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Replacement of b cells is only a curative approach for type 1 diabetes (T1D)

patients to avoid the threat of iatrogenic hypoglycemia. In this pursuit, islet

allotransplantation under Edmonton’s protocol emerged as a medical miracle

to attain hypoglycemia-free insulin independence in T1D. Shortage of allo-islet

donors and post-transplantation (post-tx) islet loss are still unmet hurdles for

the widespread application of this therapeutic regimen. The long-term survival

and effective insulin independence in preclinical studies have strongly

suggested pig islets to cure overt hyperglycemia. Importantly, CRISPR-Cas9

technology is pursuing to develop “humanized” pig islets that could overcome

the lifelong immunosuppression drug regimen. Lately, induced pluripotent

stem cell (iPSC)-derived b cell approaches are also gaining momentum and

may hold promise to yield a significant supply of insulin-producing cells.

Theoretically, personalized b cells derived from a patient’s iPSCs is one

exciting approach, but b cell-specific immunity in T1D recipients would still

be a challenge. In this context, encapsulation studies on both pig islet as well as

iPSC–b cells were found promising and rendered long-term survival in mice.

Oxygen tension and blood vessel growth within the capsules are a few of the

hurdles that need to be addressed. In conclusion, challenges associated with

both procedures, xenotransplantation (of pig-derived islets) and stem cell

transplantation, are required to be cautiously resolved before their

clinical application.

KEYWORDS
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1 Introduction

Type 1 diabetes (T1D) is a devastating disease, where glucose

control in the body gets askew due to the destruction of b cells in

the pancreas by auto-reactive CD8+ T cells (1, 2). In the United

States alone, approximately 1.5 million people suffer from T1D

(3). Therefore, for subjects with T1D, taking insulin is not an

option but a lifesaving commodity. Though insulin therapy

attempts to maintain normal glucose homeostasis in T1D

patients, iatrogenic hypoglycemia due to impaired insulin–

glucagon counter-regulatory responses (4) is a major

shortcoming of this treatment. Importantly, hypoglycemic

episodes can be fatal in T1D (5–7), and new treatment

strategies, either alone or in conjunction with current

modalities, aimed at both hyperglycemia and hypoglycemia

management in T1D patients are utmost required.

In the year 2000, James Shapiro developed a protocol,

dubbed as the Edmonton protocol, for the transplantation of

allo-islets under steroid-free immunosuppressants. In this study,

all patients had demonstrated repeated episodes of severe

hypoglycemia before the islet transplantation. This procedure

maintained normoglycemia in T1D patients without a threat of

hypoglycemia and had dramatically improved their quality of

life (8).Shortage of cadaveric pancreas donors challenged the

widespread application of allo-islet transplantation (9).

Owing to anatomical and physiological similarities, pig is now

being considered an alternative option (10), and various groups

achieved long-term survival of pig islets in cynomolgus monkeys

for more than a hundred days (11, 12). Despite the great success

of allotransplantation and then xenotransplantation of islets,

60% islet loss within 2 to 3 days in either case (via intraportal

transplantation strategy) turned out to be one of the hurdles in

restoring adequate islet mass secreting enough amount of

insulin. Induction of instant blood-mediated inflammatory

reaction (IBMIR) as a result of activation of thrombosis and

complement pathways is the sole reason for post-transplantation

islet loss (13–16). A multitude of strategies are now being

attempted to reduce instant islet loss as a result of IBMIR (17–

19). One recent advancement in this direction is CRISPR-Cas9-

mediated genetic modification for the development of IBMIR-

resistant pigs. Pig islets expressing human-derived complement-

regulatory protein (CD46) and tissue factor (CD39), either alone

or in combination, turned out to be beneficial in maintaining a

state of normoglycemia in diabetic monkeys for more than 1

year. Lately, abrogation of IBMIR in xenotransplantation of

neonatal pig islet cell cluster in nonhuman primates (NHPs)

by GGTA-/- CD55+CD59+ pigs further proved the hypothesis

(20, 21).

In addition to IBMIR, immune incompatibility between

donor and recipient is another major reason for xenogeneic

rejection, and a potent immune suppression regimen is therefore

needed to overcome xeno-immunity. Ironically, these

permanent immune suppressants have shown to be deleterious
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and toxic for both islet grafts as well as recipients. Therefore,

encapsulation of islets has been attempted in various clinical

trials to rescue the pig islets from the recipient’s immune

response (22). Though islets encapsulated in various kinds of

biocompatible materials are now being used in clinical trials,

the biocompatibility of the encapsulating material is still a

matter of debate. The concept of SC-derived b cells has also

proven fortuitously beneficial to minimize the use of

immunosuppressive drugs and to increase the antigen

similarity of the islets to be used for transplantation with the

recipient. Along these lines, the development of induced

pluripotent stem cell (iPSC)-generated b cells is also under

progress. Two groups—Douglas Melton’s and TJ Kieffer’s—

independently achieved a major success in the conversion of

iPSCs into functional b cells (23, 24). Scaling up this process to

obtain the total number of b cells required to restore

normoglycemia (i.e., ~109 cells/average weight of human:

70 kg) and to protect transplanted b cells from an aberrantly

activated immune system in T1D patients are two hurdles to be

resolved before transitioning them towards the clinic. In this

review, we discuss the challenges associated with human and pig

islet transplantation and explore whether stem cells could evolve

as better technology to cure T1D (Figure 1).
2 Allotransplantation of human islets

Insulin therapy is dependent on the absorption and

clearance rates of injected insulin (4). Importantly, T1D

patients under intensive insulin therapy gradually develop the

attenuation of sensitivity towards hypothalamus-dependent

insulin-regulating glucagon–epinephrine responses (25, 26). To

prevent loss of these glucose counter-regulatory responses, cell-

based therapy—islet transplantation—may be best suited to

prevent overt hyperglycemia in T1D patients (8). Overall, islet

transplantation is less invasive than whole pancreas

transplantation—the patient of which, most of the time, suffers

from complications due to the drainage of exocrine secretion

into the intestine and/or the bladder (27). Islet transplantation,

pioneered by Paul Lacy in 1967, was first used to restore

normoglycemia in rats (28). Subsequently, in the year 2000,

James Shapiro, under the Edmonton protocol, successfully

reported insulin independence in all of the seven recipients

(T1D patients) at 1 year after transplantation. Steroid-free

immune suppression, multiple-donor islet transplantation

(more than one time), fine-tuning of isolation method, and

immediate transplantation of islet without culture are the salient

features of the Edmonton protocol (8, 29). The results of the

Edmonton protocol were further substantiated by the Immune

Tolerance Network multi-center trial (30). Furthermore, a more

recent phase 3 trial of transplantation of human islets in T1D

demonstrated the successful achievement of insulin

independence without severe hypoglycemic episodes (31). In
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this study, the achievement of two imperative goals were

interrogated after human islet transplantation (1): primary

endpoint included the reduction of HbA1c level of <7.0% (53

mmol/mol) (2), the glycemic goal encompassed the

independence from severe hypoglycemic episodes (SHEs) from

day 28 to 365 after the first islet transplant. Interestingly, 87.5%

of islet transplantation subjects achieved the first endpoint for 1

year, and 71% individuals had demonstrated it for 2 years. The

median HbA1c level was maintained as 5.6% (38 mmol/mol) in

both years. Furthermore, these individuals have highly

significant improvements in Clarke and HYPO scores (P >

0.0001)—hypoglycemia awareness. Therefore, human islet

transplantation fostered the protection from SHEs in subjects

who had earlier shown significant episodes of intractable

impaired awareness of hypoglycemia and SHEs even after

insulin treatment (31). Importantly, the median insulin use

was dramatically dropped from 0.49 to 0.13 units/kg at day 75

and 0.00 units/kg at day 365 (P < 0.0003) in these subjects.

Individuals with functioning islet graft also demonstrated basal

or stimulated serum C-peptide level as >0.3 ng/ml (31).
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3 Xenotransplantation promises
a relentless supply of
good-quality islets

The successful application of islet transplantation under

Edmonton protocol suffers from the shortage of adequate

donor islets. Even if we consider one pancreas per T1D

patient, there would still be an extreme shortage of donors to

establish it as a widespread clinical reality. Importantly,

sometimes two or more donors are needed to induce long-

term normoglycemia in T1D patients due to the loss of islets in

the first 60 min of intraportal transplantation via IBMIR (8). In

this pursuit, the concept of xenotransplantation of pig islets

promised to resolve the islet donor shortage (10, 29, 32–34).

Pig is considered as a good source of islets due to the following

reasons (1): human and pig insulin differs only by one amino acid

(35), as exemplified by the fact that humans have been treated

successfully with porcine insulin for >40 years (10) (2); adult pig

pancreas consists of an ample number of islets that respond to
FIGURE 1

Schematic representation of the promising sources of pancreatic b cells and possible strategies for the treatment and management of type 1
diabetes. Tx, transplantation; SC, stem cell; iPSC, induced pluripotent stem cells. As per FDA recommendations, any xeno- or stem cell-derived
cell will have to be contained in a removable device for use in humans.
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glucose stimulation (3); pigs are easily bred, sacrificed for food, and

have large litters with offspring that rapidly attain adult size (4); pig

islets, if coming from a single donor, could be more consistent as

compared with human cadaveric islets that have different degrees of

functionality, cold ischemia injury, and islet damage due to the

presence of disease (5); the autoimmune responses against pig islets

are different from those against human islets; and (6) genomic

editing of pigs with required immune-modulatory gene(s) canmake

pig islets less prone to degradation mechanisms (10, 36). Despite all

these advantages, the glucose-stimulated insulin secretion capacity

of adult and juvenile pig islets was reported as one-third compared

with human islets. Muller et al. performed glucose-stimulated

insulin secretion (GSIS) on human islets, adult pig islets (APIs),

and juvenile pig islets (JPI) by challenging them separately with

basal glucose (2.5 mM) and high glucose (16.7 mM). This study

demonstrated that GSIS of API and JPI was one-third and one-

sixth, respectively, compared with human islets, thereby

emphasizing that a substantially higher dose of porcine islets is

needed to reverse hyperglycemia compared with human islets (37).
3.1 Neonatal and adult porcine islets
restored long-term hyperglycemia

Initially, due to the easy isolation process, fetal pig islet-like

cell clusters (ICCs) and neonatal pig islets (NPIs) have been used

to reverse hyperglycemia in mice studies. In addition to their

easy isolation process, ICCs and NPIs are apparently resistant to

ischemic and inflammatory damage. Despite these advantages,

the following demerits questioned their clinical applicability: 2 to

3 months of maturation time to achieve in vivo functionality (38,

39), poor insulin response to glucose (40, 41), and complete

destruction of ICCs within 12 days post-transplantation in

diabetic monkeys (42). After that, the transplantation biologist

focused on neonatal pig islets—comprised of differentiated
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pancreatic endocrine cells (about 35%) and primarily epithelial

cells (about 57%). In contrast to ICCs, NPIs present the

following important attributes: b cell expansion, significant

ability for differentiation of epithelial cells into b cells, and

comparatively higher responsiveness to glucose (43–45).

Ironically, the use of NPI, however, was questioned by the

high expression of xeno-antigens including sialic acid antigens,

Hanganutziu–Deicher antigens, and Gala1–3Galb1–4GlcNAc-
R (21). Furthermore, just 50,000 NPIs per neonatal pancreas are

not sufficient for its large-scale clinical applicability, and as a

result, four neonate pig donors are required to treat a diabetic

primate weighing 6–8 kg (46). However, less harvesting time and

reduction in the housing cost of pigs led to the use of these islets

in various trials (discussed later in this article). On the contrary,

approximately 255,000 adult pig islets (APIs) with high purity

(80–95%) can be isolated from an adult pig donor, and based on

the Edmonton protocol, 5,000–10,000 IEQ/kg is needed to treat

hyperglycemia (11, 32). Therefore, APIs are considered as a

better source to correct hyperglycemia compared with ICCs and

NPIs. Anticipating the efficient action of immune suppression

agents as used in the Edmonton protocol, pig islets were

transplanted in monkeys, and in Table 1, the success stories of

independent clinical studies towards the restoration of glucose

control upon pig islet transplantation are shown. Interestingly,

both NPIs and APIs have been demonstrated to attain long-term

survival of the islet graft in monkeys (Table 1).
3.2 Instant blood-mediated inflammatory
reaction in API and NPI and its
therapeutic interventions

Apparently, in allo-transplantation of human islets, instant

blood-mediated inflammatory reaction (IBMIR) results in the

loss of a significant portion of transplanted islets within the first
TABLE 1 Various immune suppression regimens used to increase islet survival.

Immunosuppression therapy Donor islets Recipient nonhuman primates MST Reference(s)

Rapamycin + FTY720 + basiliximab + anti-CD154 API Cynomolgus monkey >187 days (11)

CTLA4-Ig + rapamycin + basiliximab + anti-CD154 NPI Rhesus monkey >260 days (12)

anti-IL-2R + anti-CD154 + belatacept + sirolimus (rapamycin) NPI Rhesus monkey >187 days (47)

CTLA4-Ig + rapamycin + anti-IL-2R + anti-CD40 NPI Rhesus monkey >203 days (48)

MMF + CTLA4-Ig + LFA-3-Ig + anti-IL-2R + anti-LFA-1 NPI Rhesus monkey 114 days (49)

ATG + CVF + rapamycin + anti-TNF + anti-CD154 (+Treg) NPI Rhesus >603 days (50)

Rapamycin (mTOR inhibitor): FTY720 (targets the sphingosine-1-phosphate receptor 1), S1PR1 (an essential component for egress of lymphocytes from lymph organs into circulation),
basiliximab (anti IL-2R inhibitor), anti-CD154 (anti-human CD154 monoclonal antibody ABI793 inhibits the interaction of CD40 receptors on antigen-presenting cells and CD154 on
T cells; blocking co-stimulatory signals), anti CD40 (chimeric antibody: mouse Fab and rhesus IgG4 Fc fragments; blocks CD40 and CD154 co-stimulatory signals), MMF
(mycophenolate mofetil; inhibits inosine monophosphate dehydrogenase), IMPDH (an essential enzyme for the de novo synthesis of guanine and adenine MMF and thereby prevents
the proliferation of both T cells and B cells and also antibody production), LFA-3-Ig (alefacept; bindings at CD2 receptors of T cells and blocks proliferation and cytokine release), CVF
(suppresses the deposition of circulating complement in an efficient manner to prevent hyperacute rejection), anti-TNF (etanercep).
T regs, regulatory T cells; API, adult porcine islets; NPI, neonatal porcine islets; MST, maximum survival time.
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60 min of intraportal transplantation (8). Initially, it was

attempted to be overcome by increasing the number of

transplanted islets in order to withstand an adequate islet mass

for the post-IBMIR reversal of hyperglycemia (8). Exposure of

cells and their extracellular matrix to a non-physiologic state—

which is the intraportal bloodstream for the islets—might result

in platelet consumption, activation of complement, and spikes of

insulin release due to b cell death. The induction of tissue factor

(TF)—constitutively expressed on islets as a result of

inflammatory response on vessel endothelium, platelets, and

neutrophils—has also been strongly suggested as pivotal for

IBMIR (51, 52). Similar to the allotransplantation of islets,

IBMIR-mediated loss has also been observed in pig-to-monkey

intraportal islet transplantation studies (53, 54). Therefore,

before testing these pig islets for human trials, it would be

better if we could make the islets IBMIR-resistant (54).

Xenogeneic IBMIR is also characterized by the activation of

the complement and coagulation pathways (55, 56).
4 Injection of complement
and coagulation inhibitors
during transplantation

Various efforts towards overcoming IBMIR-induced islet

damage have been made. Olle Korsgren’s group developed an

ex vivo system that would mimic the post-transplantation

situation (55). In this system, islets obtained from adult and

fetal porcine pancreas were exposed to human blood for 5–60

min in heparinized polyvinyl chloride tubes. The addition of

soluble complement receptor 1 (sCR1) along with heparin to

these tubes prevented complement activation and also clotting

by reducing the generation of coagulation factors: FXIIa-AT,

FXIa-AT, and TAT (55). Furthermore, they tested the effect of

sCR1 and heparin in pig to cynomolgus monkey (CM)

transplantation studies. An abrupt increase in C-peptide, a

marker of islet death, was found to be significantly reduced in

CMs pretreated with sCR1 and heparin (56). van derWindt et al.

examined pig or human islets that were selectively exposed to

autologous, allogeneic, or xenogeneic blood with the following

treatment conditions (1): low molecular weight dextran sulfate,

(LMW-DS) for the prevention of blood clotting (2), nacystelyn

(NAC) as tissue factor inhibitor (3), inhibitory protein for

complement activation (hCD46) expressed on pig islets (4),

compstatin (complement inhibitory drug), and (5) neutralizing

anti-IgM antibody. All these treatments were shown to affect

islet viability or function and C-peptide release. While LMW-

DS, NAC, and hCD46 were not fully sufficient to block

coagulation and complement activation and also the release of

C-peptide by pig islets exposed to human blood, compstatin and

neutralizing anti-IgM antibody treatment of human blood

attenuated complement activation and prevented islet damage
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(57). This group also inhibited IBMIR by transplanting the pig

islets in the gastric submucosal space of a pig in an

allotransplantation model, wherein direct contact of blood and

islets is avoided (58).
5 Genetic modification of
pigs to avoid IBMIR and
hyper-acute rejection

The IBMIR induced by porcine islets in human blood is

most likely very similar to the allogeneic IBMIR, as it

encompasses a gamut of innate immune components:

complement proteins, macrophages, neutrophils, and platelet

aggregation, which facilitate the destruction of porcine islet graft.

To become an alternative strategy for a clinical islet replacement,

pig islets must survive the imitation immune destruction dubbed

as IBMIR to foster the long-term reversal of hyperglycemia (59,

60). Compared with API, neonatal islet cell clusters (NICCs) are

more susceptible to bind anti-aGal antibodies due to the high

expression of xenoantigen–galactose-a1,3-galactose (aGal).
This condition is more likely to result in the application of

complement activation, IBMIR, and thrombosis. Even though

adult pig islet may survive IBMIR, it is also reported to undergo

hyper-acute rejection in preclinical studies (61). Typically, as

soon as pig tissues loaded with Gala (1, 3) are recognized by a

nonhuman primate’s immune system, antibody ligation

activates the classical complement pathway, leading to the

formation of the membrane attack complex and culminating

with cell lysis (60, 62). A significantly reduced amount of Gal

epitopes on API compared with neonatal and fetal pig ICCs

makes API less potent to activate anti-Gal-mediated IBMIR

compared with its neonatal counterpart. Thus, removal of the

aGal epitope from the islet surface is a reasonable option, as it

may add one more safety feature to the islets used

in transplantation.

Interestingly, Rita Bottino’s group exposed aGal knockout
(GTKO) pig tissues and islets separately with human serum in

vitro. The presence of IgG and IgM on the islet surface suggested

the presence of non-Gal antigens (58). N-glycolylneuraminic

acid, encoded by cytidine monophospho-N-acetylneuraminic

acid hydroxylase (CMAH), and Sid antigen, encoded by b1,4
N-acetylgalactosaminyltransferase, are two noticeable non-Gal

antigens identified on pig cells in addition to aGal (63, 64). In
this pursuit, Tector’s group demonstrated that the removal of

both CMAH and GGTA1 gene is necessary to inhibit xeno-

immune reactions against pig organs in a xenotransplantation

setting (65, 66). This group also explored the possible role of

b4GalNT2 gene in xeno-rejection, but the role of b4GalNT2 in

pig islet xenotransplantation is still unexplored (67, 68).

Additionally, transgenic expression human CD46 (blocks C3

convertase complex), CD55 (regulates cell susceptibility to
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complement attack by inhibiting the formation of C3 and C5

convertases), and CD59 (regulates the final stage of the

complement enzyme cascade by blocking C8 and C9 and

the polymerization of C9) are still needed to further inhibit

the activation of complement and thrombosis in the intraportal

vein upon pig islet transplantation (69). Furthermore, the

transgenic expression of coagulation system inhibitors, viz.,

human tissue factor pathway inhibitor (hTFPI) and CD39,

providing anti-thrombotic and anti-inflammatory effects, is

beneficial to the islets (69, 70). In another study, the

transgenic expression of hemo oxygenase-1 rendered

protection to the islets from ischemic injury during isolation

until engraftment and vascularization after liver transplantation

(71). Table 2 underscores the positive effects of the

aforementioned genetic modifications along with an immune

suppression regimen on increasing the maximum survival time

of pig islet grafts in nonhuman primates.
5.1 Islet encapsulation: Capable of
evading IBMIR and gradual activation of
islet-specific immune responses

The long-term survival of pig islets will only be possible if we

could promote the survival of the transplanted islets from the

deleterious effects of IBMIR and donor-specific immune

responses during chronic rejection. Encapsulation of islets

using a semipermeable membrane is one of the strategies to

protect the islets in such way that it could allow normal insulin

secretion in response to fluctuating blood glucose levels and

permits the diffusion of oxygen and essential nutrients. Based on

the size of the capsule and the number of islets that they can
Frontiers in Endocrinology 06
accommodate, three encapsulation systems have emerged:

macro-encapsulat ion (s ize in centimeters) , micro-

encapsulation (250–1,000 mm), and nano-encapsulation (<100

mm). In macro-encapsulation, first proposed by Algire, Prehn,

and Weaver in the 1950s, a large number of pancreatic cells

entrapped in a capsule of centimeter range were tested (77).

Furthermore, the oxygenated islet macrocapsules generated by

Ludwig et al. demonstrated the long-term survival of human

allogenic islets without any immune suppression (78). Similarly,

one case report published by Elliot et al. claimed the very long-

term survival of macroencapsulated pig islets (9.5 years) without

immune suppression (79). bair® devise, TheraCyte™, VC-01,

and cell pouch and islet sheet devices are examples of the macro-

encapsulation of islets that are currently under preclinical

studies. All these devices are transplanted at subcutaneous sites

without immune suppression (80–86) (Table 3).

Subsequent to their success in NHP models, micro-

encapsulated pig islets are being used to correct hyperglycemia

in T1D patients and have shown promising results in countries

including the United States (Table 4). These pilot clinical trials

have confirmed the biosafety of islet-encapsulated capsules, but

the efficacy of the treatment is still under review. The

immunological responses against microcapsules pose a difficulty

in choosing the right microcapsule material without having the

potential threat of imminent inflammatory immune responses

(93). Therefore, to avoid an adaptive immune response to

microcapsule materials, several immunosuppressive coating

molecules, e.g., Fas ligand (FasL), tumor necrosis factor (TNF)-

related apoptosis-inducing ligand, and CD200, have been

immobilized on the surface of these islet-containing capsules

(94–96). Above all, FasL has been the most extensively studied

strategy to eliminate graft-specific T effector cells. Yolcu et al.
TABLE 2 Exploring genetic modification in donor pig islets with immune suppression regimen to increase the post-transplantation survival time.

Type of genetic modification Donor
islets

Recipient nonhu-
man primates

Immune suppression
regimen

MST
(days)

Reference
(s)

GTKO API Rhesus monkey MMF + anti-CD154mAb + anti-
LFA-lmAb + CTLA4-Ig

249 (48)

hCD46 API Cynomolgus monkey MMF + ATG + anti-CD154mAb >396 (72)

hCD55 Fetal Cynomolgus monkey Cyclosporine + steroids +
cyclophosphamide or brequinar

7 (73)

GTKO/hCD55/hCD59 NP! Baboon MMF + ATG + tacrolimus 28 (74)

Multi-transgenic
(GTKO/CD46 universal expression, and beta cell-
specific hTFPI/CD39/porcine CTLA4-Ig

API Cynomolgus monkey MMF + ATG + anti-CD154mAb 5
months

(75)

GnT-III API Cynomolgus monkey None 5 (76)

GTKO (galactosyltransferase gene knockout pig), hCD46 (membrane cofactor protein that controls complement activation), hCD55 (also known as hDAF; decay-accelerating factor
that accelerates the decay of the C3 and C5 convertases), hCD59 (human complement regulatory protein; CRP, perturbs the complement activation cascade by inhibiting the formation
of the membrane attack complex during the final stage of complement activation), hTFPI (human tissue factor pathway inhibitor; inhibits the activation of TF : FVIIa coagulation
protease pathways, leading to fibrin deposition and activation of platelets during the course of hyperacute rejection), CD39 (via its ATPase activity, it decreases platelet activation and
inhibits clotting), anti-LFA-1 (anti-lymphocyte function-associated antigen-1 monoclonal antibody; efficient in eliminating memory T cells).
ATG, antithymocyte globulin; CM, cynomolgus monkey; GnT-III, N-acetylglucosaminyltransferase III; MMF, mycophenolate mofetil; MTS, maximum survival time.
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recently demonstrated the long-term engraftment of allogeneic

and xenogeneic islets coated with FasL protein combined with

short-term rapamycin treatment (97). Additionally, micro-

encapsulation of islets with hydrogel containing immobilized

inhibitory peptide for interleukin-1 receptor efficiently protected

the islets from IL-1b, TNF, and interferon-g in vitro and also in

vivo by b cell-specific T cells (98–101). Furthermore,

immobilization of CXCL12 and CCL22 has proven to be very

effective in different studies in prolonging the protection of islet

allograft and restoring normoglycemia without immune

suppression (102).
6 Stem cells as the next alternative
source to generate a and b cells

Typically, the cell replacement therapies targeting T1D use a

two-pronged approach (1): replenishment/restoration of b cell

mass by transplantation and (2) rescuing b cell mass by inducing
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immune suppression. As discussed above, the allo- and

xenotransplantation of islets made great promises to manage

overt hyperglycemia, but destruction of graft after tapering

off immune suppression more often results in chronic

rejection. To this end, researchers are now seeking answers in

the regeneration of b cells from stem cells and their

transplantation in the recipients. Recently, stem cell biologists

systematically recapitulated the needed differentiation events to

develop beta cells during pancreas development, and they have

pursued the conversion of embryonic stem cells in beta-like cells

in a dish. At the time of transplantation, these in vitro-

transdifferentiated cells were not functionally mature but were

demonstrated to express both insulin and glucagon (103–108).

Though not functionally mature, these cells were converted into

mature beta cells on transplantation in mice and surprisingly

maintained normal glucose levels after ablation of the pancreas

(106). Following these pioneering studies, Rezania et al. and

Paliguca et al. made insulin-producing functional beta cells after

slightly modifying the array of reagents (23, 24). This process
TABLE 4 Devices containing microencapsulated islets used in various preclinical and clinical trials.

Islet type Pre-clinical/clinical trials MST Reference
(s)

API Microencapsulated in alginate and transplanted in the kidney capsule of CM 6 months (87)

Human
islets

Type 1 diabetes patients received an intraperitoneal transplant of microencapsulated human islets 35
months

(88)

API Microencapsulated in single alginate coats and double alginate coats, separately, and transplanted into diabetic
B6AF1 mice

>6
months

(89)

NPI Alginate microencapsulated islets in CM 36 weeks (90)

NPI Alginate microencapsulated islets in NOD mice 8 weeks (91)

API Alginate–polylysine–alginate microencapsulated islets intraperitoneally in CM 3 months (92)

API, adult porcine islets; NPI, neonatal porcine islets; CM, cynomolgus monkey; MST, maximum survival time.
TABLE 3 Enumeration of devices containing macroencapsulated islets being used in various preclinical and clinical trials.

Name of
device

Pre-clinical/clinical trials Design advantage Reference
(s)

b-Air Transplantation of porcine islets into monkeys
Clinical trial with human islets transplanted into humans

Promises adequate oxygen supply and comparatively
improved protection from recipient immune system

(80, 81)

3D printed
vascularized
device

Transplantation of human islets in mice Contains growth factors for optimized vascularization of
islets

(82)

Bioplotted scaffold Transplantation of human islets into mice without
immunosuppression

Enhanced vascularization and efficient diffusion owing
to adjustable pore size; also avoids islet clumping

(83)

Silicon nanopore
membrane device

Mouse islets into pig islets Adequate pore size (10 nm) and more cell viability (84)

TheraCyte Lewis rats were islet donors, and alloimmunized, diabetic Wistar–
Furth rats were used as recipients

More vascularization and optimum inner membrane
pore size (0.4 mm) to embargo immune response

(85)

Encaptra Implantation of pancreatic progenitor cells into mice. Clinical
trial: implantation of pancreatic progenitor cells into humans

The device allows the growth of pancreatic progenitor
cells

(86)
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further needed to be scaled up as about half to a billion cells per

transplant, which is equivalent to 10,000 IEQ/kg (8), are needed

to restore hyperglycemia in human.
6.1 Strategy to generate beta cells from
iPSCs: Game-changer strategy

Though the concept of employing iPSCs was initially very

attractive in T1D, scaling this strategy up involved the activation

of four Yamanaka transcription factors (Oct-3/4, Sox-2, Klf-4,

and c-Myc) (109), thus posing several issues. Yamanaka’s group

orchestrated the reprogramming of human fibroblasts through

the retroviral transduction of the aforementioned transcription

factors (109). This approach was questioned by the tumorigenic

potential of retroviruses and the activation of oncogene c-Myc

during the process. Therefore, to avoid imminent disapproval by

regulatory agencies, the RNA-based Sendai virus (SeV)-centered

approach was developed. SeV-mediated reprogramming was

proven to be efficient and highly reliable as SeV replicates

outside of the cell, thereby preventing integration into the host

DNA (110).

More recently, the conversion of functional beta cells was

reported from iPSCs by adding multiple chemical inducers and

inhibitors of Wnt and Notch pathways in a particular sequence.

Based on the sequential activation of genes, this mimics the

ontogeny of the pancreas development over 30 days using 2D

and 3D culture techniques. Importantly, the crux of this process is

the conversion to mono-hormonal, i.e., insulin-positive, cells in

the end (23, 24). This seven-stage process to develop functional

beta cells involves the use of various inhibitors at each stage:

vitamin C until stage 4, a combination of ALK5iII inhibitor and

thyroid hormone (T3) from stages 4 to 7, GSKixx at stages 5 and 6,

and N-Cys at stages 6–7 turned out to be the key components.

Rezania et al. outstandingly delineated the roles of each

compound in terms of the stage-specific signatures using RT-

qPCR (24). These iPSC-derived beta cells were then transplanted

under the kidney capsules of immunocompromised mice, and

human insulin was detected (23, 24).

Douglas A. Melton’s group compared the insulin secretion of

iPSC-derived b cells with human islets. The amount of insulin
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secreted by primary human beta cells and iPSC-derived b cells

was found to be 1.6 ± 0.2 and 3.6 ± 0.7 mIU/103, respectively.
They have also measured the total insulin content per cell, which

was comparable: 240 ± 50 mIU/103 cell (SC-b clusters) and 200 ±

40 mIU/103 (primary islets). Furthermore, a similar insulin ratio

and Ca2+ (upon glucose challenge) both in primary human

islet cells and SC-b cells supported the SC-b cells as an

imminent alternative sanctuary of insulin-producing cells to

reverse hyperglycemia.
6.2 Encapsulation of beta cells and
reverting hyperglycemia

Transplantation of b cells derived from T1D patient-derived

iPSCs can correct hyperglycemia. However, these SC-b cells

succumb to destruction due to b cell-specific autoimmunity in

these individuals (111). The use of a systemic immunosuppressant

is therefore needed to protect these cells from autoimmune attack.

To avoid lifelong immune suppression, encapsulation is one of the

most plausible solutions. Daniel Anderson and Song’s group

independently attempted the encapsulation of SC-b cells and

tested it in immunocompetent mice. Anderson’s group recently

used triazole–thiomorpholine dioxide (TMTD) alginate for

encapsulation, showing that it could inhibit fibrosis in both

rodents and nonhuman primates (112). Interestingly, TMTD

alginate-encapsulated SC-b cells provided long-term glycemic

correction without immunosuppressive therapy in immune-

competent diabetic C57BL/6J mice for 174 days. However,

naked SC-b cells were unable to correct overt hyperglycemia

irrespective of the site. Song et al. encapsulated the islets and stem

cell-derived b cells in polylactic acid-derived microporous 3D

printed device and studied the outcomes when transplanted in

mice. Insulin secretion was successfully reported for 12 weeks.

However, the group did not evaluate the extent of immune

tolerance to this material (112). Like porcine islet tx, iPSC-

derived beta cell therapy for patients with T1D has a few

limitations. The key barrier of transplantation is the control of

the immune response. However, the autologous transplantation of

iPSCs might be useful for avoiding rejection because they are not

thought to initiate immune responses (113, 114). The second
TABLE 5 Comparison between pig islets and stem cell (SC)-derived b cells for the imminent cure of type 1 diabetes.

Pig islets SC-derived b cells

Advantages Promise to overcome donor shortage
Unlimited supply
Encapsulation to render long-term function
Sufficient insulin secretion capacity for long-term survival in
mouse, monkey, and human

Promise to overcome donor shortage
Encapsulation to render long-term function
Sufficient insulin secretion capacity for long-term survival in mice

Disadvantages Immunosuppression a major challenge
High risk of rejection
PERV infection

Immunosuppression a major challenge, as these are never tested prevalent
immunosuppressant (Edmonton’s protocol)
Scaling up: challenging—only a promise
Not tested in large animals (viz nonhuman primates)
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disadvantage is that there is a potential for the transplanted cells to

become cancerous. The c-Myc gene, one of the Yamanaka factors,

is known to cause cancer in iPSCs (115), but oncogenesis can be

prevented by using L-Myc instead of the c-Myc gene (116). The

third limitation is the possibility that the insulin secretion of the

transplanted cells may be insufficient. iPSCs-derived islet cells

transplanted into mice reportedly secreted insulin for several

months or more after transplantation (PMID: 30623004).

However, long-term studies are required to investigate whether

the insulin secretion capacity is sufficient for clinical application.
7 Future perspectives

Xenotransplantation of pig islets has proven equally effective as

human islets in preclinical trials; therefore, scientists are striving

hard to make this approach a clinical reality. The idea of pig islet

transplantation may overcome the shortage of good-quality islets.

Strong immune suppression with xeno-antigens and IBMIR is a

major challenge faced by pig islets’ transplantation in preclinical

studies. Extensive gene editing by user-friendly CRISPR–Cas9

system promises to rewrite the bright future of pig islet

transplantation by developing IBMIR-resistant islets. Though

ideal biocompatible material is still a matter of debate,

encapsulation techniques offer overall protection of islets from the

recipient’s immune system. Several preclinical trials of encapsulated

pig islets are underway with some promising results. Excitingly, 9.5-

year survival of encapsulated neonatal pig islets in a human trial in

Auckland has been reported (76). Meanwhile, the groundbreaking

work of Alireza Rezania, DA Anderson, and D Melton have

leveraged the use of stage 7 (functional) beta cells to cure T1D.

Contrary to pig islets, encapsulated SC-derived b cells equivalent to

10,000 IEq/kg of T1D patients might overt T1D with the minimal

use of immunosuppressant if derived from iPSCs obtained from the

same T1D patient (Table 5).

In conclusion, SC beta cells for the treatment of T1D

increase quality-adjusted life years (115, 117) and prevent
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complications, although a reduction in manufacturing costs

will be essential to achieve cost-effectiveness. By scaling up the

manufacturing, as promised, facilitating the supply chain

management, and reducing the manufacturing costs, iPSC-

based b cell replacement therapies may become a tangible reality.
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