
Stable heteroclinic channels for
controlling a simulated aquatic
serpentine robot in narrow
crevices

Nathaniel Mengers*, Natasha Rouse and Kathryn A. Daltorio

Biologically Inspired Robotics Laboratory, Mechanical and Aerospace Engineering, Case Western
Reserve University, Cleveland, OH, United States

Stable Heteroclinic Channels (SHCs) are dynamical systems composed of
connected saddle equilibria. This work demonstrates a control system that
combines SHCs with movement primitives to enable swimming in a simulated
six segment snake robot. We identify control system parameters for lateral
undulation, where all joints oscillate with the same amplitude, and anguilliform
swimming, where joint amplitudes increase linearly from the head to the tail.
Swimming speed is improved by learning SHC movement primitive parameters.
We also propose a method for adapting the gait amplitude and frequency with
tactile sensor input to accommodate obstacles. Then, we evaluate the
relationship between SHC movement primitive parameters and the resulting
trajectories. The swimming speed and efficiency of SHC controllers for each gait
are compared against a conventional serpenoid controller, which derives joint
trajectories from sinusoids. Controllers are evaluated first in an unobstructed
environment, then in straight passages of various widths, and finally in 65
randomly generated uneven channels. We find that the amplitudes of joint
oscillations scale proportionally with the SHC controller parameters. Due to
gait optimization, as well as adaptive amplitude and frequency in response to
tactile input, the learned SHC control system exhibits an average 28.8% greater
speed than a serpenoid controller that only adapts amplitude during contact. This
research demonstrates that SHCs benefit from intuitive tuning like serpenoid
control, while also effectively incorporating sensory information to generate
smooth kinematic trajectories.
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1 Introduction

Modeling neuroanatomical structures not only supports biological research, but
advances robotics by inspiring frameworks for adaptive, flexible control. Motor
primitives (MPs) describe fundamental units of actuation that are assembled to produce
complex behavior (Giszter, 2015). MP models in robots offer modular (Paraschos et al.,
2013), learnable (Kober and Peters, 2009) control with efficient sensor integration (Bonardi
et al., 2012). Meanwhile, central pattern generators (CPGs) are neural circuits that produce
rhythms without rhythmic input (Ijspeert, 2008) for locomotion and other functions
(Sherrington, 1910; Grillner and Wallén, 2010; Cropper et al., 2004). Hierarchical MP
and CPG combinations have been proposed for adaptable rhythms in biological (Guertin,
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2013) and mechanical contexts (Moreno and Gomez, 2011).
However, relationships between MP parameters and resulting
behaviors are nonlinear, complicating modification and analysis
(Rouse and Daltorio, 2021). We demonstrate that kinematic MPs
incorporating Stable Heteroclinic Channels (SHCs), an emerging
CPG model (Daltorio et al., 2013; Brecelj and Petrič, 2023a), enable
transparent, learnable, and sensor-adaptable control in a simulated
swimming snake robot. In obstacle-free and confined environments,
we compare speed and efficiency for SHC controllers with a
serpenoid controller, which prescribes joint angles via sinusoids.
We further show that incorporating tactile sensing improves speed
in confined spaces.

MPs have been used to both model animal behavior (Tresch and
Bizzi, 1999; Fod et al., 2002; Tagliabue et al., 2015) and plan robot
motion (Ijspeert et al., 2013). MPs arise when modular clusters of
neurons and muscle cells reliably produce specific kinematic
trajectories or force outputs (Giszter, 2015). Dynamic Movement
Primitives (DMPs) are a popular framework for constructing
kinematic MPs in robots (Paraschos et al., 2013; Hoffmann et al.,
2009; Pastor et al., 2009; Schaal, 2006; Kober and Peters, 2009). They
rely on sequentially arranged, weighted Gaussian distributions
(kernels), where weights are learned from demonstration to
produce arbitrary trajectories (Schaal, 2006; Pastor et al., 2009;
Kong et al., 2023). Sensory inputs adapt the planned trajectory,
allowing robots to interact with their environment Paraschos et al.
(2013). Periodically activating kernels yields rhythmic behavior
(Ijspeert et al., 2013). The mapping from learned parameters to
the planned trajectory is nonlinear (Rouse and Daltorio, 2021).
Thus, the controller behaves as a black box, making it difficult to
discern how adjusting the weights may influence robot behavior.

Like MPs, CPGs are an important aspect of biological motor
function, and have been modeled for robotic control. Biological
CPGs can emerge from a pacemaker neuron that rhythmically self
excites (Harris-Warrick, 2010; Marder and Eisen, 1984), or mutually
inhibitory, modular neuron clusters (e.g., half-center oscillators)
(Ijspeert, 2008; Grillner and Wallén, 2010). The peripheral nervous
system can modulate rhythms by inhibiting or exciting CPG neurons
(Andersson et al., 1978). In addition to modeling neural connections,
biomimetic CPG simulate cellular processes using Hodgkin-Huxley
(HH) (Simoni and DeWeerth, 2007) dynamics or approximations such
as leaky integrators (Yu et al., 2014). More abstract models use limit
cycles, or coupled oscillatory differential equations, to approximate
neuron clusters without reproducing cellular dynamics (Wang Z. et al.,
2017; Ijspeert et al., 2013). Couplings represent relationships between
joints, as well as extensors and flexors for a single joint (Thandiackal
et al., 2021). Biomimetic models offer insight into mechanisms for
rhythmogenesis, while abstractions address neuron cluster interactions
(Ijspeert, 2008). Modularity and sensor integration make both types of
CPGs attractive tools for rhythmic control in robots (Hunt et al., 2017;
Ijspeert et al., 2007).

Segmental robots based on snakes (Wang J. et al., 2017),
salamanders (Ijspeert et al., 2007), and worms (Riddle et al., 2023)
are useful for examining CPG controllers due to their modular
construction and variety of motor patterns. Biomimetic CPGs have
been demonstrated for controlling a biohybrid snake robot, where light
responsive cells induce turning by stimulating neurons that control the
anterior joint (Cheslet et al., 2024). Additionally, Norman-Tenazas
(2021) algorithmically evaluates neuron configurations for CPGs with

leaky-integrator dynamics, then applies the best performer to a snake
robot with motor torque sensing for navigating peg arrays. More
abstract models emphasizing CPG connectivity have been examined
as well. For example, Thandiackal et al. (2021) applies Matsuoka
oscillators to show that intrinsic joint oscillations, intersegmental
coupling, and reflex chains sensitive to fluid forces can all drive
undulation, though a combined approach is more robust.
Meanwhile, Moreno and Gomez (2011) use motor primitives to
adapt CPG amplitude and frequency. Combined with range sensors
on the front and sides of the robot, the hierarchical structure enables the
robot to avoid and climb over obstacles.

While abstract CPGs based on limit cycles have demonstrated
effective control in segmented robots, some research suggests that CPGs
constructed with stable heteroclinic channels (SHCs) are more
responsive to sensory inputs (Horchler et al., 2015; Rabinovich et al.,
2006; Shaw et al., 2015). SHCs consist of saddle equilibria connected
cyclically such that the unstable manifold of one flows into the stable
manifold of the next (Horchler et al., 2015). Perturbing the system away
from equilibria with noise or sensor input causes state transitions,
analogous to pushing a ball off of a hill Horchler et al. (2015).
Perturbation intensity and timing influence residence times near
equilibria (Horchler et al., 2015; Rouse et al., 2024). Ashwin and
Postlethwaite (2016); Ashwin et al. (2011) describe heteroclinic cycle
stability criteria with consideration to noise. Biological research on
Aplysia shows that SHCs tuned for finite state machine-like transitions
are responsive to sensor inputs and qualitatively reproduce in vivo
feeding behaviors (Shaw et al., 2015). SHCs have also been applied in a
simulated worm-like robot, with force sensors modulating transitions
between expansion and contraction to improve locomotion through a
pipe (Daltorio et al., 2013). Similarly, Brecelj and Petrič (2023b) use
SHCs in a humanoid robot, where saddles correspond to stances (e.g.,
standing, raised hands) and forces on the grasper drive transitions.
Recently, Rouse and Daltorio (2021) demonstrated that MPs based on
SHCs instead of Gaussian kernels exhibit transparent control.
Specifically, weights visually resemble the trajectory in a
kinematic model.

Our research demonstrates movement primitives based on SHCs
for control of a simulated snake robot, then assesses methods for
adapting gaits by scaling and learning weight parameters, as well as
incorporating sensory input. We validate the hypothesis that joint
trajectories, which collectively constitute the gait, vary proportionally
with SHCweight parameters.We exploit this characteristic to construct
an anguilliform (eel-like) swimming gait from the lateral undulation
gait. The anguilliform gait is characterized by smaller oscillations in
anterior joints.We demonstrate that weights are learnable, enabling gait
optimization with respect to swimming speed and efficiency. Finally, we
show that gaits are enhanced by modifying the rate of progression
between saddle points with sensory information. To our knowledge, this
is the first work demonstrating correspondence between SHC
movement primitive weights and the resulting gait in a nonlinear
dynamical system.

To validate our controller, we implement both serpenoid and
SHC control in a planar snake robot simulation and demonstrate
that the controllers achieve comparable performance (i.e., efficiency
and swimming speed) in quiescent fluid. We show that the
anguiliform gait emerges by independently scaling the weight
amplitudes for each joint, then characterize the relationship
between weights and joint amplitudes (Figure 1). Separately, we
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apply gradient descent to optimize the SHC weights, improving the
speed of the robot in an obstacle free environment. Then we
integrate tactile sensing to increase the progression rate between
saddle points during contact and assess the controller performance
as the robot maneuvers through both straight and uneven passages.
The efficiency and speed of the simulated robot with SHC control
and compliant serpenoid control are compared. Our work serves as a
basis for future controllers that adapt to fluid and obstacle
interactions in a biologically plausible manner.

2 Methods

2.1 Modes of locomotion

Biological snakes use various gaits for different environmental
conditions. In uncluttered terrestrial environments, snakes perform
lateral undulation, where a transverse wave propagates from the
head to the tail (Figure 2A). All points on the body trace the same
path because ground forces prevent slipping in the transverse

FIGURE 1
An SHC movement primitive controller, like a serpenoid controller, can realize a lateral undulation gait. With SHC movement primitives, joint
amplitudes can be independently tuned bymanually scaling weights, as shown by the anguilliform SHC controller. Alternatively, learning weights permits
gait optimization to improve swimming speed (4 learned weights per joint; maximum weight for each joint is shown). In our SHC-based controllers,
contact sensing produces a coupled change in the frequency and amplitude of the gait.
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direction (Gray, 1946; Jayne, 2020). Aquatic lateral undulation, or
anguilliform locomotion, is also characterized by a similar transverse
wave, but the amplitude and wavelength increases from the head to
the tail (Figure 2B). Different points trace distinct paths because
there are no ground contact forces to facilitate nonholonomic
constraints (Gray, 1946; Jayne, 2020). Instead, resistive and
reactive fluid forces provide thrust (Piñeirua et al., 2015).
Additionally, the muscle activation timing differs from terrestrial
lateral undulation (Jayne, 2020).

In loose or slippery substrates such as sand, snakes in the
Caenophidia clade switch to a sidewinding gait (Mosauer, 1932).
Sidewinding is characterized by anchoring some sections of the body
on the ground, thrusting the unanchored sections to one side, then
repeating, alternating the unanchored and anchored sections to
produce lateral locomotion. In tunnel concertina locomotion, a
snake will anchor itself against both sides of a narrow passage,
extend forward by straightening its joints starting from the head,
then anchor itself again (Gray, 1946). A variation of concertina
locomotion is also used for arboreal locomotion during climbing or
along thin branches (Astley and Jayne, 2007). In spaces too narrow
for concertina locomotion, snakes may use a rectilinear gait where
portions of the body are lifted off the ground and moved forward,
akin to walking (Lissmann, 1950).

2.2 Control

2.2.1 Lateral undulation gait with serpenoid control
In early work parameterizing snake kinematics, Shigeo (1994)

proposed the serpenoid curve, wherein sinusoids approximate the
shape of an undulating snake. The desired relative joint angle ϕpi (t)
for joint i at time t follows Equation 1 with joint amplitude αh,
frequency ωh, and phase offset between joints δh. Biasing the relative
joint angles with the steering term ϕ0 induces whole body turning.

ϕp
i � αhsin ωht + δh i − 1( )( ) + ϕ0 (1)

Hirose’s model has become popular for snake robots due to its
simplicity and versatility. The serpenoid curve has been used for
both terrestrial and aquatic lateral undulation (Shigeo, 1994;
Ostrowski and Burdick, 1996; Sato et al., 2002; Kelasidi et al.,
2014). It has also been adapted for sidewinding (Tesch et al.,
2009), concertina (Chen and Roth, 2023), and rectilinear (Tesch
et al., 2009) gaits. Additionally, several authors have augmented the
serpenoid curve to support obstacle aided locomotion (Rollinson
and Choset, 2013; Travers et al., 2018; Travers et al., 2015) and
mitigate slipping (Dehghani and Mahjoob, 2009). In our work, we
use it as a basis for comparison with our SHC controllers. We select

gait parameters αh � π
6 rads, frequency ωh � 5π

9 rads/s, and δh � 2π
9

rads, consistent with Kelasidi et al. (2017).
To ensure locomotion along the x axis, we adapt the steering

control in Kelasidi et al. (2017). The simulated robot heading ψ is
computed as the average of all linkage angles with respect to the
horizontal θ (See Figure 3; Equation 2). We assign a desired heading
ψref using the steering constant Δ � 4l (where 2l is the length of one
robot segment) and the center of mass displacement from the x axis,
YCM (Equation 3). Then, the steering term ϕ0 is computed using
proportional-integral (PI) control with integral gain kI,0 � 0.2

π and
proportional gain kp,0 � 0.2 (Equation 4; Table 1).

ψ � 1
n
∑n
i�1

θi (2)

ψref � −atan YCM

Δ( ) (3)

ϕ0 � −kI,0 ∫ ψref − ψ( )dt + kp,0 ψref − ψ( )) (4)

The actuator torques u for each joint i are computed as in
Kelasidi et al. (2014) with proportional gain kp � 50, damping
kd � 0.5, and relative joint angles ϕ (Equation 5).

ui � kp ϕp
i − ϕi( ) + kd _ϕ

p

i − _ϕi( ) (5)

2.2.2 Tactile sensing with serpenoid control
Trajectory planning is enhanced by considering the interactions

between the robot and environmental obstacles. Travers et al. (2015)
define shape compliant control, where serpenoid curve parameters
vary due to obstacle contact. Specifically, their robot senses
externally applied torques on each joint and adjusts the reference
joint amplitudes using an admittance controller, enabling the robot
to brace against obstacles (Equation 6).

Ma′ €αh − €αref( ) +Da′ _αh − _αref( ) +Ka′ αh − αref( ) � τext′ (6)

In Travers et al. (2015), the admittance controller gainsMa′ ,Da′ , and
Ka′ are functions of the robot configuration, and the reference
amplitude αref is held constant for a given joint. Their compliant
control produces coordinated locomotion through an environment
with regularly spaced pegs. Other methods of shape control have
been explored for pipe climbing (Rollinson and Choset, 2013) and
navigating rugged terrain (Travers et al., 2018).

We adopt a simplified shape controller based on Travers et al.
(2015), where the robot narrows its gait by decreasing joint amplitudes
during contact. Once contact ceases, the joint amplitudes return to the
reference value αref � π

6 (see Equation 7). This method reduces contact
with the walls in confined spaces.We choose amplitude gain kα � 1500,
amplitude damping cα � 1050, and tactile input gain kT � 500. Tactile
input zT � 1 if any linkages contact an obstacle and zT � 0 otherwise.
Joints are uniformly impacted by tactile inputs from all segments.

€αh + cα _αh( ) + kα αh − αref( ) � −kTzT (7)

2.2.3 Lateral undulation gait with SHC control
2.2.3.1 SHC dynamics

To validate SHC-based MPs as a viable control method snake
robots, we first emulate the lateral undulation gait employed by the

FIGURE 2
(A)During terrestrial lateral undulation, all joints oscillate with the
same amplitude such that the lateral displacement remains the same
at the front of the body as at the rear (B) In anguilliform locomotion,
the lateral displacement is minimal near the head and increases
posteriorally.
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serpenoid controller. SHCs encode rhythmic behavior as cyclic
progression between saddle points or kernels. The kernel activity
x1×K, which denotes proximity to each of the K saddle points, is
given by Equation 8 (Rouse and Daltorio, 2021; Daltorio et al., 2013).
The ⊙ operator indicates element-wise multiplication. The kernel
activity dictates the phase of the rhythmic trajectory. Oscillation of
all joints is established by generating two cycles in antiphase, one for
counterclockwise and one for clockwise motion. Counterclockwise
and clockwise motor commands are analogous to contraction of
muscles on the left and right side of a biological snake. Maintaining
distinct cycles for each direction allows phase differences between
joints to be easily defined and emphasizes how couplings between
joints can drive undulation. Connections between counterclockwise
and clockwise components should be included in future research,
similar to other works (Norman-Tenazas, 2021; Wang Z.
et al., 2017).

With a phase offset of 2π
9 radians between joints and separate

kernels for each direction, it is convenient to choose K � 18 kernels.

τdx � x ⊙ αT − xρ( )dt + ηdWx (8)

Considering only the subformula τdx � (x ⊙ αT)dt, the activity
of the ith kernel grows exponentially according to its growth rate, αi

and the time scaling factor τ � 1. Then, we design an inhibition
matrix ρK×K such that each kernel inhibits itself and all other kernels
in the same cycle except the next one in the sequence. The inhibition
causes kernels to momentarily activate (xi > 0.9) in a winnerless
competition (Horchler et al., 2015). To ensure stability, the kernel
activity is bounded such that 0.0005≤ x≤ 1, as in Rouse andDaltorio
(2024). Since the proposed SHC controller includes one cycle
corresponding to counterclockwise and another for clockwise
motion of each joint, we compose the relationship between
kernels using a block diagonal connection submatrix ρsK

2×
K
2
as in

Equations 9, 10.
We refer to Rouse and Daltorio (2024) as a guideline for tuning

the SHC MP controller. The study outlines how inhibition
parameters impact kernel activation and trajectories as the
controller traces a square. The growth rate α influences how
quickly the kernels are excited, thereby influencing the frequency
of the CPG. The growth magnitude β controls the peak amplitude of
kernels. When β< 1, the kernel and trajectory amplitude are
reduced. For β> 1, kernels maintain their maximum activity xi �
1 for an extended period, then decay slowly. The resulting trajectory
has increased amplitude, slower transitions away from each vertex,
and a phase shift. The insensitivity to noise ] determines how likely
perturbations are to induce state transitions. Varying ]< 1 has little

FIGURE 3
(A) Kinematic diagram of n segment serpentine robot. Variable naming from Kelasidi et al. (2018) (B) Simulated lateral undulation of a robot
with n � 6 segments in an obstacle free aquatic environment.

TABLE 1 Serpenoid controller parameters.

Variable Description Value

cα Amplitude damping for sensorized controller (rads ) 1,050

Ku Steering ultimate gain 1

kI,0 Steering integral gain kp,0/Ti � 0.2
π

kp,0 Steering proportional gain 0.2Ku � 0.2

Ti Steering integral period 0.5Tu � π

Tu Steering ultimate period 2π

δh Angular offset between joints 2π
9

kα Amplitude proportional gain for controller with tactile sensing 1,500

kT Proportional gain for contact disturbances 500

α0 Equilibrium amplitude (rad) π
6

αh Amplitude (rad) π
6

βh Frequency (rad/s) 5π
9
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impact on the kernel activation or trajectories. Increasing ] above
1 allows more precision near waypoints, but distorts transitions
between waypoints and reduces the frequency of the cycle. We select
the growth rate for all joints α � 23.2 such that the overall frequency
of the CPG is the same as the frequency of the serpenoid controller
ωh. To avoid distorting the shape or frequency of the lateral
undulation gait, we set β � 1 and ] � 1.

ρsi,j �

αi/βi if i � j

αi − αi/]i
βj

if i � j ⊕ 1

αi + αj
βj

otherwise

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(9)

ρ � ρs 0
0 ρs

[ ] (10)

In addition to the excitatory and inhibitory components, the
heteroclinic dynamics are augmented with Brownian noise via a
time invariant Wiener process, Wx (Equation 8) (Daltorio et al.,
2013; Ashwin and Postlethwaite, 2016; Shaw et al., 2015). Using
Euler-Maruyama integration, the noise term is represented as
ηdWx � η

��
dt

√ N (0, 1), where η � 10−10 is a scaling parameter, dt �
0.001 s is the simulation time step, and N 1×K(0, 1) is a vector of
normally distributed noise with mean of 0 and standard deviation of

1. The chosen scaling parameter is within ranges used in prior works
(Horchler et al., 2015; Rouse and Daltorio, 2024; Daltorio et al.,
2013) and is large enough to ensure sustained, regular transitions
without causing the kernel activity to appear noisy. Though stability
analysis for our controller with respect to noise (see Ashwin et al.,
2011) would be valuable, this is left to future work. Parameter values
are listed in Table 2.

2.2.3.2 Movement primitives with SHCs
To integrate SHCs with the MP framework, we define the

desired joint accelerations €ϕ* as a function of kernel activity and
current joint configuration (Equation 11). From the accelerations,
desired joint velocities and angles are derived via explicit Euler
integration.

€ϕ* � αϕ βϕ ϕgoal − ϕ*( ) − _ϕ*( ) + f x( ) (11)

The first term constitutes a PD controller with gain parameters
αϕ � 4 and βϕ � 1 [consistent with Rouse and Daltorio (2021),
Rouse and Daltorio (2024)] to ensure reference tracking. We
choose an equilibrium joint angle ϕgoal � 0 such that the robot
progresses in a straight line. The mapping function f(x) in
Equation 11 dictates the shape of the trajectory. We adapt the
mapping function defined in Rouse and Daltorio (2021)
(Equation 12).

TABLE 2 SHC controller parameters.

Variable Description Value

K Number of kernels 18

Ku Steering ultimate gain 2

Kp Steering proportional gain 0.2Ku � 0.4

kt Tactile sensing gain 0.55

P Steering gain matrix ([Kp/Ti, Kp, KpTd]T11×K)T

Td Steering derivative period 0.333Tu � 0.333

Ti Steering integral period 0.5Tu � 0.5

Tu Steering ultimate period 1

x Kernel Activation [0.0004, 1]

xt�0 Initial conditions of kernels [0.0093, 0.9756, 01×6 , 0.0093, 01×5 , 0.45, 0.5, 0, 0]

zt Tactile sensing signal 1 if contact, 0 otherwise

α Growth rate 23.2

αϕ Damping coefficient 4

β Magnitude 1

βϕ Proportional gain coefficient 1

η Noise magnitude 1 × 10−9 · 1K×nsensors

λ1−4 Weight parameter [3, 7, 3, 7] (Lateral undulation SHC only)

ϕgoal Joint trajectory goal 0

] Insensitivity to noise 1

τ Temporal scaling factor 1
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f x( ) � x wT + P zref − z( )( )
∑K

i�1xi

(12)

The weight matrix wn−1×K defines the sensitivity of the joints to
the activity of each kernel. We also incorporate Proportional Integral
Derivative (PID) steering control with gain matrix
PK×3 � 1K×1[0.8, 0.4, 0.133], reference signal
zref � [ψref, _ψref, €ψref], and heading parameters z � [ψ, _ψ, €ψ].
The steering gains are tuned with a Ziegler-Nichols closed loop
method adjusted for no overshoot (McCormack and Godfrey, 1998).
The forcing term is normalized by the total kernel activity.

The weight submatrixwn−1×K
2
is chosen according to Equation 13

and the overall weights are assigned as in Equation 14. The operators
⊕ and ⊖ indicate circulant addition and subtraction, respectively. We
assign λ1 � λ2 � 3 and λ3 � λ4 � 7. The weight matrix encodes the
positive (counterclockwise) and negative (clockwise) trends in joint
angles as the corresponding kernels become active or inactive.

ws
i,j �

λ1 if i � j ⊕ 1
λ2 if i � j ⊖ 2
λ3 if i � j
λ4 if i � j ⊖ 1
0 otherwise

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(13)

w � ws,−ws[ ] (14)
Once the desired joint accelerations, velocities, and positions are

computed for a given time step, we evaluate the joint torques using
the same methods as in Equation 5 in Section 2.2.1.

2.2.4 Anguilliform gait with SHC control
Replicating the anguilliform gait with SHC control provides

an opportunity to assess the scalability of SHC movement
primitive trajectories. In Rouse and Daltorio (2021), the
authors demonstrate that weight parameters for SHC
movement primitives visually represent and are proportional
to the desired trajectory for a simple kinematic model.
Inspired by their work, we examine how gaits can be adapted
by scaling the weights. Specifically, we assess weight scaling as
a means of switching from the terrestrial lateral undulation gait
to anguilliform locomotion. Kelasidi et al. (2014) approximate
anguilliform locomotion by linearly scaling the joint amplitudes
in their serpenoid controller as in Equations 15, 16.

g i, n( ) � n − i

n + 1
(15)

ϕp
i � αhg i, n( )sin ωht + δh i − 1( )( ) + ϕ0 (16)

to implement an anguilliform gait with SHC control, we apply the
scaling relationship in Equation 15 to the weight matrix (Equation
17). We expect that scaling the weights will proportionally change
the amplitude of the trajectories for each joint.

wa
i,j � wi,jg i, n( ) (17)

2.2.5 SHC control with tactile sensing
CPGs, both in biological systems and robots, are most useful

when they can be adapted by sensory information. Here, we
establish a mechanism for incorporating tactile signals into SHC
movement primitives, with the goal of improving speed of the

simulated snake robot as it undulates through confined spaces.
We introduce the term kTzT into the SHC canonical state
equation, where kT � 0.55 (Equation18). We assign zT � 1 if
any linkage contacts an obstacle and zT � 0 otherwise, as in
Section 2.2.2. During contact, kernels progress more quickly
such that joints have less time to accelerate and joint
amplitudes decline. The increased kernel progression rate also
increases joint oscillation frequency, leading to higher thrust
(Huang et al., 2019) that may enable the robot to overcome
friction if contact persists. Since all tactile sensors affect every
kernel, phase differences between joints remain constant and
coordinated locomotion is maintained. In future work, we may
consider alternative SHC formulations that allow tactile sensors
to impact joints independently.

τdx � x 1 + kTzT( ) αT − xρ( )dt + η
��
dt

√
N 0, 1( )( )T (18)

2.2.6 Learned gait with SHC control
Robots, like animals, benefit from optimizing the speed and

energy efficiency of locomotion. In (Rouse and Daltorio, 2021),
the authors demonstrate that weights in SHC movement
primitives can be learned to replicate a known trajectory for a
purely kinematic system. Here, we extend their work, improving
the robot’s performance by adjusting weights with consideration
to the system dynamics. Beginning with the SHC controller for
lateral undulation (see Section 2.2.5), we simulate swimming for
tmax � 10 seconds in an obstacle-free environment. The forward
velocity of the center of mass (Equation 19) and energy efficiency
of locomotion are assessed. We define efficiency as the overall
cost of transport (COT) (Equation 20), where tstart � 0s, G �
9.81 m

ss is the acceleration due to gravity andmtotal is the total mass
of the robot.

vavg � 1
tmax

∑tmax

t�tstart
_XCMdt( )

t
(19)

COT � ∑tmax
t�tstart∑Njoints

i�1 ui,t
_ϕi,t

∣∣∣∣ ∣∣∣∣
GmtotalXCM tmax( ) (20)

We establish a cost function (Equation 21) rewarding velocity,
while penalizing poor efficiency. Note that the velocity is larger than
the COT for lateral undulation such that this cost function
prioritizes speed.

cost � 5000‖COT‖ − 5000vavg (21)

we numerically approximate the gradient of the cost function
with respect to λ1−4,i for each joint i. The weights are improved via
gradient descent with a learning rate ηlearn � 0.01 until the rate of
change of weights dλ1−4,i ≤ 0.01, requiring 155 iterations
(Equation 22). The selected learning rate allows smooth
improvement in performance, and changes become relatively
small by the time the stop condition is reached (see
Supplementary Figure). While our experiments in Sections
2.3.2, 2.3.3 include obstacles, the weights are not relearned for
these conditions. The tactile sensing parameters are kept the
same as in Section 2.2.5.

w � w − ηlearn · ∇cost w( ) (22)
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2.3 Experimental design

2.3.1 Obstacle-free swimming
We first consider a simulated robot quiescent water with no

obstacles. We adopt the framework proposed by Kelasidi et al.
(2017), which addresses a submerged planar robot comprised of
discrete linkages with elliptical cross sections. Fluid is viscous,
incompressible, and irrotational in the reference frame of the
robot. The authors develop equations of motion for the center of
mass (XCM, YXM) and linkage orientation θ including linear drag,
nonlinear drag, and added mass in an unobstructed environment.
Relative joint angles are derived from kinematics as ϕi � θi+1 − θi.
We consider a robot with n � 6 segments, where each segment has a
major radius e1 � 0.09m, minor radius e2 � 0.035m, half-length of

l � 0.09m, and a mass of m � 0.5 kg, except the head segment. The
head segment is extended (l6 � 0.11m and m6 � 0.94 kg) to
accommodate electronic components for a physical robot, which
is under development. Fluid parameters and fluid body interaction
constants are kept consistent with Kelasidi et al. (2017) (fluid density
ρfluid � 1000 kg/m3, added mass coefficient CA � 1, added inertia
coefficient CM � 1, drag coefficient along link axis Cf � 0.03, and
drag coefficient perpendicular to link CD = 2). All simulation
parameters can be found in Table 3.

The experiment is conducted for the serpenoid, lateral
undulation SHC, anguilliform SHC, and learned SHC controllers.
The simulation runs for 60 s, recording the robot’s position, joint
torques, and joint velocities. Power consumption is approximated as
Pt � ∑n−1

i�1 |ui,t _ϕi,t|. Then, we compare the swimming speed and COT
for each controller. Additionally, we assess the differences in
behavior for SHC controllers by examining the joint trajectories,
kernel activity, and forcing term f(x). At time t � 0, the robot is at
rest with all linkage angles θi � 0 and the center of mass located at
the origin.

2.3.2 Straight channels
Simulating the robot in structured environments allows us to

assess our method for integrating tactile information with SHC
control. We examine straight passages ranging from W � 0.2m to
W � 0.7m in width, at intervals of 0.01m. The minimum width
allows 0.01m of freedom on each side of the robot, while the
maximum channel width permits the joints to oscillate freely if
the robot is centered. The robot begins entirely in the channel with
θi � 0 and no contact with the walls. The overall COT and average
velocity are calculated after 30 s of swimming for each case. This
experiment addresses the serpenoid and lateral undulation SHC
without sensing, as well as the serpenoid, lateral undulation SHC,
and learned SHC with tactile sensing (+T).

Obstacles are treated as points connected by flat surfaces with
stiffness kwall � 30, 000N

m and damping cwall � 500 N
m·s. We

approximate each robot segment as a set of points spaced dxsegment �
0.001m apart and assume that points colliding with an obstacle
penetrated the nearest surface. The normal distance dN and normal
velocity vN between the point and surface are computed, then the
normal force centered at the point is approximated as
FN � (kwall · dN + cwall · vN) · dxsegment. We incorporate friction
via a linear model with stiction (Marques et al., 2016), where
FS � μsFN, FC � μkFN, μs � 0.8, and μk � 0.6. The details are
replicated in Equation 23. The variables vT, v0 � 0.001m

s , and v1 �
0.002m

s represent the tangential velocity, velocity at maximum static
friction, and velocity at which only kinetic friction occurs (Table 3).
Torque is obtained by integrating contact forces over the
displacement from the link center of mass. The effects of
obstacles on fluid behavior are ignored for simplicity, and fluid
far from the robot remains quiescent.

Ff �

vT‖ ‖
v0

FS( )sgn vT( ) if vT‖ ‖≤ v0

FS − vT‖ ‖ − v0
v1 − v0

FS − FC( )( )sgn vT( ) if v0 < vT‖ ‖< v1

FCsgn vT( ) if vT‖ ‖≥ v1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(23)

TABLE 3 Parameters for fluid dynamics, obstacle modeling, and kinematics.

Variable Description Value

CA Added mass coefficient 1

CD Drag coefficient perpendicular to link axis 2

Cf Drag coefficient along link axis 0.03

CM Added inertia coefficient 1

cwall Obstacle damping coefficient (N · s/m) 500

dt Simulation time step (s) 0.001

dxsegment Point resolution for collision dynamics (m) 0.01

dxwall Feature width for obstacles (m) 0.001

e1 major radius (m) 0.09

e2 minor radius (m) 0.035

FC Sliding friction (N) —

FN Normal force (N) —

FS Static friction (N) —

G Gravitational acceleration (ms2) 9.81

kd Motor derivative gain 0.5

kp Motor proportional gain 50

kwall Obstacle stiffness coefficient (N/m) 30,000

l link half-length (m) [0.091×5, 0.11]

m link mass (kg) [0.51×5 , 0.94]

n Number of links 6

u Joint torque (N ·m) —

θ(t) Absolute angle of linkages (rad) —

μk Coefficient of kinetic friction 0.6

μs Coefficient of static friction 0.8

ϕ(t) Relative joint angles (rad) —

ϕ*(t) Desired relative joint angles (rad) —

ρf Fluid density (kg/m3) 1,000

ψ Robot heading (rad) —
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2.3.3 Uneven channels
One of the most daunting aspects for exploratory robots is

maintaining productive locomotion in complex terrain.We simulate
the robot moving through channels with randomly generated
feature (see examples in Figure 4). To establish consistent initial
conditions, each channel begins with a 1.5m long and 0.5m wide
straight section. The robot begins completely straight, at rest, and
inside the channel. After the straight section, the upper surface of the
channel is constructed such that xwall,i � xwall,i−1 + 0.025 and
yupper,i � yupper,i−1 +N (μ � 0, σ � 0.03). Points along the bottom
surface ylower,i are computed likewise. If the distance between yupper,i

or ylower,i and any point on the opposite boundary is less than the
minimum channel widthWmin � 0.30m (1.7 times robot width), the
ith upper and lower points are replaced. Similarly, the ith points are
regenerated if the distance between yupper,i and ylower,i exceeds
Wmax � 0.5m (2.8 times robot width) apart so that results do not
simply reflect obstacle-free behavior. Due to random walk, the
center lines shift laterally up to 1.6–3.0 robot widths over a single
length of the robot, depending on the channel.

We simulate 60 s of swimming in each channel using the serpenoid
and lateral undulation SHC controllers with and without tactile sensing.
The learned SHC controller (+T) is also examined. Steering is disabled
since the direction of the channel varies. We estimate the minimum
number of channels required nchannels,min � 61 using power analysis
conducted in the software G*Power for 1-way ANOVA with effect size
fp � 0.25, power αp � 0.95, and five groups. To account for invalid
results, we increase the sample size to nchannels � 65. Specifically, data is
excluded if the robot does not enter and remain within the uneven
portion of the channel. We compute the COT and velocity using only
time steps after the robot has fully entered the uneven section. Since the
data does not follow normality assumptions, we assess statistical
significance with Kruskal–Wallis testing, followed by Dunn-Šídák
post hoc analysis. Furthermore we categorize the progress for each
controller as continual, ceased, or intermittent.We specify that progress
has ceased if the robot does notmove forward bymore than 0.1m for at
least 7.2 s (two gait cycles under unimpeded locomotion). We define
intermittent progress where forward motion ceases for at least two gait
cycles, but later resumes. The rates of continual, ceased, and intermittent
progression for each controller are assessed.

3 Results

3.1 Obstacle-free swimming

3.1.1 Lateral undulation gait with SHC control
In quiescent fluid with no obstacles, the SHC controller

successfully replicates the lateral undulation gait. The SHC

controller produces similar joint oscillations to the serpenoid
controller, but with a smoother transition from rest to steady
state oscillation (Figure 5A). For both methods, the heading
naturally oscillates during undulation. The steering controllers
compensate by increasing or decreasing the desired joint
trajectories, causing joint amplitudes to differ from the reference
value of αh � 30°.

Since the serpenoid and lateral undulation SHC controllers
generate similar trajectories, they achieve comparable
performance. The average velocity of the center of mass for both
controllers is vavg,serpenoid ≈ vavg,LUSHC � 0.28 m

s . The progression of
the robot for all controllers is depicted in Figure 5 (also see
Supplementary Files for Supplementary Video recording). (B)
Due to differences in steering controller implementations, the
SHC controller produces slightly better steady state efficiency
(COTtstart�1,LUSHC � 0.087) than the serpenoid controller
(COTtstart�1,serpenoid � 0.097) (Table 4).

A benefit of SHC control over serpenoid control is apparent
when assessing the overall COT including transient effects
(tstart � 0). The conventional serpenoid curve yields a desired
trajectory with nonzero initial joint angles and velocities, whereas
most robots realistically start from rest. High accelerations, large
joint torques, and high energy consumption are required to reduce
the trajectory error, leading to an overall COT of 0.126 (30% above
steady state value). Shape-based control of the joint amplitude
avoids this issue, albeit at increased complexity (Travers et al.,
2015; 2018; Rollinson and Choset, 2013). In contrast, the SHC
framework natively computes desired accelerations, then the
desired velocity and position are evaluated by integration. This
yields smooth kinematic trajectories such that the lateral
undulation SHC controller achieves an overall COT only 1%
greater than its steady state value (Figure 5A).

3.1.2 Anguilliform gait with SHC control
By linearly scaling the SHC weights, we transform the lateral

undulation gait to an anguilliform gait, with reduced anterior joint
amplitudes. For example, we scale the weights for the anterior-most
joint by g5 � 14% (Equation 15) relative to weights for the lateral
undulation SHC controller. Consequently, the anguilliform SHC
controller forcing term f5(x) magnitude is lower in comparison
with the lateral undulation SHC (Figure 6A). This translates to a
smaller joint amplitude (Figure 6C). The lateral undulation SHC
controller exhibits a joint amplitude of 29.5°, while the anguilliform
SHC controller’s anterior joint amplitude reduces to 4.0° (13.6%),
showing good correspondence with the scaling factor g5.

Scaling effects are more thoroughly characterized by considering
the amplitudes of weights and ϕ for all joints (Figures 6B, D). The
SHC weight amplitude for joint j is defined by the maximum value

FIGURE 4
Examples of uneven channels with randomly generated features that impede the robot.
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in the jth row of the weight matrix (Figure 7). Anguilliform SHC
weight amplitudes decrease linearly from the tail to the head, with
similar trends emerging in joint amplitudes. The visible

correspondence between weights, forcing term f(x), and joint
trajectories makes SHC MPs a transparent framework that robot
operators can intuitively modify. Because lateral displacement is

FIGURE 5
(A, B) The SHC controller produces comparable trajectories to the serpenoid controller (C) In obstacle-free conditions, the lateral undulation SHC
performs similarly to the serpenoid controller. The anguilliform SHC controller swims slower because the joint oscillation amplitude is reduced, so thrust
decreases. Learning SHCweights improves speed. Video is included in Supplementary Files (D) The COT reaches steady state performance after tstart � 1s
for all controllers. Due to nonsmooth trajectories, the serpenoid controller experiences higher transient energy losses and larger overall COT
(i.e., COT at tstart � 0) than SHC controllers.

TABLE 4 Performance during obstacle-free swimming.

Controller Average velocity (m/s) Overall COT COT after t = 1 s

Lateral Undulation SHC 0.281 0.088 0.087

Anguilliform SHC 0.166 0.072 0.072

Learned SHC 0.319 0.102 0.101

Serpenoid 0.284 0.126 0.097
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reduced, the anguilliform gait produces less thrust and slower
swimming (0.166 m

s ) than the lateral undulation gait. However,
the anguilliform gait is more efficient by 26.1% (COT � 0.0718)
relative to serpenoid control (COT � 0.0972) and 17% relative to
lateral undulation SHC control (COT � 0.0867). While we only
simulate one sample and recommend more comprehensive
experiments with hardware, results qualitatively agree with prior
work showing that efficiency is optimized at lower amplitudes
compared to velocity (Anastasiadis et al., 2023).

3.1.3 Learned gait with SHC control
Our gait optimization for SHC control modifies the weight

parameters to enhance speed of locomotion, while minimally affecting
energy efficiency. The learned SHC controller achieves a 12.3% higher
overall velocity (0.32m/s) compared with the lateral undulation SHC
controller. The steady state efficiency degrades, with the COT increasing
from 0.087 in the lateral undulation gait to 0.10 in the learned gait.

The improved speed of locomotion in the learned SHC
controller corresponds to changes in the controller weights and
joint amplitudes. Relative to the lateral undulation SHC controller,
the learned SHC controller possesses higher weight amplitudes for
the posterior joints and lower weights for the anterior joints (7 (B)).
The learned SHC weight amplitudes correspond loosely to the joint
amplitudes (Figure 6D), which show a gradual decrease towards the
head of the robot. Compared with anguilliform and lateral
undulation SHC controllers, the learned controller shows weaker
correspondence between weights and joint amplitudes because the
distribution of weights, and thus acceleration patterns, may differ
between joints.

When optimizing weight parameters for the learned SHC
controller, the distribution of weights for each joint changes
along with the peak amplitude. We compute the phases of weight
distributions δwj for each of the j joints using a centroid method
(Equations 24–27).

FIGURE 6
(A) Positively (cyan) and negatively (magenta) weighted SHC kernels x for the anterior joint activate in alternatingly, encoding upward and downward
trends in the forcing term f5(x). Lower weights cause smaller oscillations for the anguilliform SHC controller (B) Anterior joint trajectories resemble SHC
forcing terms. Reduced f5(x) for the anguilliform SHC controller corresponds to small anterior joint oscillations (C) The lateral undulation SHC controller
uses the same weights for all joints. Anguilliform controller weights are scaled linearly with lower magnitudes for anterior joints. Learning yields a
similar trend (D) Lateral undulation SHC and serpenoid controllers joint amplitudes differ slightly from the desired value αh due to steering and fluid
effects. SHC joint amplitude trends resemble theweight amplitude trends (E) For lateral undulation and anguilliform SHC controllers, the peakweights are
consistently 40° apart. The learned SHC controller develops smaller phase offsets near 30° (F) In the learned SHC gait, phase offsets between joints are
reduced except in the anterior joint, corresponding to shifts in weights.
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δj,k � 360 k − 1( )
K
2

, 1≤ k≤
K

2
(24)

xw
j � ∑K/2

k�1wj,kcos δj,k( )
∑K/2

k�1wj,k

(25)

yw
j � ∑K/2

k�1wj,ksin δj,k( )
∑K/2

k�1wj,k

(26)

δwj � atan
yw
j

xw
j

( ) (27)

Gait optimization produces weight phase offsets between joints
Δδwj � δwj − δwj−1 mostly near 30°, lower than the design value of δh �
40° applied for other controllers (Figure 6E). The phase offset for the
anterior joint pair may differ due to the longer segment length and
increased mass, or because the Δδw5 has little impact on the
optimization cost function. For all controllers, the weight phase

offsets identified in the weight matrix are good predictors for phase
offsets in the joint trajectories Δδj � δj − δj−1 (Figure 6F). Some
deviation occurs due to steering and fluid effects in all controllers.

3.2 Straight channels

We assess our method for integrating sensory information in the
SHC controller by examining the robot’s progress through straight,
narrow passages. Video of the robot in a 0.3m channel is included in
Supplementary Files. In cases where the robot penetrates deeply into
obstacles, frictional forces are overestimated such that the robot
slows abruptly. In future work, this can be resolved with smaller time
steps during contact. Nevertheless, controllers that incorporate
tactile information (denoted by (+T)) adapt their behavior to
accommodate contact, enabling forward locomotion (Figure 8B).
In contrast, unsensorized controllers push backwards against the

FIGURE 7
Weights for SHC controllers. Lateral undulation uses consistent weights across all joints, while the anguilliformweights decrease in magnitude from
the tail (joint 1) to the head (joint 5). In the learned gait, peak weights also decrease towards the head, although the phase differences between joints also
differ because λ1−4,i are tuned independently for joint i.
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wall, moving opposite of the intended direction. Speed benefits of
gait optimization in an obstacle-free environment are retained in
this structured environment.To validate how the sensor integration
impacts SHC-generated gaits, we examine the kernel activity. Tactile
sensing increases the frequency of kernel activation, forcing term
f(x), and joint trajectories (Figures 8C, D). While the forcing term
f(x) achieves the same magnitude, the joints have less time to
accelerate and therefore achieve lower amplitudes. The coupled
frequency and amplitude adaptation enables the SHC controllers
with tactile sensing to locomote more quickly than sensor-free
implementations or the serpenoid (+T) controller, which only
adapts joint amplitude.

The relative performance of the controllers depends on the
width of the crevice (Figure 9). In the narrowest channels all
controllers yield backwards net locomotion, as the robot
incidentally pushes backwards against the walls. As channel
width increases, forward velocity generally increases before
saturating when the channels are wide enough that wall contact

becomes negligible. Controllers that incorporate tactile sensing
achieve forward progress at lower channel widths and maintain
higher average velocities than their unsensorized counterparts.
Moreover, the SHC controllers with tactile sensing achieve higher
average velocities than the serpenoid (+T) controller, suggesting that
the frequency and amplitude modulation is more effective than
amplitude reduction alone. Consistent with results for the
unimpeded swimming study, the learned SHC (+T) controller
yields the highest velocity of all controllers in most regimes.

The advantages of tactile sensing are similarly evident fromCOT
trends for narrow crevices (Figure 9). For the same channels, COTs
for controllers equipped with tactile sensors are consistently lower
than for controllers without. The lateral undulation and learned
SHC controllers (+T) achieve similar efficiency to the serpenoid
controller (+T) in channels narrower than approximately 0.45m,
and better efficiency in wider channels. While the learned SHC
controller (+T) offers better speed, the lateral undulation SHC (+T)
offers modestly better efficiency in some conditions. Based on the

FIGURE 8
(A) Using lateral undulation SHC control with tactile sensing (+T), the robot moves through a 0.3 m channel (B) Tactile sensing improves the
swimming speed through the channel, especially with learned SHC control (C) Contact detection increases the frequency of SHC kernels and f(x), as
shown for the lateral undulation gait (D) Increasing kernel frequency corresponds to faster, lower amplitude joint trajectories.
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improved average velocity and efficiency, we conclude that scaling
kernel progression rates according to tactile data is an effective
mechanism for improving SHC performance in straight,
narrow channels.

3.3 Uneven channels

In uneven channels, contact detection remains crucial to the
performance of the robot. Without tactile sensing, the serpenoid and
SHC controllers cannot adapt the body shape and become trapped
when the robot contacts both sides of the channel (Figure 10A).
With tactile sensing, the controllers reduce the amplitude of the
joints, narrowing the gait and allowing the robot to pass obstacles
(see video in Supplementary Files). However, the robot may still not
progress consistently if it comes into contact with an obstacle head
on, for example, the lateral undulation SHC (+T) controller in
Figure 10A. In this case, the robot continually retries forward
motion, colliding with the channel wall until a more suitable
approach configuration occurs by chance and the robot
overcomes the obstacle. As in prior experiments, the learned
SHC allows the greatest forward progress when it is not trapped
in the channel (Figure 10).

In the complete set of channels, the serpenoid and SHC
controllers with tactile sensing achieve greater progress than
those without. Of 65 obstacles, our analyses include 59
(serpenoid), 65 (serpenoid (+T)), 62 (lateral undulation SHC),
64 (lateral undulation SHC (+T)), and 62 (learned SHC (+T))
data points. In 95% of cases where lateral undulation SHC
controllers with and without sensing both produce valid
results, the sensor equipped controller moves further through
the channel. Similar results apply for the serpenoid controllers
(98%). The coupled frequency and amplitude response in the
lateral undulation (+T) and learned SHC (+T) controllers allow
the robot to swim further compared with the serpenoid (+T)
controller, as long as the robot does not become trapped in the
channel (Figure 10). However, the SHC (+T) controllers also
suffer from high variability in performance. The serpenoid
controller (+T) shows continual progression in the most
channels (62%), followed by the learned SHC (+T) and lateral

undulation SHC (+T) (both 45%) controllers (Table 5). The
learned SHC (+T) controller is more likely to recover from
being trapped (e.g., intermittent progress, (27%) than the
lateral undulation SHC (+T) controller (14%). Although the
SHC controllers with tactile sensing are more likely to become
trapped in uneven, confined spaces and operate less efficiently
(see Figure 10D) than the serpenoid (+T) controller, they can
achieve greater maximal forward progress.

Mean velocities are compared between controllers with a
Kruskal–Wallis test, which indicates that one or more controllers
differs (p � 2.7 × 10−30). Controller pairs are compared with Dunn
test with a Šidák correction to account for multiple comparisons,
using 95% confidence. The learned SHC (+T) controller
outperforms the serpenoid controller (+T), achieving 28.8%
higher velocity on average (p � 0.014) (See Figure 10C and
Table 5). The learned SHC (+T) controller performs similarly to
the lateral undulation SHC (+T) controller (p � 0.31), albeit with
slightly higher average velocity and lower variance due to improved
rate of recovery from entrapment. Overall, these results indicate that
modulating SHC kernel activation rates based on tactile sensing is an
effective approach for navigating uneven terrain, particularly when
paired with gait optimization techniques.

Incorporating tactile sensing improves efficiency, as well as
speed. A Kruskal–Wallis test shows significant differences
between the controllers (p � 6.8 × 10−38), and we proceed with a
Dunn-Šidák post hoc evaluation as before. Compared to the lateral
undulation SHC controller without sensing, the learned SHC
controller (+T) (p � 9.0 × 10−8) and lateral undulation SHC
controller (+T) (p � 2.3 × 10−8) are more efficient. The learned
and lateral undulation SHC controllers with sensing show similar
efficiency (p> 0.999). However, the serpenoid controller (+T) is
significantly more efficient than either the learned SHC (+T) (p �
6.9 × 10−4) or lateral undulation SHC controllers (+T) (p �
1.8 × 10−4) (Figure 10D). The elevated COT for the sensorized
SHC controllers is likely because tactile input increases the joint
oscillation frequency, which entails higher energy consumption. If
the increased motion does not enable the robot to overcome an
obstacle, efficiency declines. Reducing efficiency for increased
velocity may be acceptable for robots that are powered via tether
or have time sensitive objectives, as in search and rescue.

FIGURE 9
(A) Controllers yield backwards locomotion in the narrowest channels. Velocities increase until no wall contact occurs. The learned SHC controller
(+T) permits faster swimming than both the lateral undulation SHC and serpenoid controllers (B) COT is defined only where the robot progresses
forwards and decreases (i.e., locomotion becomesmore efficient) as channel width increases. Tactile sensing reduces COT especially in narrow channels.
While the learned gait generally improves speed, it sacrifices efficiency in some conditions.
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4 Discussion

In this work, we implement movement primitives based on
stable heteroclinic channels to control a simulated aquatic snake
robot. The SHC controller provides comparable performance to a
conventional serpenoid controller.We demonstrate thatMPweights
relate proportionally to joint trajectories by linearly scaling the
weights from the lateral undulation SHC controller to achieve an
anguilliform gait. We optimize the SHC controller by modeling the
system dynamics and iteratively tuning the weights, resulting in a

12% speed increase when the robot swims in an obstacle-free
environment. Furthermore, we show that modulating transitions
between SHC kernels with tactile sensing adapts the gait frequency
and amplitudes to improve locomotion in straight passages
(Figure 8). Finally, we examine locomotion over a diverse set of
randomly generated channels that are between 1.7 and 2.8 times
wider than the robot, and wander laterally up to three times the
robot width over the robot’s length. Even for the most consistent
controller examined (serpenoid (+T)), channel geometry
considerably impacts velocity (0.037 m

s − 0.10 m
s ) and cost of

FIGURE 10
(A) Tactile sensing improves locomotion in uneven terrain, thoughmany attempts may be needed if approach is sub-optimal (e.g., lateral undulation
SHC (+T); see Supplementary Video) (B)We categorize progress for each trial as continual (black), ceased (red), or intermittent (blue). Lateral undulation
SHC (+T) and learned SHC (+T) controllers progress faster, but are trapped more often than the serpenoid controller (+T) (C, D) Velocity and COT
distributions (dots) are shown. 95% confidence intervals (black) are established with bias corrected and accelerated nonparametric bootstrapping
(nbootstrap � 10,000, convergence shown in Supplemental Materials). The learned SHC (+T) offers the greatest speed, though serpenoid control (+T) yields
the lowest and most reliable COT. Violin plot code by Bechtold (2016).
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transport (0.56 − 2.4). Applying sensory information to regulate the
pace of kernel transitions in SHC movement primitives improves
average velocity by 25.3% compared to a serpenoid controller that
only alters the gait amplitude during contact in a variety of uneven,
confined environments. SHCmovement primitives thus constitute a
transparent, learnable, and adaptable framework for establishing
rhythmic gaits.

Our research serves as a practical demonstration of controlling a
nonlinear dynamical system with SHC movement primitives and
adapting its behavior by incorporationg sensory information. By
showing that the weight parameters in SHC movement primitive
relate proportionally to the resulting joint trajectories, we provide a
pathway for robot operators to intuitively visualize, alter, and design
gaits. In optimized controllers, the same visualizations may permit
operators to heuristically predict emergent behavior without
extensive testing. Thus, the SHC movement primitive controller
offers a transparent approach to modeling CPGs, enabling faster
development of bio-inspired systems. The abstract, visualizable
approach allows researchers to address how CPG modules,
represented by saddle equilibria, interact with sensory inputs and
other modules to produce complex rhythmic motor patterns.

The present work demonstrates that SHCs are a promising control
framework for replicating rhythmic behavior, and suggests that other
locomotion patterns may be constructed by tuning weights and
modulating progression between kernels. Future research may
examine more advanced methods for incorporating sensory feedback
to adapt individual joint trajectories, rather than regulating the entire
network. Investigating weights and arrangements of saddle equilibria
that enable other gaits, such as concertina locomotion would also be
worthwhile. Transitioning between gaits may be achievable by
expanding upon research by Rouse and Daltorio (2024), which
explores the effects of sensor noise on decision making. Additionally,
integration of more complex sensory information, such as vision, for
localization and long term path planning would be beneficial. The effects
ofmultisensory joint adaptation and gait transitions could be analyzed in
environments with abrupt directional changes or multiple paths, such as
S or T-shaped channels. With these improvements, movement
primitives based on SHCs may contribute to research in biology by
providing a convenient method for abstractly modeling neurological
functions that support locomotion without detailed simulation of
underlying cellular dynamics.
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SUPPLEMENTARY VIDEO S1
A comparison of swimming behavior for SHC movement primitive and
serpenoid controllers in an unobstructed environment.

SUPPLEMENTARY VIDEO S2
In a 0.3 m channel, tactile sensing improves performance for both SHC
movement primitive and serpenoid controllers. SHC controllers undulate
both at higher frequency and lower amplitude during contact, while the
serpenoid controller only reduces amplitude.

SUPPLEMENTARY VIDEO S3
Tactile sensor input improves the robot’sability tonavigateuneven terrain.However,
the robot can still be stymied by obstacles. With sensing, the SHC controller tuned
for lateral undulation becomes stuck (t~35 s), but ultimately recovers.

SUPPLEMENTARY FIGURE S1
When learning weight parameters via gradient descent for the SHC control
system, the velocity and COT stabilize within about 150 iterations.

SUPPLEMENTARY FIGURE S2
Confidence intervals on cost of transport for experiments in unevenchannels are
constructed by bootstrapping. 10,000 iterations is sufficient to ensure
convergence of both upper and lower bounds for any of the tested controllers.

SUPPLEMENTARY FIGURE S3
Bootstrapped confidence intervals for velocity in uneven channels converge
within 10,000 iterations for all examined controllers.

References

Anastasiadis, A., Paez, L., Melo, K., Tytell, E. D., Ijspeert, A. J., and Mulleners, K.
(2023). Identification of the trade-off between speed and efficiency in undulatory
swimming using a bio-inspired robot. Sci. Rep. 13, 15032. doi:10.1038/s41598-023-
41074-9

Andersson, O., Grillner, S., Lindquist, M., and Zomlefer, M. (1978). Peripheral control
of the spinal pattern generators for locomotion in cat. Brain Res. 150, 625–630. doi:10.
1016/0006-8993(78)90827-2

Ashwin, P., Karabacak, Ã., and Nowotny, T. (2011). Criteria for robustness of
heteroclinic cycles in neural microcircuits. J. Math. Neurosci. 1, 13. doi:10.1186/
2190-8567-1-13

Ashwin, P., and Postlethwaite, C. (2016). Quantifying noisy attractors: from
heteroclinic to excitable networks. SIAM J. Appl. Dyn. Syst. 15, 1989–2016. doi:10.
1137/16M1061813

Astley, H. C., and Jayne, B. C. (2007). Effects of perch diameter and incline on the
kinematics, performance and modes of arboreal locomotion of corn snakes (Elaphe
guttata). J. Exp. Biol. 210, 3862–3872. doi:10.1242/jeb.009050

Bechtold, B. (2016). Violin plots for matlab. doi:10.5281/zenodo.4559847

Bonardi, S., Moeckel, R., Sproewitz, A., Vespignani, M., and Ijspeert, A. J. (2012).
“Locomotion through reconfiguration based on motor primitives for roombots self-
reconfigurable modular robots,” in ROBOTIK 2012; 7th German conference on
robotics, 1–6.

Brecelj, T., and Petrič, T. (2023a). Stable heteroclinic channel networks for physical
human-humanoid robot collaboration. Sensors 23, 1396. doi:10.3390/s23031396

Brecelj, T., and Petrič, T. (2023b). “Utilizing a phase state system for reliable physical
assistance in human-humanoid robot collaboration,” in 2023 21st international
conference on advanced robotics (ICAR), 258–263. doi:10.1109/ICAR58858.2023.
10406553

Chen, S., and Roth, A. (2023). Gait design of a novel arboreal concertina locomotion
for snake-like robots. ArXiv:2309.06000. doi:10.48550/arXiv.2309.06000

Cheslet, J., Beaubois, R., Khoyratee, F., Kohno, T., Ikeuchi, Y., and Levi, T. (2024).
“Biomimetic snake locomotion using Central Pattern Generators network and bio-
hybrid robot perspective,” in Isarob (Beppu, Japan).

Cropper, E. C., Evans, C. G., Hurwitz, I., Jing, J., Proekt, A., Romero, A., et al. (2004).
Feeding neural networks in the mollusc Aplysia. Neurosignals 13, 70–86. doi:10.1159/
000076159

Daltorio, K. A., Boxerbaum, A. S., Horchler, A. D., Shaw, K. M., Chiel, H. J., and
Quinn, R. D. (2013). Efficient worm-like locomotion: slip and control of soft-bodied
peristaltic robots. Bioinspiration and Biomimetics 8, 035003. doi:10.1088/1748-3182/8/
3/035003

[Dataset] Rouse, N., Horchler, A., Chiel, H., and Daltorio, K. (2024). Sttable
heteroclinic channels as a decision-making model: overcoming low signal-to-noise
ratio with mutual inhibition.

Dehghani, M., and Mahjoob, M. J. (2009). “A modified serpenoid equation for snake
robots,” in 2008 IEEE international conference on robotics and biomimetics, 1647–1652.
doi:10.1109/ROBIO.2009.4913248

Fod, A., Matarić, M. J., and Jenkins, O. C. (2002). Automated derivation of primitives
for movement classification. Aut. Robots 12, 39–54. doi:10.1023/A:1013254724861

Giszter, S. (2015). Motor primitives—new data and future questions. Curr. Opin.
Neurobiol. 33, 156–165. doi:10.1016/j.conb.2015.04.004

Gray, J. (1946). The mechanism of locomotion in snakes. J. Exp. Biol. 23, 101–120.
doi:10.1242/jeb.23.2.101

Grillner, S., and Wallén, P. (2010). “The lamprey locomotor central pattern
generator,” in Handbook of brain microcircuits. Editors D. Shepherd, S. Grillner,
and P. Gordon (Oxford University Press). doi:10.1093/med/9780195389883.003.0032

Guertin, P. A. (2013). Central pattern generator for locomotion: anatomical,
physiological, and pathophysiological considerations. Front. Neurology 3, 183.
doi:10.3389/fneur.2012.00183

Harris-Warrick, R. M. (2010). General principles of rhythmogenesis in central pattern
generator networks. Prog. Brain Res. 187, 213–222. doi:10.1016/B978-0-444-53613-6.
00014-9

Hoffmann, H., Pastor, P., Park, D.-H., and Schaal, S. (2009). “Biologically-inspired
dynamical systems for movement generation: automatic real-time goal adaptation and
obstacle avoidance,” in 2009 IEEE international conference on robotics and automation,
2587–2592. doi:10.1109/ROBOT.2009.5152423

Horchler, A. D., Daltorio, K. A., Chiel, H. J., and Quinn, R. D. (2015). Designing
responsive pattern generators: stable heteroclinic channel cycles for modeling and
control. Bioinspiration and Biomimetics 10, 026001. doi:10.1088/1748-3190/10/2/
026001

Huang, Z., Kong, D., Ren, C., Li, S., and Ma, S. (2019). “Performance study of an
underwater snake-like robot with a flexible caudal fin,” in 2019 IEEE international
conference on mechatronics and automation (ICMA), 1–5. doi:10.1109/ICMA.2019.
8816412

Hunt, A., Szczecinski, N., and Quinn, R. (2017). Development and training of a neural
controller for hind leg walking in a dog robot. Front. Neurorobotics 11, 18. doi:10.3389/
fnbot.2017.00018

Ijspeert, A. J. (2008). Central pattern generators for locomotion control in
animals and robots: a review. Neural Netw. 21, 642–653. doi:10.1016/j.neunet.
2008.03.014

Ijspeert, A. J., Crespi, A., Ryczko, D., and Cabelguen, J.-M. (2007). From swimming to
walking with a salamander robot driven by a spinal cord model. Science 315, 1416–1420.
doi:10.1126/science.1138353

Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P., and Schaal, S. (2013).
Dynamical movement primitives: learning attractor models for motor behaviors.
Neural Comput. 25, 328–373. doi:10.1162/NECO_a_00393

Frontiers in Electronics frontiersin.org17

Mengers et al. 10.3389/felec.2025.1507644

https://www.frontiersin.org/articles/10.3389/felec.2025.1507644/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/felec.2025.1507644/full#supplementary-material
https://doi.org/10.1038/s41598-023-41074-9
https://doi.org/10.1038/s41598-023-41074-9
https://doi.org/10.1016/0006-8993(78)90827-2
https://doi.org/10.1016/0006-8993(78)90827-2
https://doi.org/10.1186/2190-8567-1-13
https://doi.org/10.1186/2190-8567-1-13
https://doi.org/10.1137/16M1061813
https://doi.org/10.1137/16M1061813
https://doi.org/10.1242/jeb.009050
https://doi.org/10.5281/zenodo.4559847
https://doi.org/10.3390/s23031396
https://doi.org/10.1109/ICAR58858.2023.10406553
https://doi.org/10.1109/ICAR58858.2023.10406553
https://doi.org/10.48550/arXiv.2309.06000
https://doi.org/10.1159/000076159
https://doi.org/10.1159/000076159
https://doi.org/10.1088/1748-3182/8/3/035003
https://doi.org/10.1088/1748-3182/8/3/035003
https://doi.org/10.1109/ROBIO.2009.4913248
https://doi.org/10.1023/A:1013254724861
https://doi.org/10.1016/j.conb.2015.04.004
https://doi.org/10.1242/jeb.23.2.101
https://doi.org/10.1093/med/9780195389883.003.0032
https://doi.org/10.3389/fneur.2012.00183
https://doi.org/10.1016/B978-0-444-53613-6.00014-9
https://doi.org/10.1016/B978-0-444-53613-6.00014-9
https://doi.org/10.1109/ROBOT.2009.5152423
https://doi.org/10.1088/1748-3190/10/2/026001
https://doi.org/10.1088/1748-3190/10/2/026001
https://doi.org/10.1109/ICMA.2019.8816412
https://doi.org/10.1109/ICMA.2019.8816412
https://doi.org/10.3389/fnbot.2017.00018
https://doi.org/10.3389/fnbot.2017.00018
https://doi.org/10.1016/j.neunet.2008.03.014
https://doi.org/10.1016/j.neunet.2008.03.014
https://doi.org/10.1126/science.1138353
https://doi.org/10.1162/NECO_a_00393
https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2025.1507644


Jayne, B. C. (2020). What defines different modes of snake locomotion? Integr.
Comp. Biol. 60, 156–170. doi:10.1093/icb/icaa017

Kelasidi, E., Jesmani, M., Pettersen, K. Y., and Gravdahl, J. T. (2018). Locomotion
efficiency optimization of biologically inspired snake robots. Appl. Sci. 8, 80. doi:10.
3390/app8010080

Kelasidi, E., Pettersen, K. Y., Gravdahl, J. T., and Liljebäck, P. (2014). “Modeling of
underwater snake robots,” in 2014 IEEE international conference on robotics and
automation (ICRA), 4540–4547. doi:10.1109/ICRA.2014.6907522

Kelasidi, E., Pettersen, K. Y., Gravdahl, J. T., Strømsøyen, S., and Sørensen, A. (2017).
“Modeling and propulsion methods of underwater snake robots,” in 2017 IEEE
conference on control technology and applications (CCTA), 819–826. doi:10.1109/
CCTA.2017.8062561

Kober, J., and Peters, J. (2009). “Learning motor primitives for robotics,” in 2009 IEEE
international conference on robotics and automation, 2112–2118. doi:10.1109/ROBOT.
2009.5152577

Kong, L.-H., He, W., Chen, W.-S., Zhang, H., and Wang, Y.-N. (2023). Dynamic
movement primitives based robot skills learning.Mach. Intell. Res. 20, 396–407. doi:10.
1007/s11633-022-1346-z

Lissmann, H. W. (1950). Rectilinear locomotion in a snake (Boa occidentalis).
J. Exp. Biol. 26, 368–379. doi:10.1242/jeb.26.4.368

Marder, E., and Eisen, J. S. (1984). Electrically coupled pacemaker neurons respond
differently to same physiological inputs and neurotransmitters. J. Neurophysiology 51,
1362–1374. doi:10.1152/jn.1984.51.6.1362

Marques, F., Flores, P., Claro, J., and Lankarani, H. (2016). A survey and
comparison of several friction force models for dynamic analysis of multibody
mechanical systems. Nonlinear Dyn. 86, 1407–1443. doi:10.1007/s11071-016-
2999-3

McCormack, A., and Godfrey, K. (1998). Rule-based autotuning based on frequency
domain identification. IEEE Trans. Control Syst. Technol. 6, 43–61. doi:10.1109/87.
654876

Moreno, R., and Gomez, J. (2011). “Central pattern generators and hormone inspired
messages: a hybrid control strategy to implement motor primitives on chain type
modular reconfigurable robots,” in 2011 IEEE international conference on robotics and
automation, 1014–1019. doi:10.1109/ICRA.2011.5980149

Mosauer, W. (1932). On the locomotion of snakes. Science 76, 583–585. doi:10.1126/
science.76.1982.583

Norman-Tenazas, R. (2021). Robust snake robot control via A spiking neuron central
pattern generator. Baltimore, MD: Johns Hopkins University. Master’s thesis.

Ostrowski, J., and Burdick, J. (1996). Gait kinematics for a serpentine robot. In ,
Proceedings of IEEE international conference on robotics and automation. 1294–1299.
doi:10.1109/ROBOT.1996.506885

Paraschos, A., Daniel, C., Peters, J. R., and Neumann, G. (2013). “Probabilistic
movement primitives,” in Advances in neural information processing systems (San
Diego, CA: Neural Information Processing Systems, Inc.), 26.

Pastor, P., Hoffmann, H., Asfour, T., and Schaal, S. (2009). “Learning and
generalization of motor skills by learning from demonstration,” in 2009 IEEE
international conference on robotics and automation, 763–768. doi:10.1109/ROBOT.
2009.5152385

Piñeirua, M., Godoy-Diana, R., and Thiria, B. (2015). Resistive thrust production can
be as crucial as added mass mechanisms for inertial undulatory swimmers. Phys. Rev. E
92, 021001. doi:10.1103/PhysRevE.92.021001

Rabinovich, M. I., Huerta, R., Varona, P., and Afraimovich, V. S. (2006). Generation
and reshaping of sequences in neural systems. Biol. Cybern. 95, 519–536. doi:10.1007/
s00422-006-0121-5

Riddle, S., Jackson, C., Daltorio, K. A., and Quinn, R. D. (2023). “A dynamic
simulation ofÂ aÂ compliant worm robot amenable toÂ neural control,” in
Biomimetic and biohybrid systems. Editors F. Meder, A. Hunt, L. Margheri,

A. Mura, and B. Mazzolai (Cham: Springer Nature Switzerland), 338–352. doi:10.
1007/978-3-031-38857-6_25

Rollinson, D., and Choset, H. (2013). “Gait-based compliant control for snake
robots,” in 2013 IEEE international conference on robotics and automation,
5138–5143. doi:10.1109/ICRA.2013.6631311

Rouse, N., and Daltorio, K. (2024). Stable heteroclinic channel-based movement
primitives: tuning trajectories using saddle parameters. Appl. Sci. 14, 2523. doi:10.3390/
app14062523

Rouse, N. A., and Daltorio, K. A. (2021). Visualization of stable heteroclinic channel-
based movement primitives. IEEE Robotics Automation Lett. 6, 2343–2348. doi:10.1109/
LRA.2021.3061382

Sato, M., Fukaya, M., and Iwasaki, T. (2002). Serpentine locomotion with robotic
snakes. IEEE Control Syst. Mag. 22, 64–81. doi:10.1109/37.980248

Schaal, S. (2006). “Dynamic movement primitives -A framework for motor control in
humans and humanoid robotics,” in Adaptive motion of animals and machines. Editors
H. Kimura, K. Tsuchiya, A. Ishiguro, and H. Witte (Tokyo: Springer), 261–280. doi:10.
1007/4-431-31381-8_23

Shaw, K. M., Lyttle, D. N., Gill, J. P., Cullins, M. J., McManus, J. M., Lu, H., et al.
(2015). The significance of dynamical architecture for adaptive responses to mechanical
loads during rhythmic behavior. J. Comput. Neurosci. 38, 25–51. doi:10.1007/s10827-
014-0519-3

Sherrington, C. S. (1910). Flexion-reflex of the limb, crossed extension-reflex, and
reflex stepping and standing. J. Physiology 40, 28–121. doi:10.1113/jphysiol.1910.
sp001362

Shigeo, H. (1994). Biologically inspired robots: snake-like locomotors and
manipulators by Shigeo hirose oxford university press, oxford, 1993, 220pages, incl.
Index (£40). Robotica 12, 282. doi:10.1017/S0263574700017264

Simoni, M. F., and DeWeerth, S. P. (2007). Sensory feedback in a half-center oscillator
model. IEEE Trans. Biomed. Eng. 54, 193–204. doi:10.1109/TBME.2006.886868

Tagliabue, M., Ciancio, A. L., Brochier, T., Eskiizmirliler, S., and Maier, M. A. (2015).
Differences between kinematic synergies and muscle synergies during two-digit
grasping. Front. Hum. Neurosci. 9, 165. doi:10.3389/fnhum.2015.00165

Tesch, M., Lipkin, K., Brown, I., Hatton, R., Peck, A., Rembisz, J., et al. (2009).
Parameterized and scripted gaits for modular snake robots. Adv. Robot. 23, 1131–1158.
doi:10.1163/156855309X452566

Thandiackal, R., Melo, K., Paez, L., Herault, J., Kano, T., Akiyama, K., et al. (2021).
Emergence of robust self-organized undulatory swimming based on local
hydrodynamic force sensing. Sci. Robotics 6, eabf6354. doi:10.1126/scirobotics.abf6354

Travers, M., Gong, C., and Choset, H. (2015). “Shape-constrained whole-body
adaptivity,” in 2015 IEEE international symposium on safety, security, and rescue
robotics (SSRR), 1–6. doi:10.1109/SSRR.2015.7442945

Travers, M., Whitman, J., and Choset, H. (2018). Shape-based coordination in
locomotion control. Int. J. Robotics Res. 37, 1253–1268. doi:10.1177/0278364918761569

Tresch, M. C., and Bizzi, E. (1999). Responses to spinal microstimulation in the
chronically spinalized rat and their relationship to spinal systems activated by low
threshold cutaneous stimulation. Exp. Brain Res. 129, 0401–0416. doi:10.1007/
s002210050908

Wang, J., Ouyang, W., Gao, W., and Ren, Q. (2017a). “Locomotion control of a
serpentine crawling robot inspired by central pattern generators,” in 2017 asia-pacific
signal and information processing association annual summit and conference (APSIPA
ASC), 414–419. doi:10.1109/APSIPA.2017.8282067

Wang, Z., Gao, Q., and Zhao, H. (2017b). CPG-inspired locomotion control for a
snake robot basing on nonlinear oscillators. J. Intelligent and Robotic Syst. 85, 209–227.
doi:10.1007/s10846-016-0373-9

Yu, J., Tan, M., Chen, J., and Zhang, J. (2014). A survey on CPG-inspired control
models and system implementation. IEEE Trans. Neural Netw. Learn. Syst. 25, 441–456.
doi:10.1109/TNNLS.2013.2280596

Frontiers in Electronics frontiersin.org18

Mengers et al. 10.3389/felec.2025.1507644

https://doi.org/10.1093/icb/icaa017
https://doi.org/10.3390/app8010080
https://doi.org/10.3390/app8010080
https://doi.org/10.1109/ICRA.2014.6907522
https://doi.org/10.1109/CCTA.2017.8062561
https://doi.org/10.1109/CCTA.2017.8062561
https://doi.org/10.1109/ROBOT.2009.5152577
https://doi.org/10.1109/ROBOT.2009.5152577
https://doi.org/10.1007/s11633-022-1346-z
https://doi.org/10.1007/s11633-022-1346-z
https://doi.org/10.1242/jeb.26.4.368
https://doi.org/10.1152/jn.1984.51.6.1362
https://doi.org/10.1007/s11071-016-2999-3
https://doi.org/10.1007/s11071-016-2999-3
https://doi.org/10.1109/87.654876
https://doi.org/10.1109/87.654876
https://doi.org/10.1109/ICRA.2011.5980149
https://doi.org/10.1126/science.76.1982.583
https://doi.org/10.1126/science.76.1982.583
https://doi.org/10.1109/ROBOT.1996.506885
https://doi.org/10.1109/ROBOT.2009.5152385
https://doi.org/10.1109/ROBOT.2009.5152385
https://doi.org/10.1103/PhysRevE.92.021001
https://doi.org/10.1007/s00422-006-0121-5
https://doi.org/10.1007/s00422-006-0121-5
https://doi.org/10.1007/978-3-031-38857-6_25
https://doi.org/10.1007/978-3-031-38857-6_25
https://doi.org/10.1109/ICRA.2013.6631311
https://doi.org/10.3390/app14062523
https://doi.org/10.3390/app14062523
https://doi.org/10.1109/LRA.2021.3061382
https://doi.org/10.1109/LRA.2021.3061382
https://doi.org/10.1109/37.980248
https://doi.org/10.1007/4-431-31381-8_23
https://doi.org/10.1007/4-431-31381-8_23
https://doi.org/10.1007/s10827-014-0519-3
https://doi.org/10.1007/s10827-014-0519-3
https://doi.org/10.1113/jphysiol.1910.sp001362
https://doi.org/10.1113/jphysiol.1910.sp001362
https://doi.org/10.1017/S0263574700017264
https://doi.org/10.1109/TBME.2006.886868
https://doi.org/10.3389/fnhum.2015.00165
https://doi.org/10.1163/156855309X452566
https://doi.org/10.1126/scirobotics.abf6354
https://doi.org/10.1109/SSRR.2015.7442945
https://doi.org/10.1177/0278364918761569
https://doi.org/10.1007/s002210050908
https://doi.org/10.1007/s002210050908
https://doi.org/10.1109/APSIPA.2017.8282067
https://doi.org/10.1007/s10846-016-0373-9
https://doi.org/10.1109/TNNLS.2013.2280596
https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2025.1507644

	Stable heteroclinic channels for controlling a simulated aquatic serpentine robot in narrow crevices
	1 Introduction
	2 Methods
	2.1 Modes of locomotion
	2.2 Control
	2.2.2 Tactile sensing with serpenoid control
	2.2.3 Lateral undulation gait with SHC control
	2.2.3.1 SHC dynamics
	2.2.3.2 Movement primitives with SHCs
	2.2.4 Anguilliform gait with SHC control
	2.2.5 SHC control with tactile sensing
	2.2.6 Learned gait with SHC control

	2.3 Experimental design
	2.3.1 Obstacle-free swimming
	2.3.2 Straight channels
	2.3.3 Uneven channels


	3 Results
	3.1 Obstacle-free swimming
	3.1.1 Lateral undulation gait with SHC control
	3.1.2 Anguilliform gait with SHC control
	3.1.3 Learned gait with SHC control

	3.2 Straight channels
	3.3 Uneven channels

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


