampled (rarefied)

MGS abundance profiles were calculated by random sampling,

without replacement, from each sample in the MGS counts table.

Values with fewer than three counts after down-sampling were

set to zero, and the counts table was normalized according to

effective gene length and then normalized to sum 100%.

4.2.3 Computation of quantitative
microbial profiles

Faecal samples were subjected to bacterial cell counting with

flow cytometry. Aliquots of 0.08-0.15 g defrosted faeces were

diluted 2,118 times in staining buffer (1 mM EDTA (Sigma-

Aldrich), 0.01% Tween20 (Sigma-Aldrich), pH 7.2 DPBS (Lonza

BioWhittaker), 1% BSA (Sigma-Aldrich)). In order to remove

debris from the faecal solutions, samples were filtered using a

sterile syringe filter (pore size 5 mm (pluriSelect)). Next, 170 mL
of the bacterial cell suspension was stained with 20 mL DAPI
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(1mM in H2O, Sigma-Aldrich). The flow cytometry analysis of

the bacterial cells present in the suspension was performed using

a BD Fortessa LSRII flow cytometer (BD Biosciences).

Measurements were performed at a pre-set flow rate of 0.5 mL/
sec. Fluorescence events were monitored using the 440/40 nm,

575/26 nm, and 695/40 nm optical detectors, respectively.

Forward and sideways-scattered light was also collected. The

BD FACSDiva™ Software was used to gate and separate the

bacterial fluorescence events from the faecal sample background.

A threshold value of 900 was applied on the area of forward

scattered channel (FSC) and a threshold value of 200 was applied

on the area of sideways scattered (SSC) channel. Other flow

settings are listed in Supplementary Table 16.

Density plots of blue fluorescence (440/40 nm) versus FSC

allowed for distinction between the stained microbial cells and

instrument noise or sample background. Density plots of red

fluorescence (695/40 nm) versus FSC allowed for distinction

between the counting beads and other particles in the testing

solution, including bacteria, instrument noise or sample

background. The exact same gates and gating strategy were

applied for all samples in the form of a fixed template to allow

direct comparison between measured samples.

Bacterial cell counts were later used for quantitative

microbial profiling (QMP), as described elsewhere (45).

Briefly, data was rarefied to equal sampling depth and cell

counts used to compute the total abundance of each MGS.

4.2.4 Computation of gut metabolic modules
Emapper software (v. 1.0.3, HMM mode) was used to

compare each gene in the gene catalogue to the EggNOG (v.

4.5) orthologous groups database (http://eggnogdb.embl.de/),

resulting in annotations for 65% of genes. These genes were

then mapped from EggNOG to the Kyoto Encyclopedia of Genes

and Genomes (KEGG) orthology database (http://www.genome.

jp/kegg/kegg1.html) using MOCAT2 lookup tables (http://

mocat.embl.de/). The annotation of GMMs was performed in

R applying Omixer-RPM (http://www.raeslab.org/software/

gmms.html). The GMM counts are referring to GMM QMPs

based on MGS QMP counts. The GMM abundance table was

then transformed using the central log-ratio (CLR) to ensure

normality and assess its compositionality nature.

4.2.5 Computation of the phageome from
sequenced faecal DNA

Bulk sequence reads reads derived from sequencing of faecal

DNA were aligned against Gut Phageome Database (GPD) (46)

with BWA mem. Obtained phages were then quality-filtered,

retaining only the reads aligning to, at least, 75% of the phage

genome length. Phageome counts dataset was then rarefied to

the minimal reads and those phages not found in, at least, 10% of

the samples (n=21) were removed. This resulted in a total of 502

phages to be included in the final dataset. Phageome counts were
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then transformed with CLR approach to assess for

compositionality of the data.

4.2.6 Computation of differential microbiome
features

For the taxonomical analyses, the absolute MGS and/or

genus clustered counts were used, after transformation with

faecal cell counts. We used linear mixed models, adjusting for

age, sex, race, BMI, and dietary data to compute the significance.

Multiple testing correction as computed using the False

Discovery Rate (FDR) approach. Effect sizes for the differences

observe were computed using the Cliff’s Delta test. For the GMM

differential analyses, we used the same approach as for the MGSs

but using the abundances computations.
4.3 Analyses of the untargeted plasma
polar metabolites and lipids

4.3.1 Polar metabolites
The plasma samples were stored at −80 °C until analysis. The

polar metabolites were analyzed using two-dimensional gas

chromatography combined with time-of-flight mass spectrometry

(GC×GC-TOFMS, a LECO Pegasus 4D equipped with a

consumable-free thermal modulator from LECO Corp). The

method has previously been described in detail (36, 43, 47).

Specifically, 400 ml methanol and 10 ml internal standard mixture

(Heptadecanoic acid-d33, Valine-d8, Glutamic acid-d5 and succinic

acid-d4) were added to 30 ml of plasma samples. The samples were

vortex mixed and centrifuged for 5 min at 10,000 rpm and half of

the supernatant was evaporated to dryness. This was followed by

two-step derivatization usingmethoximation and trimethylsilylation

by first adding 25 ml methoxamine (45°C, 60min) and then 25 ml N-
trimethylsilyl-N-methyl trifluoroacetamide (45°C, 60 min). Finally,

a retention index standard mixture (n-alkanes) and an injection

standard (4,4′ -dibromooctafluorobiphenyl), both in 50 µl hexane,

were added to themixture. The calibration consisted of six points for

each quantified metabolite.

The columns were as follows: a phenyl methyl deactivated

retention gap (1.5 m × 0.53 mm i.d.) was connected to 10 m ×

0.18 mm Rtx-5MS (phase thickness 0.18 mm) and to 1.5 m ×

0.1 mmBPX-50 (phase thickness 0.1 mm). Helium was used as the

carrier gas at a constant pressure mode (40 psig). A 4-s separation

time was used in the second dimension. The temperature program

was as follows for the first-dimension column: 50°C (2 min), at 7°

C/min to 240°C and at 25°C/min to 300°C (3 min).

The second-dimension column temperature was 15°C

higher than the corresponding first-dimension column

throughout the program.

ChromaTOF 4.72 vendor software (LECO)was used for within-

sample data processing, and the Guineu software (43) was used for

alignment, normalization, and peak matching across samples. The

normalization was performed by correction with internal standards
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and specific target metabolites were additionally quantified using

external calibration curves. Compounds were identified by

comparison to in-house and NIST14 (48) library entries.

Of the 398 total polar metabolites, 143 of them were annotated

while the remaining 255 were unannotated. Normalized and log-

transformed data was firstly adjusted for individual eGFR

(accessible at eGFR Calculator | National Kidney Foundation).

The obtained data was then used for the subsequent analyses. We

used a combined univariate-multivariate approach to identify

relevant features for the discrimination of the T1D individuals

from the healthy controls as well as the different T1D subgroups

stratified on level of albuminuria. To do so, we used Principal

Component Analysis (PCA), Partial Least Squares Discriminant

Analysis (PLS-DA) and linear mixed models, with sex, age, BMI,

and dietary data as fixed effects. Cliff’s Delta effect size was used to

determine the difference in metabolite abundance between the two

compared groups. All obtained p-values were adjusted for multiple

testing with the false discovery (FDR) approach, considering 10%

FDR threshold as significant.

We then used the HumanMetabolome Database (HMDB) for

annotating polar metabolites enabling a functional enrichment

analysis with MetaboAnalyst tool (49). To do so, we uploaded a

dataset consisting the abundances of normalized, centered, and

scaled HMDB-annotated polar metabolites. Then, we selected the

metabolic pathway associated metabolite sets to compute the

differentially enriched metabolic pathways in study participants.
4.3.2 Plasma lipidomics
The plasma samples were stored at −80 °C until analysis. The

Folch procedure (50) was used for sample preparation with

minor modifications based on previously published methods at

Steno Diabetes Center Copenhagen (13, 51, 52). Briefly, plasma

samples were randomized and lipids were extracted from 10 mL
plasma using chloroform:methanol (2:1 v/v) following addition

of nine different internal standards (stable isotope labelled and

non-physiological lipid species). Samples were analyzed in

random order in positive electrospray ionization mode using

ultra-high-performance liquid chromatography-quadrupole

time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) from

Agilent Technologies (Santa Clara, CA, USA). The lipidomics

data were pre-processed with MZmine2 (53) in which lipids

were semi-quantified by normalizing the peak areas to internal

standards and corrected for batch effect. Missing values were

imputed with the k-nearest neighbour algorithm and all values

were log-2-transformed to achieve normal-distributed data.

For the analysis of lipidomics, we used the same approach as

outlined above for the polar metabolites. Of the 7,470 total lipids,

476 of them were annotated, while the remaining 6,994 were

unannotated. Following adjustment for individual eGFR value,

we used weighted gene co-expression network analysis

(WGCNA) to cluster all the strongly correlated lipids, in order

to reduce the dimensionality of the data. From the original 7,470
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lipids we obtained 122 clusters, ranging from 3 lipids to 1,054

lipids. Lipid clusters were annotated considering their lipid

content. If all the lipids in the cluster were unannotated, we

named the corresponding cluster as “unknown” followed by a

number. From here on in lipids cluster analyses, we followed the

same approach as described for the polar metabolites.

Individual annotated lipids were used to study the associations

between the clinical groups and the lipid specie types with

LipidomeR R-package, accessible at https://lipidomer.org/.

4.3.3 Metabolite origin assessment
To evaluate whether metabolome features could be related to

bacterial metabolism or to the host’s metabolism and/or lifestyle

factors, we used Least Absolute Shrinkage and Selection

Operator (LASSO) modeling. This approach allowed us to

identify whether the abundance of metabolome features (polar

metabolites, lipids and/or lipid clusters) was better predicted by

bioclinical data, QMP or GMM data and/or lifestyle.
4.4 Drug deconfounding of all data sets
in the present study

All the datasets used in this project were scrutinized for any

drug-associated features. To do so, we used the R package

metadeconfoundR (available at https://github.com/TillBirkner/

metadeconfoundR) (54), with its default parameters.
4.5 Data integration

4.5.1 Multi-omics factor analysis
The normalized datasets were used to investigate

interactions and potential signatures involving gut microbiome

and plasma metabolome profiles in T1D and its subgroups

stratified on albuminuria. Biochemistry data was also

combined after normalization (log transformation). Finally, we

combined QMP taxonomical counts, GMM CLR-transformed

dataset, polar metabolites, lipidomics clusters and biochemistry

data for the integration step. We used multi-omics factor

analysis (MOFA+) (24) with default parameters, to study the

interactions between different layers of data and the potential for

identifying combinations of features useful for predicting T1D

with varying levels of albuminuria.
4.6 Statistical analysis

All statistical analyses were performed in R software (https://

cran.r-project.org/), running version 4.1.0. Significance tests

results were corrected for multiple testing with False Discovery

Rate (FDR) approach and significance set at 10% FDR threshold.

Data visualization was done with ggplot2 R package. Specific
Frontiers in Endocrinology 15
details on the methodology regarding specific data types has

been reported in the corresponding section of the methods.
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Wisnewsky J, Nielsen T, et al. Combinatorial, additive and dose-dependent drug–
microbiome associations. Nature (2021) 600:500–5. doi: 10.1038/s41586-021-04177-9
frontiersin.org

https://doi.org/10.1126/science.aav3722
https://doi.org/10.2337/db16-0663
https://doi.org/10.1038/nature23874
https://doi.org/10.1016/j.mib.2017.12.011
https://doi.org/10.1007/s00441-005-0140-x
https://doi.org/10.3389/fendo.2019.00818
https://doi.org/10.3389/fendo.2022.831793
https://doi.org/10.1038/nature25979
https://doi.org/10.1038/s41586-019-1291-3
https://doi.org/10.1371/journal.pone.0187729
https://doi.org/10.1371/journal.pone.0187729
https://doi.org/10.1128/mSystems.00665-20
https://doi.org/10.1249/JES.0000000000000183
https://doi.org/10.1249/JES.0000000000000183
https://doi.org/10.1038/nature18646
https://doi.org/10.1038/nbt.2939
https://doi.org/10.1038/nature24460
https://doi.org/10.1016/j.cell.2021.01.029
https://doi.org/10.1021/ac103308x
https://doi.org/10.1194/jlr.M079012
https://doi.org/10.1093/nar/gkab382
https://doi.org/10.1016/S0021-9258(18)64849-5
https://doi.org/10.1016/j.jhep.2017.02.014
https://doi.org/10.1038/tp.2017.211
https://doi.org/10.1186/1471-2105-11-395
https://doi.org/10.1038/s41586-021-04177-9
https://doi.org/10.3389/fendo.2022.1015557
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

	Multiomics signatures of type 1 diabetes with and without albuminuria
	1 Introduction
	2 Results
	2.1 Characteristics of study participants
	2.2 Community, taxa, and functional modules of the gut bacterial microbiota
	2.3 Gut phageome and type 1 diabetes
	2.4 Plasma metabolome and lipidome
	2.4.1 Plasma polar metabolites
	2.4.2 Functional enrichment of plasma polar metabolites and metabolic pathways
	2.4.3 Plasma lipidomics

	2.5 Multi-omics factor analysis based on albuminuria levels
	2.5.1 Relationships between the gut bacteriome and differential blood metabolome


	3 Discussion
	4 Materials and methods
	4.1 Study design
	4.2 Metagenomics
	4.2.1 Sequencing
	4.2.2 Metagenomic species generation
	4.2.3 Computation of quantitative microbial profiles
	4.2.4 Computation of gut metabolic modules
	4.2.5 Computation of the phageome from sequenced faecal DNA
	4.2.6 Computation of differential microbiome features

	4.3 Analyses of the untargeted plasma polar metabolites and lipids
	4.3.1 Polar metabolites
	4.3.2 Plasma lipidomics
	4.3.3 Metabolite origin assessment

	4.4 Drug deconfounding of all data sets in the present study
	4.5 Data integration
	4.5.1 Multi-omics factor analysis

	4.6 Statistical analysis

	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


