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Objective: To investigate the association of dynamic weight change in adulthood with
leukocyte telomere length among U.S. adults.

Methods: This study included 3,886 subjects aged 36-75 years from the National Health
and Nutrition Examination Survey (NHANES) 1999-2002 cycle. Survey-weighted
multivariable linear regression with adjustments for potential confounders was utilized.

Results: 3,386 individuals were finally included. People with stable obesity had a 0.130
kbp (95% CI: 0.061-0.198, P=1.97E-04) shorter leukocyte telomere length than those
with stable normal weight (reference group) during the 10-year period, corresponding to
approximately 8.7 years of aging. Weight gain from non-obesity to obesity shortened the
leukocyte telomere length by 0.094 kbp (95% CI: 0.012-0.177, P=0.026), while normal
weight to overweight or remaining overweight shortened the leukocyte telomere length by
0.074 kbp (95% CI: 0.014-0.134, P=0.016). The leukocyte telomere length has 0.003 kbp
attrition on average for every 1 kg increase in weight from a mean age of 41 years to 51
years. Further stratified analysis showed that the associations generally varied across sex
and race/ethnicity.

Conclusions: This study found that weight changes during a 10-year period was
associated with leukocyte telomere length and supports the theory that weight gain
promotes aging across adulthood.

Keywords: aging, telomere length, weight change, obesity, NHANES
INTRODUCTION

Telomeres are highly regulated complexes consisting of G-rich sequences and protective telomere-
binding proteins, shorten with cell division in somatic cells (1, 2). It protects the end of chromosome
against deterioration and fusion, playing a pivotal role in nuclear genome stabilization.
Dysfunctional telomeres could elicit DNA damage checkpoint responses that trigger telomere-
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initiated senescence (3). The length of human telomeres
generally shortens as people get older during adulthood (4, 5).
For decades, a large number of experimental and observational
studies have revealed that telomere length (TL) is associated with
age-related diseases (6, 7), and even cancer risks (8–10).
Inflammation, oxidative stress, hypoxia and unhealthy habits
can cause DNA damage and telomerase dysfunction, leading to
telomere attrition (11). TL in leukocytes has been well
documented as a proxy for relative TL in other tissues due to
the high correlations between them, and this parameter is easily
measured in blood samples (2, 12). Therefore, leukocyte telomere
length (LTL) could be considered as an underlying biomarker of
age-related disorders.

Obesity has become an emerging epidemic over the last 50
years. In 2016, more than 1.9 billion adults were overweight
(BMI ≥ 25 kg/m2) and of these, over 650 million were people
with obesity (BMI ≥30 kg/m2), a number that has nearly tripled
since 1975 (13). Obesity has been linked with increased risks of
many chronic noninfectious diseases, such as type 2 diabetes
(14), certain types of cancers (15, 16) and premature disability
(17). High systemic inflammation and oxidative stress are
observed in obesity (18). Thus, it has been proposed that
obesity may accelerate telomere shortening. Previous
epidemiologic studies did not yield completely consistent
results regarding the association between obesity and LTL; that
is, some confirmed this association (19, 20), while others did not
(21–23). However, all of these studies measured body weight at a
single time point, ignoring the changing trend in body weight
over time. Weight gain across adulthood has been recognized as
a risk factor for cardiovascular disease, diabetes, cancer and
mortality (24–27). Thus, it is necessary to assess the long-term
effect of weight change over a certain life period on LTL. To our
knowledge, only two observational studies (28, 29) directly
addressed the relation between weight change and LTL, but
these studies were limited to samples that were obtained from
women and were not representative of the entire nation.

This study aimed to investigate the relation between weight
change across a 10-year period of adulthood (from a mean age of
41 years to 51 years) and LTL in a large sample that was
nationally representative of the U.S. population. The patterns
of weight change between two-time points were measured by
BMI or absolute weight change. In addition, the analyses were
stratified by sex and race/ethnicity to identify different effects
within the corresponding subpopulation.
MATERIALS AND METHODS

Study Population
We utilized the data from the National Health and Nutrition
Examination Surveys (NHANES) 1999-2000 and 2001-2002
cycles. NHANES is a cross-sectional study designed to evaluate
the health and nutritional status of U.S. adults and children and
determine the prevalence of major diseases and risk factors. Data
were collected by interviews, physical examination and
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laboratory testing, conducted by the U.S. National Center for
Health Statistics (NCHS), a part of the Centers for Disease
Control and Prevention (CDC). The detailed study design and
data collection of NHANES are available at the online official
website (30).

A total of 21,004 subjects from NHANES 1999-2002 cycle
were enrolled in the present study. We incorporated 6,004
participants aged 36-75 years and sequentially excluded
pregnant women (n=56), self-reported cancer patients (n=540),
participants with energy intake less than 500 kcal or larger than
5,000 kcal (n=127), underweight participants (n=125)
(BMI<18.5 kg/m2 at baseline or 10 years ago), individuals with
missing data for BMI at baseline or self-reported weight at 10
years prior to the survey (n=599), or LTL (n=671). Finally, a total
of 3,886 subjects were eligible for further analyses.
Assessment of Weight Change
The baseline height and weight of the subjects were measured
during physical examination. Respondents were asked to recall
their weight at 10 years before the survey. BMIs at both time
points were calculated as the corresponding weight (kg) divided
by the square of baseline height (m2). BMI was further
categorized into normal weight (<25.0), overweight (25.0-29.9),
and obesity (≥30.0) (31). Five BMI change patterns were
determined by BMIs at 10 years prior to the survey
(BMI10prior) and at baseline (BMIbaseline) (Figure S1):

a. Stable normal weight (BMI<25.0 at both times);
b. Normal weight to overweight or stable overweight

(BMI10prior<30.0 to BMIbaseline from 25.0-29.9);
c. Weight loss (BMI10prior≥30.0 to BMIbaseline<30.0 or BMI10prior

in 25.0-29.9 to BMIbaseline <25.0);
d. Non-obesity to obesity (BMI10prior<30.0 to BMIbaseline≥30.0);
e. Stable obesity (BMI≥30.0 at both time points).

We also generated new weight change patterns by classifying
absolute weight change into five groups (27, 32): < -2.5 kg
(weight loss), -2.5-2.5 kg (stable weight, reference group), 2.5-
10.0 kg (mild weight gain), 10.0-20.0 kg (moderate weight gain)
and ≥20.0 kg (severe weight gain).
Telomere Length Measurement
All participants aged 20 years and older who had blood collected
for DNA purification were eligible for baseline LTL
measurements. LTL assay was performed and measured by
quantitative polymerase chain reaction (qPCR) at the
University of California, San Francisco. LTL was measured
relative to standard reference DNA (T/S ratio), which was
evaluated with samples from the human diploid fibroblast cell
line IMR90. Each blood sample obtained from participants in
NHANESs was assayed 3 times on 3 different days in duplicate
wells that were blinded to the investigators. Sample plates were
assayed in 3 groups, with no two plates grouped together more
than once. Eight control DNA samples set in each assay plate
July 2021 | Volume 12 | Article 650988
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were used to normalize between-run variability. If more than 4
control DNA values fell 2.5 standard deviations from the mean
for all assay runs, they were excluded from further analysis (< 6%
of runs). Any potential outliers in every sample were excluded.
The mean and standard deviation of the T/S ratio were calculated
for each sample. T/S ratio was furtherly converted to kilobase
pairs (kbp) through the following formula: (3274 + 2413*(T/S))/
1000, provided by NHANES analytic notes (33).
Covariates
We categorize the collected data on three types of covariates in
this study: demographic variables, lifestyle variables and medical
comorbidities. The demographic variables included baseline age,
sex, race/ethnicity, educational level, and family income-to-
poverty ratio (PIR). Race/ethnicity was grouped into non-
Hispanic white, non-Hispanic black, Mexican American and
others, while educational level was classified as less than high
school, high school or equivalent and college or above. Family
PIR was calculated by dividing family income according to
the poverty guidelines (34) and further divided into 3 categories
(0-1.0, 1.1-3.0 and >3.0), representing low, medium, and high
income, respectively. Lifestyle factors included energy intake,
leisure-time physical activity, alcohol use (drinker, nondrinker)
and smoking status (never, former, current smoker). Active
physical activity was defined as at least 150 minutes of moderate
activity, 75 minutes of vigorous activity or an equivalent
combination of moderate and vigorous activity throughout
the week. A drinker was defined as any participant who had
at least 12 drinks of any type of alcoholic beverage in any one
year. The medical comorbidities included self-reported health
(excellent, good, poor), family history of diabetes (yes, no),
family history of angina (yes, no), cardiovascular disease (yes,
no), self-reported diabetes (yes, no) and self-reported
hypertension (yes, no). If a participant was previously told
that he/she had congestive heart failure, coronary heart disease,
angina/angina pectoris, heart attack, or stroke, he/she was
considered to have cardiovascular disease.
Statistical Analyses
All the statistical analyses in this study took the complex survey
design and sampling weights into consideration to form estimates
that were representative of the U.S. civilian noninstitutionalized
population. Data for population characteristics are presented as the
mean and standard error (SE) for numerical variables, while the
frequency (n) and proportion (%) for categorical variables are
presented. Rao-Scott c2 test or weight-adjusted analysis of
variance was employed to compare categorical or numerical
baseline characteristics by weight change patterns, respectively.
Missing values of the covariates were imputed usingmultivariate
imputation by chained equations (MICE) to maintain statistical
power. The number of imputations was set to 5, and the results of
analyses on five imputed datasets were further combined. We
calculated the Pearson correlation coefficient between BMIs at
two-time points.
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We first examined the associations between BMI categories
at each time point and LTL. The normal BMI group was selected
as the reference level. Afterward, analyses were mainly focused
on the relation among five weight change patterns and LTL, in
which maintaining a normal BMI pattern was regarded as the
reference level. Survey-weighted linear regression was employed
to infer the effects (coefficients) and 95% confidence interval for
LTL in relation to BMI categories at two-time points and weight
change patterns. Three models were built progressively to adjust
for the possible confounding effects of different combinations of
covariates. Model 1 included the following covariates: baseline
age, sex and race/ethnicity (non-Hispanic white, non-Hispanic
black, Mexican American, and others). Model 2 further
included educational level (less than high school, high school
or equivalent and college or above), family PIR (0-1.0, 1.1-3.0
and >3.0), physical activity (active, inactive), energy intake,
alcohol use (yes, no) and smoking status (never, former,
current and smoker). Model 3 included self-reported health
(excellent, good, poor), family history of diabetes (yes, no),
family history of angina (yes, no), cardiovascular disease (yes,
no), diabetes (yes, no) and hypertension (yes, no), in addition to
the covariates in Model 2. We also evaluated the effect of
absolute weight change on LTL during the time interval. In
this analysis, baseline height and weight at 10 years before the
survey were added as possible confounders to the three models.
Furthermore, we investigated the associations between weight
changes and LTL stratified by sex and race/ethnicity. A
sensitivity analysis was performed to test the robustness of the
results by removing subjects with missing values instead of
performing imputations.

All analyses were performed in R (version 3.6.3) with
packages survey, mice and mitools. All hypothesis tests were
two-sided, and P <0.05 was considered statistically significant.
RESULTS

In total, 3,386 individuals were finally included in the subsequent
analyses. A detailed flowchart is provided in Figure 1. The rates
of missing covariates were less than 5.0%, except for PIR, which
was 9.0%. The general characteristics of the total population are
summarized in Table 1. The mean age (interquartile ranges) of
individuals at the two-time points (i.e., baseline and 10 years
before baseline) were 51 (42–59) and 41 (32–49) years,
respectively. The average BMI increased from 26.3 to 28.8
during the 10 years before baseline. A high correlation (r =
0.68) was observed between BMI at the two-time points. Most
people (46.1%) had normal BMIs in their early 40s and only
17.4% of the population was people with obesity. However, 10
years later, an increasing number of people were classified as
overweight (37.2%) or obese (34.4%) (Table S1). During the 10-
year period before the survey, 25.0% of the participants remained
in the stable normal weight group, while 34.4% developed or
maintained obesity. The proportions or means of each covariate
were significantly different among the five weight change
July 2021 | Volume 12 | Article 650988
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patterns. People who maintained obesity during the 10 years had
the shortest LTL (5.67 kbp). LTL decreased steadily with age at a
mean rate of 0.015 kbp (95% CI: 0.013-0.017), 0.016 kbp (95%
CI: 0.013-0.018) and 0.014 kbp (95% CI: 0.011-0.018) per year
for the general population, men and women, respectively
(Figure S2).

Figure S3 shows the linear relation between LTL and weight
status at each time point. Compared with LTL of the participants
with normal weights at 10 years before baseline, on average, the
LTL of people with overweight and obesity, respectively were
0.073 kbp (95% CI: 0.039-0.107, P=3.11E-05) and 0.110 kbp
(95% CI: 0.063-0.156, P=3.40E-06) shorter in the fully adjusted
Model (e.g., Model 3), which was consistent with the results in
Models 1, 2. A similar trend in the association was observed
between LTL and baseline BMI categories.

The relation between weight change patterns during the 10-
year period before baseline and LTL in the three models is
presented in Figure 2. Model 3 showed that people with stable
obesity had a 0.130 kbp (95% CI: 0.061-0.198, P=1.97E-04)
shorter LTL than those with stable normal weight (reference
group). Weight gain from non-obesity to obesity shortened the
LTL by 0.094 kbp (95% CI: 0.012-0.177, P=0.026), while moving
from normal weight to overweight or maintaining overweight
shortened the LTL by 0.074 kbp (95% CI: 0.014-0.134, P=0.016).
In addition, the LTL of weight loss (i.e., from obesity to non-
obesity or from overweight to normal weight) was not
significantly different from that of stable normal weight
Frontiers in Endocrinology | www.frontiersin.org 4
(coefficient: -0.064; 95% CI: -0.164–0.035; P=0.204). Figure S4
shows that stable obesity during the period was related to a
shorter LTL in both male and female populations. All of the
other weight change patterns shortened the LTL compared with
stable normal weight in males but did not yield a statistically
significant effect on LTL in females. Compared with those with a
stable normal weight, non-Hispanic white individuals, with
weight change patterns except for weight loss, had significantly
shorter LTLs, whereas only non-Hispanic black individuals with
stable obesity had a shortened LTL, by 0.150 kbp (95% CI: 0.032-
0.267, P=0.012) (Figure S5). Moreover, among Mexican
Americans, there were no differences in LTLs observed among
the five weight change patterns.

In the evaluation of the associations between the absolute
weight change at the two-time points and LTL, a linear
attenuation of the LTL with weight change was observed
(coefficient: -0.003 kbp/kg; 95% CI: -0.006–0.001; P=0.014).
When further classified, weight gain ≥ 20.0 kg across the 10-
year period shortened the LTL by 0.105 kbp (95% CI: 0.006-
0.204, P=0.038) in Model 3 compared with a weight change
within 2.5 kg (Figure 3). Additionally, there was no significant
difference in the LTL of weight gain of either 10.0-20.0 kg or 2.5-
10 kg compared to the LTL of weight change within 2.5 kg
(P=0.953 and P=0.994, respectively). Weight loss > 2.5 kg
presented a sign of having a longer LTL (0.051 kbp, 95% CI:
-0.048-0.150) than weight change within 2.5 kg, but the
difference was not statistically significant (P=0.351).
FIGURE 1 | Flowchart of eligible subjects included in this study.
July 2021 | Volume 12 | Article 650988
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TABLE 1 | Baseline characteristics of study participants in the NHANES 1999-2002 cycle.

Characteristics Total Weight change patterns from 10 years ago to baseline P
value

Stable normal
weight

Normal weight to overweight or stay
overweight

Weight
losing

Non-obesity to
obesity

Stable
obesity

Participants 3886
(100%)

830
(25.0%)

1331
(34.6%)

294
(6.0%)

798
(19.8%)

633
(14.6%)

Sex
Male 2053

(51.3%)
397

(43.1%)
811

(60.6%)
184

(62.4%)
354

(43.7%)
307

(49.2%)
<0.001

Female 1833
(48.7%)

433
(56.9%)

520
(39.4%)

110
(37.6%)

444
(56.3%)

326
(50.8%)

Age (years) 50.9
(0.24)

49.3
(0.4)

50.9
(0.3)

53.8
(0.8)

51.0
(0.5)

52.5
(0.5)

<0.001

Race/ethnicity
Non-Hispanic White 1873

(74.6%)
478

(79.1%)
646

(73.3%)
109

(72.0%)
350

(71.2%)
290

(75.6%)
<0.001

Non-Hispanic black 717
(9.1%)

122
(6.8%)

214
(7.9%)

61
(10.5%)

177
(11.7%)

143
(11.9%)

Mexican American 977
(5.6%)

155
(3.8%)

345
(5.7%)

103
(7.0%)

206
(6.8%)

168
(6.2%)

Others 319
(10.7%)

75
(10.2%)

126
(13.1%)

21
(10.4%)

65
(10.3%)

32
(6.3%)

Education
Less than high school 1342

(20.2%)
213

(13.4%)
467

(21.0%)
136

(30.0%)
282

(24.1%)
244

(21.4%)
<0.001

High school or
equivalent

853
(25.2%)

168
(22.5%)

282
(25.5%)

62
(23.9%)

195
(28.3%)

146
(27.7%)

College or above 1690
(54.7%)

449
(64.2%)

581
(54.5%)

96
(48.2%)

321
(47.7%)

243
(50.9%)

PIR
0-1.0 535

(10.3%)
104

(9.3%)
172

(8.9%)
53

(12.2%)
115

(12.2%)
91

(12.5%)
<0.001

1.1-3.0 1373
(30.8%)

240
(24.8%)

458
(29.4%)

123
(42.6%)

291
(32.0%)

261
(38.3%)

>3.0 1629
(58.9%)

403
(66.0%)

600
(61.7%)

84
(45.2%)

324
(55.9%)

218
(49.2%)

Activity
Physically inactive 2522

(58.5%)
479

(50.0%)
816

(54.6%)
209

(65.4%)
551

(65.6%)
467

(69.7%)
<0.001

Physically active 1362
(41.5%)

351
(50.0%)

514
(45.4%)

85
(34.6%)

247
(34.4%)

165
(30.3%)

Energy (kCal) 2145
(20)

2095
(37)

2234
(37)

2109
(84)

2051
(35)

2163
(48)

0.014

Alcohol Use
Yes 2615

(74.0%)
589

(79.3%)
952

(78.0%)
206

(78.5%)
497

(66.3%)
371

(64.3%)
<0.001

No 1118
(26.0%)

205
(20.7%)

331
(22.0%)

74
(21.5%)

268
(33.7%)

240
(35.7%)

Smoke
No 1816

(46.4%)
374

(45.8%)
615

(45.3%)
119

(36.1%)
381

(47.9%)
327

(52.2%)
<0.001

Ever 1185
(30.2%)

207
(26.3%)

443
(33.2%)

76
(25.1%)

256
(30.4%)

203
(31.3%)

Never 879
(23.4%)

249
(27.8%)

269
(21.5%)

99
(38.8%)

160
(21.7%)

102
(16.5%)

Self-reported health
Excellent 1754

(54.8%)
491

(68.9%)
676

(60.0%)
102

(47.9%)
292

(42.0%)
193

(38.5%)
<0.001

Good 1210
(28.7%)

203
(20.8%)

409
(28.1%)

87
(31.3%)

296
(35.8%)

215
(33.1%)

Poor 920
(16.5%)

136
(10.3%)

246
(11.9%)

105
(20.8%)

209
(22.2%)

224
(28.4%)

Family History
Diabetes

(Continued)
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The results of and were generally consistent with those of in each
analysis. Further sensitivity analysis using complete cases attenuated
the associations, but the most significant results remained.
DISCUSSION

In this large cross-sectional study of nationally representative
U.S. adults, we showed the elevated long-term impact of weight
status on LTL in adulthood, with the ages ranging from 36 to 75
years. People with stable normal weight during the 10 years
before baseline (mean age, 51 years) had the longest LTL among
the five weight change patterns, while the LTL of people with
stable obesity was shortest. Further stratified analysis indicated
that all associations had sex differences, but people who
maintain obesity show a consistent effect. Variations across
races/ethnicity were also observed. When using the absolute
weight change, we found that the LTL linearly decreased with
weight gain. The findings suggested the importance of keeping
a normal weight to maintain a long LTL, a biomarker of aging-
related disorders.
Frontiers in Endocrinology | www.frontiersin.org 6
Our study suggested that the difference in LTL between
individuals with a stable normal weight and those with stable
obesity corresponds to approximately 8.7 years of aging, while
weight gain from non-obesity to obesity corresponds to
approximately 6.3 years of aging. The distinction in LTL
between weight loss and having a stable normal weight was not
statistically significant, suggesting that weight loss could also be
beneficial for telomere protection. The result of modeling with
absolute weight change indicated that an additional 1 kg of weight
seemed to accelerate as much as 0.2 years of aging. Stratified
analysis showed sex and race/ethnicity variations in the strength of
associations. Specifically, males with overweight or obesity of the
two-time points had significantly shorter LTLs than those with
stable normal weight, whereas only maintaining obesity shortened
the LTL in females. Among non-Hispanic whites, the influence of
weight change on LTL was more remarkable than that among the
other races/ethnicities. The generally identical results derived from
the three models with different covariate adjustments demonstrate
the robustness of our conclusions. Regarding the possible
limitation of reduced sample size, the sensitivity analysis with
complete cases attenuated the associations, but the most
significant associations remained.
TABLE 1 | Continued

Characteristics Total Weight change patterns from 10 years ago to baseline P
value

Stable normal
weight

Normal weight to overweight or stay
overweight

Weight
losing

Non-obesity to
obesity

Stable
obesity

Yes 1940
(50.1%)

348
(40.6%)

635
(47.4%)

159
(52.9%)

432
(55.2%)

366
(64.5%)

<0.001

No 1893
(49.9%)

470
(59.4%)

678
(52.6%)

130
(47.1%)

355
(44.8%)

260
(35.5%)

Family History Angina
Yes 471

(14.7%)
88

(12.4%)
152

(14.4%)
34

(12.0%)
98

(14.7%)
99

(20.2%)
0.038

No 3324
(85.3%)

724
(87.6%)

1148
(85.6%)

254
(88.0%)

680
(85.3%)

518
(79.8%)

CVD
Yes 409

(8.6%)
46

(4.0%)
118

(8.1%)
48

(13.6%)
92

(10.1%)
105

(13.8%)
<0.001

No 3458
(91.4%)

783
(96.0%)

1206
(91.9%)

244
(86.4%)

700
(89.9%)

525
(86.2%)

Diabetes
Yes 451

(8.1%)
29

(2.4%)
107

(5.1%)
85

(20.4%)
81

(8.2%)
149

(20.2%)
<0.001

No 3361
(91.9%)

793
(97.6%)

1201
(94.9%)

200
(79.6%)

698
(91.8%)

469
(79.8%)

Hypertension
Yes 1317

(29.2%)
148

(13.5%)
378

(24.9%)
122

(34.4%)
335

(40.2%)
334

(49.6%)
<0.001

No 2549
(70.8%)

678
(86.5%)

944
(75.1%)

171
(65.6%)

461
(59.8%)

295
(50.4%)

Telomere length (kbp) 5.75
(0.04)

5.85
(0.04)

5.74
(0.04)

5.70
(0.05)

5.72
(0.05)

5.67
(0.04)

<0.001

BMI at baseline 28.8
(0.20)

22.5
(0.07)

27.4
(0.04)

25.6
(0.19)

33.5
(0.11)

37.9
(0.32)

<0.001

BMI at 10 years ago 26.3
(0.14)

21.8
(0.08)

25.1
(0.08)

29.5
(0.33)

26.7
(0.10)

35.2
(0.32)

<0.001
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PIR, Poverty Income Ratio; CVD, Cardiovascular Disease.
Data for population characteristics are presented as the mean and standard error (SE) for numerical variables and the frequency (n) and proportion (%) for categorical variables. The P value
was calculated with the Rao-Scott c2 test or by weight-adjusted analysis of variance.
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The current mainstream mechanism explaining chronic
inflammation-induced telomere dysfunction is oxidative stress, an
imbalance between the production of reactive oxygen species(ROS)
and cellular antioxidant defenses (35). Increasing obesity may result
in oxidative stress (36), and oxidative damage anywhere in the
telomere can cause stochastic and irregular telomere shortening
events in human fibroblasts (37). Another study demonstrated that
7,8-dihydro-8-oxoguanine (8-oxoG) is the most predominant
lesion caused by oxidative stress, while the chronic formation of
8-OxoG is found to triggers telomere losses (38). A recent review of
evidence from humans, mouse models and cell culture studies
showed that oxidative stress is correlated with accelerated telomere
shortening and dysfunction (39). The observed correlation between
obesity and LTLmight also be explained by the fat mass and obesity
associated (FTO) gene-involved pathways, as is shown in the review
(40). Genome-wide association studies have identified FTO as an
obesity-associated gene (41, 42). FTO rs8050136 was found to
correlate with the expression of retinoblastoma-like 2 protein
(Rbl2) gene (43), which inhibits Dnmt3a,3b expression, thus
influencing telomere regulation process (44).

There are a few studies investigating the relation between
weight changes and LTL. Kim et al. (28) explored the
association between weight gain and TL (relative T/S ratio)
among 608 women aged ≥ 40 years enrolled in the NIEHS
Sister Study, where weight gain was defined as the difference
between current and past weight (i.e., self-reported average weight
at ages 30 to 39) and further classified into five patterns. They
showed that overweight (BMI ≥ 25 kg/m2) or obesity (BMI ≥30
kg/m2) at both time points had the smallest T/S ratio and a
Frontiers in Endocrinology | www.frontiersin.org 7
maintained normal BMI had the longest TL, which was consistent
with our results. However, this study included only women and an
insufficient number of samples (only 3 available participants) to
address the influence of weight loss on TL. Cui et al. (29) defined
weight change patterns based on recalled weight and measured
weight at enrollment, reporting its inverse association with TL in a
study of 1,295 women aged 55 to 70 years. Specifically, they
classified BMI changes into five groups and showed that women
who maintained a normal weight or reduced their weight to
normal since the age of 50 had a longer TL than those with
stable obesity or those who became obese. Compared with their
study, our study included a nationally representative sample
comprising both males and females with a wide age range and
presents sex and race/ethnicity differences in the associations. In
addition, we present the stability of our results by considering the
different combinations of covariates and sensitivity analysis.

Several limitations in this study should be addressed. Firstly, we
employed BMI as the only measurement of adiposity because the
data collected from NHANES lacked other adiposity-related
markers, such as body fat and waist circumference, at 10 years
before baseline; therefore, our conclusions, derived from BMI, are
incomplete. Secondly, data on many covariates (e.g., physical
activity) were collected only at baseline, thus ignoring changes
over the 10-year interval, which makes it difficult to control for
time-varying confounders. Moreover, it is difficult to make causal
inferences in this cross-sectional study and self-reported weight
data we used in this study inevitably carries the risk of recall bias.

The development of telomere biology has opened up a new
path toward understanding the mechanisms related to aging,
FIGURE 2 | Associations of leucocyte telomere length with five weight change patterns. Model 1: adjusted for age, sex, and race/ethnicity. Model 2:
adjusted for covariates in Model 1 plus educational level, family PIR, physical activity, energy intake, alcohol use, and smoking status. Model 3:
adjusted for covariates in Model 2 plus self-reported health, family history of diabetes, family history of angina, cardiovascular disease, diabetes,
and hypertension.
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obesity and oxidative stress at the molecular level. Our study
explored the association between weight change patterns and
LTL based on a large sample size, which further supports the
theory that gaining weight promotes aging. LTL can be used as
a biomarker for obesity treatment, warning people to
intervene as soon as possible to reduce the risk of obesity-
related diseases and maintain a normal weight.
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