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TSH Receptor and Autoimmunity

INTRODUCTION

Over time it has become clear that the fascination with the TSH receptor (TSHR) is not only its
complexity and its relationship to human disease but the fact that it keeps teaching us fundamental
biology at all levels; cellular, molecular, and genetic. There are good examples of each of these facets
in this cutting edge collection of papers. This contribution provides a brief and broad overview
highlighting those areas of active progress by briefly eluding to some of the contributions in this
collection.

The TSHR is a member of the class A family of G-protein coupled receptors (GPCR) with seven
transmembrane helices traversing the plasma membrane and a large extracellular ectodomain. The
ectodomain (ECD) is linked to a distal signal-specific domain—the hinge region—which is attached
to a transmembrane domain (TMD) consisting of extracellular (ECL) and intracellular (ICL) loops
(Figure 1). A partial TSHR ectodomain (residues 1–260) has been crystallized either bound to a
stimulating TSHR antibody and/or a blocking TSHR antibody (1, 5) and recently in an unbound
native state with stabilizing mutations. Like other GPCRs, the TSH receptor can also not exist in an
ensemble of conformational states which can lead to its varied signaling potential. The review by
Kleinau et al. in this collection takes a comprehensive look at the structure-function relationship of
the TSHR viamodeling andmutational approaches. It is nowwell-known that the full-length TSHR
undergoes complex post translational processing (6, 7) inclusive of common protein modifications
such as glycosylation and phosphorylation and even whole receptor modifications such as cleavage
and multimerization (7, 8) thus resulting in a surprising variety of receptor configurations, many
of which are expressed on the cell surface (9) and in some cases even shed from the cell surface
(10). Although the shed receptor forms have not been conclusively demonstrated in the serum of
patients with Graves’ disease (GD), probably secondary to degradation, the evidence that these and
other receptor structures are critical to the immunopathogenesis of GD has been well-covered in
the review by Inaba et al.

Signal transduction at the TSHR is complex because of the promiscuous nature of the
TSHR in engaging with different G proteins (11). In addition, the TSHR signals can be
both G protein dependent and G protein independent. The TSHR has been shown to engage
predominantly β-arrestin-2 for internalization (12) and arrestin-1, in human osteoblast cells, for
differentiation, and MAP kinase signaling (13). In addition, it has long been known that the
TSHR is involved with the IGF1/insulin receptor in thyroid cells and the “marriage” of these two
receptors in fibroblasts has suggested their involvement in Graves’ eye disease pathophysiology
as well-reviewed by Smith et al.. The complex life cycle of GPCRs such as the TSHR (Figure 2)
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FIGURE 1 | Homology model of the entire TSH holoreceptor. This model

highlights the tripartite structure of the TSHR. The ectodomain, shown in

gray/black, is made up of 10 leucine-rich repeat domains (LRD) characterized

as a “scythe-blade” shaped structure with loops and β pleated sheets

obtained from the published crystal structure (1) (PDB:3G04). The region

connecting the LRD and transmembrane domain (TMD), known as the “hinge”

region, has recently been crystallized for the FSH receptor (2) (PDB:4AY9) and

is shown as a looped structure (orange) with a helix conformation close to the

carboxyl end of the LRD. The hinge in the TSHR has an additional sequence

insert and is larger than in the FSH receptor. Therefore, amino acids 305-381

are missing in the illustrated model (3) and this insert is depicted as a closed

dotted loop. The TMD (yellow), with its seven helices, is depicted as cylindrical

structures connected to each other by the specific TSHR intra and extracellular

loops. The TMD is the region that harbors the allosteric binding pockets for the

SMLs. LRD, leucine-rich domain; TMD, transmembrane domain; ECL,

extracellular loops; and ICL, intracellular loops [Figure adapted from (4)].

has also begun to be revealed showing that these types of GPCRs,
after being sequestered via clathrin-coated pits or caveolin
scaffolding proteins, are still able to signal after internalization.
New evidence points out that these internalized receptors can
lead to a “second wave” of signals from the TSHR (14). The
result is that not only does the receptor come in multiple
configurations but there are also multiple signal pathways that
may or may not be initiated as the receptor conformation

changes on ligand binding and this may continue after the
receptors are internalized. The days of thinking simply of the
TSH induced cyclic AMP response coming only from the surface
receptors have long gone. Single-particle electronmicroscopy has
confirmed the presence of intracellular megaplexes which consist
of a GPCR bound to β-arrestin at its C terminus and a G protein
complex at its core (15). The crystallization of a GPCR bound
to G proteins has enhanced our understanding that ligands
can stabilize different receptor conformations and that these
ligand bound receptor complexes can stabilize different effector
conformations leading to diversified signaling. However, such
full-length receptor and G protein crystallized conformation(s)
have not yet been achieved for the TSHR.

TSHR STIMULATORS

The TSHR can be activated by TSH itself, or by autoantibodies
which can bind to the orthosteric site(s) on the large ectodomain.
In fact, activation of the TSHR has been in clinical use for many
years. Semi-purified bovine TSH was originally used for short-
term thyroid testing of TSHR function but proved to have too
many immune related side effects in clinical practice. The clinical
use of TSH was not widely adopted until the introduction of
recombinant human TSH in the 1990’s. This is now used for
detecting thyroglobulin release from metastatic thyroid cancer
and for enhancing RAI uptake into thyroid glands (16–18). The
discovery of stimulating TSHR antibodies by Adams and Purves
(19) demonstrated the cause of Graves’ disease and helped open
up the entire field of autoimmune disease. Since the discovery
of TSHR autoantibodies there has been the development of
clinical assays to effectively detect these antibodies in Graves’
patients with improving accuracy and sensitivity. The reviews by
Giuliani et al. tracing the development of TSH bioassays and by
Kahaly et al. on functionality and nomenclature are interesting
and important in this regard. Although the current assays for
detecting these antibodies are relatively robust the solid phase
assays cannot detect bioactivity and the cell based bioassays are
also not ideal where high concentrations of blocking antibodies
may decrease the TSHR response to stimulating antibodies. Such
problems arise due to the plethora of antibodies with variable
bioactivities seen in GD indicative of a wide spectrum of variable
activities as discussed further below.

In recent years it been shown by several investigators that
selected small molecule ligands (SML) can easily permeate the
plasma membrane and allosterically activate or inhibit TSHR
signals. High throughput functional screening methods led to
their identification and has opened up new therapeutic potentials
(20–22). Furthermore, the concept that various effectors can
stabilize the TSHR in a particular conformation has opened
the possibility of biased TSHR signaling as achieved with other
GPCR’s (23, 24).

TSHR ANTAGONISTS

A major clinical need is for potent TSHR antagonists that
can block the TSHR antibodies of hyperthyroid Graves’
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FIGURE 2 | Generic life-cycle of the TSH receptor. The TSHR residing on the plasma membrane of thyrocytes on binding with its cognate ligand, TSH, is activated and

in turn undergoes conformational changes to recruit and activate a G protein complex leading to a predominate wave of Gs generated cAMP (Signal 1). The activated

receptor, after signal 1, is phosphorylated and then moved to clathrin-coated pits where β-arrestin is bound to the activated receptor. At this stage it is believed that

the receptor can signal via arrestin leading to β-arrestin-associated signals. Furthermore, this activated receptor in the invaginated pits is pinched-off to form the early

and late endosomes. It is described that within the endosome the receptor with its associated ligand and second messengers is capable of giving out a second wave

cAMP signal (Signal 2). Following this the receptor can be either degraded or it enters recycling vesicles and is recycled to the plasma membrane whereas the ligand

is transported to the lysosome and is degraded. This is the life that the TSHR lives on the surface of thyrocytes or any other cell where it is expressed.

disease allowing us to dispense with the side effects of the
common antithyroid drugs (methimazole and PTU) which
deter many physicians from their long term use. A blocking
human monoclonal TSHR antibody has been proposed
as one method of achieving this aim (25) and results of
a Phase II clinical trial are awaited. Although therapeutic
antibodies have the theoretical advantage of specificity so
do potential small molecule TSHR antagonists. Several
groups, including our own laboratory as described by Latif
et al. included in this collection (26, 27), have shown that
allosteric inhibition of TSHR G protein signaling can silence
the TSHR receptor. However, low potency and inadequate
specificity of these SML antagonists indicate that more hurdles
have to be crossed for the advancement of this approach.
Peptide mimetics and aptamers to the TSHR that can either
disrupt signaling via preventing G protein binding or by
interfering with TSHR antigen processing are also under
development and in early stage clinical trials and further data are
awaited.

EXTRA-THYROIDAL TSHRs

At long last it is becoming widely known that the TSHR is
expressed in more places than the thyroid gland and can even
be found to be expressed in embryonic stem cells suggesting a
role in development (11). The TSHR is expressed in fibroblasts,
adipocytes, bone cells, and a variety of additional cell types
(28, 29) and have, in particular, attracted a lot of attention
in the retro-orbit (30–32) and bone (33, 34). This ubiquitous
presence of the receptor clearly suggests that it has more
functions than controlling thyroid hormone production. The role
of TSHR activation and its signaling influence on adipocytes
has been studied (35) and activation of the TSHR can modulate
adipogenesis and fat cell phenotype further reinforced in the
article by Draman et al.. The role of the TSHR in differentiation
of preadipocytes into mature adipocytes from embryonic stem
cells has also been shown (36) although the signals that influence
this differentiation pathway are still unclear. The “Graves’ Disease
Triad” consists of hyperthyroidism with a dermopathy, referred
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to as pre-tibial myxedema, and an orbitopathy often referred to
as Graves’ Eye Disease and involves fibroblasts and adipocytes
at both extra-thyroidal sites. Retro-orbital expression of the
TSHR, in combination with IGF-1 receptors (37), expressed
on the fibroblasts and adipocytes behind the eye appear to
be involved in the pathogenesis of Graves’ orbitopathy GO-
(see Smith et al.) and serum TSHR-Ab levels tend to correlate
with eye disease (38–40). IGF-1 is well-known to enhance TSH
action on thyroid cells and recent studies show that blockade
of the IGF-1R appears to be a useful mode of therapy for GO
(41, 42) presumably by reducing stimulating TSHR-Ab-induced
adipocyte proliferation and cytokine release from retro-orbital
fibroblasts. Such cytokines contribute to glycosaminoglycan
generation and disrupt the osmotic pressure behind the eyes
causing muscle fiber damage and swelling (42, 43). Similarly,
our work on TSHR expression in osteoblasts and osteoclasts has
identified TSH as a potential osteoprotective molecule (33). The
identification of a TSH-β subunit splice variant secreted by bone
marrow macrophages may be the effector of this protective effect
as discussed in detail by Baliram et al. (44).

TSHR ANTIBODIES

One of the unique characteristics of Graves’ disease, not found
in normal individuals or in the rest of the animal kingdom,
is the presence of TSHR antibodies (TSHR-Ab) which are
easily detectable in the vast majority of patients as discussed
earlier (45). In such patients, TSHR-reactive T cells and B cells
survive central and peripheral deletion and under appropriate
circumstances the B cells secrete TSHR antibodies and also
induce T cells to secrete pro-inflammatory cytokines (46). Hence
both B cells and T cells play a central role in mediating the
chronic inflammatory changes of the autoimmune diseases seen
in the thyroid gland, in the retro-orbit and in the skin (19),
and may be resistant to T regulatory cell (Treg) control or
allowed to be active secondary to inadequate Treg function (47).
Although TSHR autoantibodies represent the hallmark of GD,
finding the triggers that lead to this immunological derangement
has been a challenge. Genome-wide association studies have
established the association of the TSHR gene specifically with
GD and understanding the functional mechanism by which such
polymorphisms modify the physiological processes and trigger
disease by interfering with central tolerance is outlined in the
review by Stefan et al.. Whatever may be the major mechanisms
for these triggers we now see three varieties of TSHR-Ab that can
be found in patients with autoimmune thyroid disease and in
TSHR immunized rodents; stimulating, blocking, and so called
“neutral” antibodies; the latter often directed at the hinge region
of the TSHR ectodomain and are far from being neutral in their
biological activity. Stimulating antibodies induce cyclic AMP,
thyroid cell proliferation and thyroid hormone synthesis, and
secretion. They bind exclusively to conformational epitopes in
the TSHR ectodomain leucine rich repeat region and compete
with TSH for binding. TSHR blocking antibodies compete with
TSH for binding and once bound they inhibit TSH action to a
variable extent. However, the degree of blockingmay be profound

enough that they may induce hypothyroidism although some
blocking TSHR antibodies may actually behave as weak TSHR
agonists. In contrast, the neutral TSHR antibodies neither block
TSH binding nor block TSH action but may be involved in
aberrant signal initiation and thyroid cell apoptosis (48, 49). It
is important to also remember that TSHR antibodies have an
important role to play in pregnancy because these antibodies
cross the placenta and influence both maternal and fetal thyroid
function and their biochemical and immunological aspects are
well-dealt with by Bucci et al..

APOPTOSIS IN GRAVES’ DISEASE

It is now apparent that apoptosis plays an important role
in the development and perpetuation of autoimmune thyroid
disease. Areas of apoptosis are recognized in thyroid tissue
from patients with Hashimoto’s Thyroiditis and Graves’ disease
(50). Subsequent studies on apoptosis have provided insight into
autoimmune target destruction, indicating the involvement of
death receptors and cytokine-regulated apoptotic pathways in
the pathogenesis, and perpetuation of thyroid autoimmunity.
There is evidence that such thyrocyte apoptosis in Graves’
disease may be antibody induced (51) or T cell mediated
via defects in T regulatory cells which induce an abnormal
production of cytokines (52) or changes in the expression of
apoptotic molecules (Fas/FasL and caspase 8) on the surface of
T lymphocytes and thyroid follicular cells (53, 54). In fact, all
antibody binding to the thyroid cell induces thyroid cell stress, as
first shown by our own laboratory, but we have shown that some
neutral antibodies induce excessive ROS accumulation leading
to thyroid cell apoptosis in the absence of G-protein signaling
(49, 55, 56). This antibody induced apoptosis can facilitate
the breakdown of self- tolerance mechanisms in individuals
with the right major histocompatibility complex (MHC) class II
background in myriad ways. It could be the release of excessive
cytosolic DNA fragments that can act as adjuvants/immune
modulators and induce aberrantMHC II expression in thyrocytes
thus inducing the release of multiple inflammatory cytokines and
chemokines as seen in various animal models and well-reviewed
by Luo et al. in this collection.

THE MULTIPLICITY OF TSH RECEPTOR
FORMS AND RESPONSES MAY EXPLAIN
THE GRAVES’ DISEASE PHENOTYPE

With the initial discovery of the classical G-protein–coupled-
receptors (GPCR) the essential mechanisms appeared at first
to be straightforward. The ectodomain was responsible for
hormone specificity and the intracellular domain was responsible
for the cyclic AMP signal. Each receptor had a specific ligand
and an expected action. The receptor for TSH was very similar
to that for FSH and LH/hCG and each activated PKA and
the cyclic AMP pathway. Such simplicity, however, was short
lived. Firstly, the TSHR was found to have two unique inserts
into the ectodomain, including one which made it subject to
complex post translational processing not seen with the LHR
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and FSHR. Then the phenomenon of specificity cross-over
reared its head. Suddenly the concept of high specificity of a
hormone receptor was in doubt. For example, a number of
ligands are able to bind to and activate the TSHR including
hCG and LH. Stimulation of the TSHR by hCG is seen in
gestational thyrotoxicosis (57) and in choriocarcinoma and a
unique TSHR mutation even more highly hCG reactive has been
described. With the burgeoning of our understanding into the
structure of the TSHR by comparative modeling and partial
crystal structures the entire field of TSHR signal transduction
opened up. TSH/hCG and small molecule agonists could initiate
different signals depending on the concentration of ligand
available for receptor binding, the number of receptors activated,
the forms of receptor (dimeric vs. monomeric) and also the
orthosteric vs. the allosteric sites. Hence, we have the issue of
multiple specificities and multiple signal responses indicating
that an enormous number of variables are at play at just one
GPCR. If we then consider Graves’ disease and its multiple
clinical forms which can vary from a highly localized thyroid
disease to almost a systemic autoimmune diathesis much of
this may be explicable by the variable forms of the receptor
available for immune activation, the variable sites of TSHR
expression and the multiplicity of signals that the TSHR can
employ. In addition, the presence of differing proportions of
high affinity TSHR-Abs with varied biological activity in patients

with GD no doubt also contributes to the multiple clinical
phenotypes; varying from hyperthyroidism to hypothyroidism
and vice versa and with or without Graves’ orbitopathy and
pre-tibial myxedema.

CONCLUSION

The collection of papers that form part of this special issue shows
the different facets of the TSHR thus allowing us to rightly say
that many roads lead from and to this GPCR. For sure the TSHR,
with its structural and signaling complexity, is going to hold our
scientific imagination and enthusiasm for many more years to
come.
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