AUTHOR=Landry Taylor , Shookster Daniel , Huang Hu TITLE=Tissue-Specific Approaches Reveal Diverse Metabolic Functions of Rho-Kinase 1 JOURNAL=Frontiers in Endocrinology VOLUME=11 YEAR=2021 URL=https://www.frontiersin.org/journals/endocrinology/articles/10.3389/fendo.2020.622581 DOI=10.3389/fendo.2020.622581 ISSN=1664-2392 ABSTRACT=
Rho-kinase 1 (ROCK1) has been implicated in diverse metabolic functions throughout the body, with promising evidence identifying ROCK1 as a therapeutic target in diabetes and obesity. Considering these metabolic roles, several pharmacological inhibitors have been developed to elucidate the mechanisms underlying ROCK1 function. Y27632 and fasudil are two common ROCK1 inhibitors; however, they have varying non-specific selectivity to inhibit other AGC kinase subfamily members and whole-body pharmacological approaches lack tissue-specific insight. As a result, interpretation of studies with these inhibitors is difficult, and alternative approaches are needed to elucidate ROCK1’s tissue specific metabolic functions. Fortunately, recent technological advances utilizing molecular carriers or genetic manipulation have facilitated discovery of ROCK1’s tissue-specific mechanisms of action. In this article, we review the tissue-specific roles of ROCK1 in the regulation of energy balance and substrate utilization. We highlight prominent metabolic roles in liver, adipose, and skeletal muscle, in which ROCK1 regulates energy expenditure, glucose uptake, and lipid metabolism