AUTHOR=Vogt Éverton L. , Model Jorge F. A. , Vinagre Anapaula S. TITLE=Effects of Organotins on Crustaceans: Update and Perspectives JOURNAL=Frontiers in Endocrinology VOLUME=9 YEAR=2018 URL=https://www.frontiersin.org/journals/endocrinology/articles/10.3389/fendo.2018.00065 DOI=10.3389/fendo.2018.00065 ISSN=1664-2392 ABSTRACT=

Organotins (OTs) are considered some of the most toxic chemicals introduced into aquatic environments by anthropogenic activities. They are widely used for agricultural and industrial purposes and as antifouling additives on boat hull’s paints. Even though the use of OTs was banned in 2008, elevated levels of OTs can still be detected in aquatic environments. OTs’ deleterious effects upon wildlife and experimental animals are well documented and include endocrine disruption, immunotoxicity, neurotoxicity, genotoxicity, and metabolic dysfunction. Crustaceans are key members of zooplankton and benthic communities and have vital roles in food chains, so the endocrine-disrupting effects of tributyltin (TBT) on crustaceans can affect other organisms. TBT can disrupt carbohydrate and lipid homeostasis of crustaceans by interacting with retinoid X receptor (RXR) and crustacean hyperglycemic hormone (CHH) signaling. Moreover, it can also interact with other nuclear receptors, disrupting methyl farnesoate and ecdysteroid signaling, thereby altering growth and sexual maturity, respectively. This compound also interferes in cytochrome P450 system disrupting steroid synthesis and reproduction. Crustaceans are also important fisheries worldwide, and its consumption can pose risks to human health. However, some questions remain unanswered. This mini review aims to update information about the effects of OTs on the metabolism, growth, and reproduction of crustaceans; to compare with known effects in mammals; and to point aspects that still needs to be addressed in future studies. Since both macrocrustaceans and microcrustaceans are good models to study the effects of sublethal TBT contamination, novel studies should be developed using multibiomarkers and omics technology.