AUTHOR=Abu Eid Sameer , Hackl Martina T. , Kaplanian Mairam , Winter Max-Paul , Kaltenecker Doris , Moriggl Richard , Luger Anton , Scherer Thomas , Fürnsinn Clemens TITLE=Life Under Hypoxia Lowers Blood Glucose Independently of Effects on Appetite and Body Weight in Mice JOURNAL=Frontiers in Endocrinology VOLUME=9 YEAR=2018 URL=https://www.frontiersin.org/journals/endocrinology/articles/10.3389/fendo.2018.00490 DOI=10.3389/fendo.2018.00490 ISSN=1664-2392 ABSTRACT=
Blood glucose and the prevalence of diabetes are lower in mountain than lowland dwellers, which could among other factors be due to reduced oxygen availability. To investigate metabolic adaptations to life under hypoxia, male mice on high fat diet (HFD) were continuously maintained at 10% O2. At variance to preceding studies, the protocol was designed to dissect direct metabolic effects from such mediated indirectly via hypoxia-induced reductions in appetite and weight gain. This was achieved by two separate control groups on normal air, one with free access to HFD, and one fed restrictedly in order to obtain a weight curve matching that of hypoxia-exposed mice. Comparable body weight in restrictedly fed and hypoxic mice was achieved by similar reductions in calorie intake (−22%) and was associated with parallel effects on body composition as well as on circulating insulin, leptin, FGF-21, and adiponectin. Whereas the effects of hypoxia on the above parameters could thus be attributed entirely to blunted weight gain, hypoxia improved glucose homeostasis in part independently of body weight (fasted blood glucose, mmol/l: freely fed control, 10.2 ± 0.7; weight-matched control, 8.0 ± 0.3; hypoxia, 6.8 ± 0.2;