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MicroRNAs (miRNAs) are short non-coding RNAs that posttranscriptionally regulate 
gene expression inside the cell. Extracellular circulating miRNAs are also observed 
outside the cell, but their origin is poorly understood. Recently, miRNA has been shown 
to be exocytosed by vesicle fusion; this observation demonstrates that vesicle-free  
miRNAs are secreted from neuroendocrine cells, in a manner similar to hormone secre-
tion. miRNAs are stored in large dense-core vesicles together with catecholamines, then 
released by vesicle fusion in response to stimulation; in this way, vesicle-free miRNA 
may regulate cell-to-cell communication including the regulation of gene expression 
and cellular signaling. Therefore, miRNA has been suggested to function as a hormone; 
i.e., a ribomone (ribonucleotide + hormone). This review focuses on the mechanisms 
by which vesicle-free miRNAs are secreted from neuroendocrine cells and will discuss 
potential functions of vesicle-free miRNAs and how vesicle-free miRNAs regulate  
cell-to-cell communication.
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iNTRODUCTiON

MicroRNAs (miRNAs) are a class of small non-coding RNAs (ncRNAs) that are ~22 nucleotides 
in length; they downregulate translation of target mRNA (1, 2). ncRNAs are transcribed from the 
genome, but not translated to protein; ~98% of RNA transcripts in humans are non-coding (3). 
Although miRNAs constitute <1% of ncRNAs in mammalian cells (4); tRNA and rRNA are domi-
nant ncRNAs, miRNAs have critical functions in gene expression.

MicroRNAs inhibit expression of >60% of human protein-coding genes, mostly by binding to 
the 3′- untranslated region (3′UTR) of the target mRNAs (5) and, therefore, miRNAs affect gene 
expression networks of a variety of biological processes including development, apoptosis, prolif-
eration, and metabolism (1, 2). miRNAs are transcribed within cells, but are also found outside 
cells, called extracellular miRNAs. Extracellular miRNAs were observed in cell culture system (6), 
in blood plasma and serum (7–10), and in other biological fluids (11) including cerebrospinal 
fluid (12), saliva (13), breast milk, urine, and tears (14). The existence of extracellular miRNAs 
suggests that they participate in cell-to-cell communication. Extracellular miRNAs are highly  
stable in freeze-thaw cycles, extreme pH, and can withstand storage for up to 4 days at room tem-
perature (9, 10, 15).

Extracellular miRNAs can be non-invasive biomarkers for many different types of diseases 
(16–19), although the specificity and sensitivity of miRNA biomarkers are still under debate (20), 
for three reasons: (1) tumor-derived extracellular miRNAs can also be released by normal cells; (2) 
existing protocols for collecting extracellular miRNAs are not sufficiently reproducible; and (3) the 
level of tumor-derived extracellular miRNAs might vary with the age of the patient and the status of 
disease, so their value as non-invasive biomarkers are reduced.

Exosomes, microvesicles, and apoptotic bodies are considered as carriers of extracellular miRNAs 
(21). More than 90% of extracellular miRNAs are vesicle-free, but form a complex with proteins such 
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TABLe 1 | Comparison of large dense-core vesicle (LDCV) and exosomea.

LDCv exosomea

Size (diameter) 100–300 nm 40–100 nm

Biogenesis/formation Golgi complex Multivesicular bodies, endosome

Agonaute2 and RNA-induced silencing complex No (24) Yes (48)

Copy number of miRNA ~500 (miR-375) (24) <1

Size distribution of RNA Peak at ~22 nt (24) Broad distribution, 25–4,000 nt (49)

Dominant RNA ~60% miRNA (24) mRNA, miRNA is minor (<1–30% (49–52))

Contents Catecholamines, hormones, peptide, ATP, miRNA Proteins, DNA, RNA, lipid (42, 53–55)

miRNA release mechanism Neuronal SNARE (VAMP-2, syntaxin-1A, SNAP-25A) (56) Ceramide-dependent, ESCRT-independent (37, 38)

aExosome composition is so heterogeneous that the RNA profile and content of exosomes varies depending on cell types, references; i.e., serum, plasma, or cell culture medium, 
developmental stages, etc.
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release exosomes by fusion with the plasma membrane (43). 
However, the number of copies of miRNAs per exosome is very 
low; i.e., <1 (44), and exosomes can be very heterogeneous in 
molecular composition depending on the purification methods 
(45). Furthermore, further research is required to determine the 
mechanism by which exosomal miRNAs (44, 46, 47) affect gene 
silencing in the target cell, despite their low concentrations [see 
Table 1 for comparison with large dense-core vesicles (LDCVs)].

Microvesicles from the plasma contain miRNAs and trans-
fer extracellular miRNAs (57). Microvesicles are generated 
by outward budding of the plasma membrane and are larger 
(50–2,000 nm) than exosomes (58). The sizes of some microvesi-
cles and exosomes are similar and the molecular compositions of 
microvesicles and exosomes largely overlap (59), so, the classes 
are difficult to distinguish; thus, they can be collectively called 
extracellular vesicles (EVs).

Apoptotic bodies with diameters 1–4 μm contain extracellular 
miRNAs (60), but apoptotic bodies form only after programmed 
cell death, and miRNAs in apoptotic bodies seem to be byproducts 
released by cell lysis. Researchers still debate whether extracel-
lular miRNAs are the specific cargo of EVs and apoptotic bodies, 
or whether miRNAs are just byproducts of the biogenesis of EVs 
and apoptotic bodies.

eXTRACeLLULAR veSiCLe-FRee miRNAs

Extracellular miRNAs fall into vesicle-incorporated and vesicle- 
free groups. More surprisingly, 90–99% of extracellular miR-
NAs are vesicle-free, and are components of miRNA–protein 
complexes; this result suggests that exosomes are not the main 
miRNA carriers (22, 23). Extracellular vesicle-free miRNAs 
being exported by the protein complexes that protect miRNAs 
from degradation, e.g., nucleophosmin 1 (NPM1), in the cell 
culture system were first reported in 2010 (61). miR-16 and 
miR-92a are not contained in EVs, but associate with AGO2 
that protect extracellular miRNAs from RNases (22). miR-16, 
miR-21, and miR-24 are EV-free extracellular miRNAs that form 
complexes with AGO2 (23). In addition to AGO2, apolipoprotein 
A-I (apoA-I), the main component of high-density lipoprotein 
(HDL), associates with extracellular miRNAs in plasma and 
transfers miRNAs to target cells; the transfer is mediated by a 
scavenger receptor class B, type I (SR-BI) HDL receptor in the 
plasma membrane (62, 63), and thereby contributes to intercel-
lular communication.

as Agonaute2 (AGO2) (22, 23). Although extracellular miRNAs 
are believed to contribute to cell-to-cell communication, the 
mechanisms by which miRNAs are released are still not under-
stood. Extracellular miRNAs have been considered as byproducts 
or artifacts caused by cell lysis and cell death. Recently, miRNA 
exocytosis by vesicle fusion in response to stimulation was 
observed in chromaffin cells, which are neuroendocrine cells in 
the sympathetic nervous system (24). The objective of this review 
is to discuss how miRNAs are released by active exocytosis and 
to examine the physiological functions of vesicle-free miRNAs in 
neuroendocrine cells.

CARRieR OF eXTRACeLLULAR miRNAs

The biogenesis of miRNAs has been extensively reviewed else-
where (25–27). RNA polymerase II mainly transcribes microRNA 
genes as primary miRNA transcripts (pri-miRNAs) that contain 
5′cap and 3′poly(A) tails (28). Drosha, RNase III, and DGCR8, 
the RNA-binding protein, further process pri-miRNAs into stem-
loop structured precursor miRNAs (pre-miRNAs) of ~70 nt (29). 
After pre-miRNAs are transported to the cytoplasm, RNase III 
Dicer and TRBP (transactivation-response RNA-binding protein) 
cleave them into double-stranded miRNA duplexes of ~22  nt  
(30, 31). Finally, argonaute (AGO) proteins associate with mature 
miRNAs in the RNA-induced silencing complex (RISC) (32–34) 
and mature miRNAs bind to the complementary sequence 
usually located within the 3′-UTR of target mRNAs (35). AGO 
protein family (AGO1, AGO2, AGO3, AGO4) associating with 
miRNA mediate mRNA decay and inhibition of mRNA transla-
tion, whereas only AGO2 cleaves target mRNAs (32, 36).

Exosomes, microvesicles, and apoptotic bodies deliver 
extracellular miRNAs to target cells (21). Exosome-incorporated 
extracellular miRNAs were first observed in 2007 (6). Exosomes 
contain miRNAs and mediate the transfer of miRNAs between 
cells (6). Release of exosomal miRNA is dependent on ceramide, 
which is regulated by neutral sphingomyelinase 2 (nSMase2), 
but independent of the endosomal sorting complex required for 
transport (ESCRT) (37, 38). Rab27a and Rab27b control exosome 
secretion by regulating docking of multivesicular bodies (MVBs) 
at the plasma membrane (39).

Exosomes are small vesicles (40–100 nm in diameter) and are 
thought to be the carriers of signaling macromolecules and RNAs 
for cell-to-cell communication, but the true function of exosomes 
remain poorly understood (40–42). MVBs store exosomes and 
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FiGURe 1 | Schematic diagram of the microRNAs (miRNA) exocytosis mechanisms (A) and the working hypothesis of the miRNA loading into large dense-core 
vesicles (LDCVs) (B). (A) Catecholamines (red ball) are typical neurotransmitters stored in LDCVs. LDCVs also contain a variety of miRNAs including miR-375.  
The assembly of neuronal SNAREs including VAMP-2, SNAP-25A, and syntaxin-1A mediates miRNA exocytosis from chromaffin cells, neuroendocrine cells. 
Synaptotagmin-1 (Syt-1) is considered as a Ca2+ (green ball) sensor to trigger miRNA exocytosis. The membrane insertion of Ca2+-bound Syt-1 results in the 
fusion pore formation. Ribomone hypothesis: miRNAs stored in vesicles together with classical neurotransmitters are released by vesicle fusion, thereby 
contributing to cell-to-cell communication (24). Two hypothetical functions of released extracellular miRNAs; (i) miRNAs might be taken up by endocytosis into 
target cells where miRNAs regulate gene expression. (ii) miRNAs might be able to stimulate receptors or ion channels as ligands, thereby leading to cellular 
signalling. Adapted from Gümürdü et al. (24). (B) The mechanisms by which miRNA or miRNA–protein complex can be loaded into LDCVs remain elusive. 
Structure of miRNA-binding protein is artificial for the simplicity.
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Despite the interests of extracellular vesicle-free miRNAs, 
the origin of vesicle-free miRNAs and the mechanisms of their 
release are unclear. Vesicle-free miRNAs might be byproducts of 
cell death (23); death of neurons and glial cells in neurodegen-
erative diseases lead to an increase in extracellular vesicle-free 
miRNAs, and this increase can be exploited as a biomarker (64). 
In contrast, certain vesicle-free miRNA species are selectively 
released from various types of cells (61); this result suggests the 
existence of a specific pathway that is independent of EVs for 
release of miRNAs. However, the mechanisms by which vesicle-
free miRNA is released remain unknown.

miRNA eXOCYTOSiS BY veSiCLe FUSiON

Neuroendocrine cells can release vesicle-free miRNAs by active 
exocytosis in response to neuronal stimuli (24). Chromaffin cells 
are neuroendocrine cells that release hormones and catechola-
mines (e.g., dopamine, adrenaline, noradrenaline) into the blood 
when the sympathetic nervous system is activated (65). LDCVs 
of chromaffin cells are specialized organelles that store catecho-
lamines and hormones (65). miRNAs are stored in LDCVs of 
chromaffin cells together with catecholamines and hormones 
(see Table 1 for comparison with exosome); miR-375 is the most 
abundant miRNA (~30% of total miRNAs in LDCV) (24). miR-
NAs including miR-375 are released by LDCV fusion in a manner 

that is dependent on the presence of soluble N-ethylmaleimide-
sensitive factor attachment protein receptor (SNARE). SNARE 
proteins are considered to constitute the fusion machinery that 
draws two opposing membranes close together (66). Neuronal 
SNAREs including VAMP-2, SNAP-25A, and syntaxin-1A medi-
ate miRNA exocytosis in neuroendocrine cells (Figure 1A) (24), 
whereas VAMP-3 and SNAP-23 mediate secretion of vesicle-free 
miRNA in vascular endothelial cells (67). miRNA exocytosis is 
completely inhibited when neuronal SNAREs are absent in the 
in vitro reconstitution system, suggesting that neuronal SNAREs 
mediate the release of miRNAs in chromaffin cells (24).

Ca2+ is a triggering factor of vesicle fusion and synaptotag-
min-1 (Syt-1) is a Ca2+ sensor for fast exocytosis in neurons (68) 
and neuroendocrine cells including chromaffin cells (56). The 
membrane insertion of Syt-1 into the plasma membrane triggers 
Ca2+-dependent vesicle fusion (69). miR-375 exocytosis is acceler-
ated by the Ca2+ influx that provokes LDCV fusion in PC-12 cells, 
the cell line of chromaffin cells as well as the in vitro reconstitution 
system (24); this observation is evidence that miRNA exocytosis 
is coupled to neuronal stimuli, and that Syt-1 is a Ca2+ sensor for 
miRNA exocytosis in neuroendocrine cells (Figure 1A).

Large dense-core vesicles are enriched with miRNAs that 
account for ~60% of total RNAs stored in LDCVs; the copy 
number of miR-375 stored in a single LDCV is ~500 (24), 
which is extremely high compared to the copy number (<1) in 
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exosomes (44, 46) (see Table 1). miR-375 is preferentially stored 
in LDCVs in chromaffin cells, but not in synaptic vesicles in 
neurons (24); this segregation suggests that miRNA exocytosis 
by LDCV fusion is specific. Thus, a new term: ribomone (ribo-
nucleotide  +  hormone) has been proposed; i.e., miRNA can 
function as a hormone, which is stored in vesicles and released 
by vesicle fusion together with neurotransmitters in response 
to stimulation, and in this way, contributes to cell-to-cell com-
munication (24).

Vesicle-free miRNAs are highly stable. One possibility is they 
are stabilized by RNA-binding proteins outside the cells, e.g., by 
AGO2 (22, 23), apoA-I (62), and NPM1 (61). The mechanism of 
this stabilization in LDCVs after exocytosis remains unknown, 
but two hypotheses can be proposed. LDCVs contain apoA-I, but 
neither AGO2 nor NPM1 (24), thereby, it remains to be tested 
that apoA-I binds and stabilizes miRNAs. Another possibility is 
that secreted miRNAs bind to AGO2 that exists outside the cells 
and AGO2 might stabilize secreted miRNAs. We also cannot 
exclude the possibility that other RNA-binding proteins might be 
involved in miRNA stability.

miR-375 is specifically expressed in endocrine and neuroen-
docrine cells, including pancreatic islets beta-cells, pituitary 
gland, and adrenal medulla chromaffin cells (70, 71); miR-375 
is specifically located in the intermediate lobe of pituitary (72). 
Organs and cells expressing miR-375 are linked in hormone 
secretion. miR-375 inhibits catecholamine biogenesis by reduc-
ing the expression of tyrosine hydroxylase and dopamine-beta-
hydroxylase in chromaffin cells (73). miR-375 is one of the first 
miRNAs that was identified in the pancreas; miR-375 regulates 
development of pancreatic islets (74) and normal pancreatic cell 
mass (71). miR-375 also reduces insulin secretion by suppressing 
expression of myotrophin (70) and phosphoinositide-dependent 
protein kinase-1 (PDK1) (75). In the pituitary gland, miR-375 
targets mitogen-activated protein kinase 8, and as a result, 
inhibits expression of pro-opiomelanocortin and secretion of 
pituitary hormones (72). Whether miR-375 is also released by 
active exocytosis from beta cells and the pituitary gland remains 
to be determined.

miR-375 is one of the circulating miRNAs in plasma and serum, 
and might be a biomarker for diabetes (76), hepatocellular carci-
noma (77), and Alzheimer’s disease (78). However, it is still under 
debate as a biomarker, since circulating miRNAs are not disease-
specific. Because catecholamines released by LDCV fusion spread 
through the blood, LDCVs in chromaffin cells can be one source 
of circulating miR-375, but the function of miR-375 remains to be 
elucidated in both normal and pathological conditions.

Large dense-core vesicles in neurons might also contain 
miRNAs. miR-29a and miR-125a are released from synaptosomes 
in response to depolarization (79), and both miR-29a and miR-
125a are among the top 10% most-abundant miRNAs in LDCVs 
(24). let-7b is also released from dorsal root ganglion neurons 
by depolarization; let-7b stimulates the toll-like receptor-7 
(TLR7)/TRPA1 ion channel to mediate pain signaling (80). let-
7b is among the 15% most-abundant miRNAs in LDCVs (24). 
However, whether these miRNAs are released by LDCV or by 
synaptic vesicle fusion in neurons remains unknown, as does the 
physiological function of secreted miRNAs.

PHYSiOLOGiCAL FUNCTiONS  
OF eXTRACeLLULAR miRNAs

Even though miRNA exocytosis is selective in response to  
stimulus in neuroendocrine cells (24), the hypothesis that vesicle-
free miRNAs act as signaling molecules and mediate cell-to-cell 
communication is still challenging. The biological roles of vesicle-
free miRNAs remain elusive. Two possibilities are proposed: (1) 
gene silencing in target cells after endocytosis and (2) cellular 
signaling by receptor activation.

miRNA Transport to Regulate Gene 
expression in Target Cells
The miRNA transport system between different cells for cell-
to-cell communication has been intensively reported including 
exosomes (81–83), but this review focuses on functional transfer 
of vesicle-free miRNA. The first evidence of miRNA transport 
between cells came from plants. Plasmodesmata are channels 
that traverse the cell walls of plant cells; miRNA are transported 
directly through plasmodesmata, thus inducing systemic gene 
silencing of mRNAs in target cells (84, 85).

In the nematode Caenorhabditis elegans, SID-1 (a transmem-
brane channel for dsRNA) and SID-2 (dsRNA transporter) have 
important functions in uptake of extracellular vesicle-free miRNA 
into the cytosol; miRNA can be internalized by SID-2-mediated 
endocytosis and then transported into the cytosol through 
the SID-1 channel (86, 87). The human SID-1 ortholog SIDT1 
facilitates miRNA transfer between human cells (88). In addition 
to channels of small RNA, miRNA might be transported into 
the cytosol through HDL receptor SRBI. The complex of HDL 
with extracellular vesicle-free miRNAs in human plasma binds 
to SRBI and miRNA delivery might be mediated by a cell surface 
HDL receptor SRBI (62); however, SRBI-mediated miRNA trans-
fer is still not significant and remains controversial (89). AGO2 
and/or NPM1 bind to extracellular vesicle-free miRNAs in cell 
culture and the protein–miRNA complex might facilitate miRNA 
uptake into target cells (61, 79). Additionally, secreted miRNAs 
might be taken up into neurons by endocytosis (79) or through 
gap junctions in the direct cell contact (90, 91) to regulate the 
translation of targeted mRNAs. However, little is known about 
the mechanisms by which extracellular vesicle-free miRNAs can 
be transported and regulate gene expression in target cells.

Cellular Signaling via Receptor Activation
An unconventional function of miRNA as an agonist of toll-like 
receptor (TLR) was discovered in 2012: vesicle-free miRNAs 
interact with TLR7 and TLR8 and, in this way, activate the 
downstream signaling pathway (92, 93). Tumor-secreted miR-21  
and miR-29a stimulate murine TLR7 and human TLR8 in 
immune cells, and thereby trigger a TLR-mediated inflammatory 
response (92). Extracellular let-7 activates the TLR7 and induces 
neurodegeneration through neuronal TLR7 (93). let-7b induces 
inflammatory pain by activating TLR7 in a sequence-dependent 
manner as an agonist in dorsal root ganglia (80).

MicroRNAs might evoke cellular signaling by stimulating 
receptors in the plasma membrane, but the tissue origins of 
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extracellular miRNAs remain unknown. LDCVs in chromaffin 
cells is one of the origins of extracellular vesicle-free miRNAs, 
because miR-21, miR-29a, and let-7b are among the 5, 10, and 
15% most-abundant miRNAs in LDCVs, respectively (24); this 
abundance suggests that miRNA may serve as a receptor agonist. 
However, the binding site of miRNA and receptors is not known 
at the molecular level. Furthermore, the RNA-binding proteins 
that can regulate miRNA function to stimulate receptors remain 
unknown, because free miRNA without protein partners would 
be highly unstable. Crosslinking protocols can be applied to 
investigate miRNA-binding proteins that stabilize miRNA after 
exocytosis.

POSSiBLe MeCHANiSMS OF miRNA 
LOADiNG iNTO LDCvs

Several groups have provided evidence for miRNA sorting into 
exosomes. Direct contact of miRNAs with MVB membranes 
might be important for miRNA sorting (94) and universal 
sequence-specific sorting mechanisms for miRNA loading into 
EVs have been proposed (95). hnRNPA2B1 protein that recog-
nizes the specific GGAG motif within miRNAs may mediate 
miRNA sorting into exosomes (96). However, the mechanisms of 
miRNA sorting into EVs remain largely unclear.

Selective packing of miRNAs to LDCVs is also unknown. 
Given that miR-375 constitutes ~30% miRNAs stored in LDCVs 
(24), LDCVs probably uptake miRNAs selectively. Two possible 
pathways should be considered: (1) because LDCVs in neuroen-
docrine cells bud off the Golgi complex and undergo maturation 
(97), miRNAs might be incorporated into LDCVs during biogen-
esis and (2) RNA transporters in vesicle membranes might uptake 
miRNA into LDCVs (Figure 1B). However, this hypothesis still 
requires investigation of how miRNAs are packaged into LDCVs 
in endocrine and neuroendocrine cells.

CONCLUSiON

Large dense-core vesicles in chromaffin cells contain miRNAs, 
which are released in response to stimulation, together with 
catecholamines and peptides. miRNA exocytosis by the SNARE 
complex and Syt-1 has been discovered in chromaffin cells and 
additional secreted vesicle-free miRNAs are expected to be 

discovered. miRNAs have hormone-like activities; i.e., they are 
secreted from neuroendocrine cells, spread through the blood 
stream, and regulate target cells by gene expression and/or cel-
lular signaling. This activity of secreted miRNAs is opening an 
exciting research area in RNA biology, endocrinology, and neu-
roscience, but several important questions remain unanswered, 
including: (1) what are the physiological functions of secreted 
and vesicle-free miRNAs? It becomes clear that miRNA are 
secreted by vesicle fusion, but there is little evidence showing the 
functions of these secreted miRNAs. Further studies should focus 
on (i) the mechanism of miRNA endocytosis to mediate gene 
regulation in a target cell and (ii) miRNA receptors that might be 
activated by secreted miRNAs (Figure 1A). (2) Which cells can 
release vesicle-free miRNA? In addition to chromaffin cells, other 
neuroendocrine cells need to be tested whether miRNA is able to 
be released by vesicle fusion in a SNARE-dependent manner. (3) 
How can miRNA be stabilized after exocytosis? miRNAs stored 
in LDCVs are highly stable after exocytosis, but the mechanisms 
of miRNA stability and which proteins stabilize miRNAs remain 
to be elucidated. (4) How can miRNA be loaded into LDCVs? 
~500 copies of miR-375 are accumulated inside a LDCV, but the 
loading mechanism of miR-375 remains mysterious. Further 
studies are required to determine whether there is a miRNA 
transporter that uploads miRNAs (Figure 1B).

Extracellular vesicle-free miRNAs are considered to contrib-
ute to cell-to-cell communication, but the physiological action 
and the target of extracellular miRNAs remain to be elucidated. 
In-depth knowledge of extracellular vesicle-free miRNAs will 
lead to the new research field that miRNAs may behave as hor-
mones to regulate cell-to-cell communication in a paracrine and 
endocrine manner.
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