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Electronic components are complex systems consisting of a combination of
different materials, which undergo degenerative changes over time following the
second law of thermodynamics. The loss of their quality or functionality is
reflected in degraded performance or behaviour of electronic components,
which can lead to failures during their operation lifetime. Thus, it is crucial to
understand the physics of material degradation and the factors causing it to
ensure component reliability. This paper focuses on the physics-of-degradation
of packaging materials, which are typically exposed the most to the
environmental and operating loads. The content of this article is organised
into three parts. First, an overview of the packaging technology and
encapsulating materials is presented. Then, the most common degradation-
causing factors and package-associated failure modes are reviewed. Lastly, the
hardware requirements are discussed, including specialised sensors,
measurement techniques, and Digital Twins, to capture the degradation
effects and facilitate component-level health monitoring for microelectronics.
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1 Packaging technology

Electronic packages have evolved dramatically over the last 50 years, starting from the
Dual In-line Package (DIP), Quad Flat Package (QFP), and Small Outline Package (SOP) in
the early 1970s; then, the more efficient Leadless Chip Carrier (LCC), Pin Grid Array
(PGA), and Ball Grid Array (BGA) packages in the 1980s to early 1990s; next, the smaller
scale packages such as Quad Flat No-leads (QFN) and Chip-Scale Package (CSP) in the late
1990s; later, the multi-die packaging with System in Package (SiP) and Package on Package
(PoP) in the 2000s; Wafer-Level Package (WLP) in the late 2000s; and finally, 2. XD (i.e.,
2.1D, 2.3D, and 2.5D) and 3D integration in the 2010s and later (Lau, 2021; AnySilicon,
2011). In these components, electronic circuits and sub-components are encapsulated with
different materials, such as ceramics, metals, and plastics, to form electronic packages.

The primary function of an electronic package is to protect the internal circuitry from
external environmental and operating conditions that can potentially damage it or obstruct
its proper functioning. Advanced packaging techniques provide high interconnect density
and facilitate multi-layered, multi-functional heterogeneous integration. Thus, modern
electronic packages are designed to also support signal transmission via interconnects,
shielding electromagnetic interference (e.g., radio frequency applications), electric power
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distribution, thermal management, and heat dissipation (National
Research Council, 1990; Lancaster and Keswani, 2018).

Several factors govern the performance and characteristics of an
electronic package. For instance, the electrical performance is
affected by the packaging delay, which depends on the type,
complexity, and arrangement of the interconnects (Edwards,
2012; Lapedus, 2016). Moreover, the thermomechanical
behaviour of an electronic package is also highly influenced by
the thermal and mechanical properties of the encapsulating
material, as it contributes to a large volume-share in a package
(Phansalkar et al., 2022; Wei et al., 2009). Electronics packaging
plays an important role in the functionality and useful life of an
electronic assembly. Thus, the selection of an appropriate packaging
material is crucial.

1.1 Encapsulating materials

An encapsulating material is required to have chemical stability,
hydrophobic nature, thermomechanical properties in a certain
suitable range, electrical insulation, thermal stability, and specific
dielectric properties (Na et al., 2018). Historically, hermetic
packaging with glass, ceramic, or metals (primarily the latter
two) was commonly used for housing electronic circuits, making
it up to 80% of worldwide microcircuit production in the 1960s.
Emerging as an inexpensive alternative in the 1970s, plastic
packaging took over virtually all high-volume packaging
products, acquiring 97% of the total market share in 1993 and
more than 99% by the year 2000. Due to this large-scale adoption,
polymer-based compounds have dominated the packaging market
in the last 2 decades [(Ardebili et al., 2018, ch.1)]. Figure 1
summarises the timeline of two competing packaging
technologies, with all hermetic packaging materials classified as
one category.

Thermosetting polymers such as epoxy, polyimide,
bismaleimide-triazine, etc. are widely used in packaging materials
because of their low dielectric permittivity (Li et al., 2022). Owing to
their ability to be moulded, they are also referred to as “moulding
compounds.” Their relatively low cost compared to traditional
ceramic packages and also comparable reliability make them a
more practical choice for packaging. There is a wide variety of

resins suitable for Plastic-Encapsulated Microelectronicss (PEMs)
(Ardebili et al., 2018, ch.2), (Charles, 1993). Considering the
superior electrical performance, achievable thermal and
mechanical behaviour, and economical aspects, the use of epoxy-
based plastics is widespread for commercial electronic devices
(Pecht et al., 1999).

1.2 Epoxy moulding compounds

A typical Epoxy Moulding Compound (EMC) is a composite
material, utilizing epoxy resin as a matrix along with silica-based
filler material and other additives. A wide range of
thermomechanical properties can be achieved by varying the
quantities of the fillers and additives (Carolan et al., 2016;
Kandola et al., 2010). For example, the glass transition
temperature Tg of moulding compounds can be varied from less
than 20°C to greater than 200°C, whereas the modulus of elasticity E
can be changed from 2 GPa for the neat resin to over 100 GPa with
continuous fibre reinforcement (Mullins et al., 2012). Moulding
compounds are generally required to have the glass transition
temperature greater than the product’s service temperature
(Tg >Ts) for them to remain in the “glassy” region in order to
maintain stable dimensions while the product is in-use
(Ratna, 2012).

The constitutive materials of EMC help it attain the desired
thermomechanical properties. The epoxy resin contributes to
excellent chemical resistance, weight reduction due to its lower
density, as well as high adhesion strength due to the formation
of hydroxyl groups during cure (Na et al., 2018; Mullins et al., 2012).
Typically, EMC has a very high filler content (up to 90%), which
helps reduce the Coefficient of Thermal Expansion (CTE) and
increase the thermal conductivity of the moulding compound
(Ardebili et al., 2018, ch.2). It also improves dimensional stability
with the resulting low shrinkage and highTg values. Figure 2 shows a
cross-section of an EMC specimen observed under a Scanning
Electron Microscope (SEM), where a very high content of silica
filler can be clearly observed.

FIGURE 1
The evolution of the per cent (%) market share of packaging
materials in the commercial microelectronic devices. Plastic-based
packaging became the default for most applications (>99% share) due
to its superior electrical performance, achievable
thermomechanical behaviour, and lower costs.

FIGURE 2
A cross-section of an EMC specimen observed under an SEM.
The light grey region indicates the SiO2 filler (up to 90% of the total
volume) and the surrounding black region is the polymer matrix.
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The silica-based filler also ensures the reduction of moisture
absorption (Sasajima et al., 2016) and of the large CTE-mismatch
between silicon die (2–3ppm/°C) and epoxy resin (above 80ppm/
°C), ensuring less warpage (Teh et al., 2006). The SiO2 content and
particle size of the silica-based filler material controls the viscosity, and
therefore, the flowability of the moulding compound can be adjusted.
Hardeners improve the heat resistance and storage stability; cure-
promoter increases the cross-linking reaction time; and flame-
retardants lower the risk of flammability (Linec and Mušič, 2019).

2 Package-associated degradation

The encapsulating material occupies a large volume within a
package [as high as 75% (Liu, 2012)]; thus, it is most exposed to
external environmental conditions. It is not only true for simple
single-chip packages but also for complex multi-chip packages such
as PoP, SiP, and 3D integration. Figure 3 illustrates several options
for modern electronics packaging. In all of the examples, a high
volume-share of the encapsulating material is observed.

This trend is seen throughout the history of electronics
packaging (1970s–2000s) and also the advancements in the
recent past, reviewed in numerous publications (Lancaster and
Keswani, 2018; Ardebili et al., 2018; Liu, 2012; AnySilicon, 2011;
Greig, 2007; Zhang and Lu, 2016; Perfecto and Srivastava, 2013; Lau,
2021). Although most Wafer-Level Chip-Scale Packages (WLCSPs)
do not have a plastic encapsulation (NXP Semiconductor, 2015; Qu
and Liu, 2015), such WLCSPs get encapsulated after being
integrated into a larger system (e.g., a SiP). This is illustrated in
Figure 3 with a Fan-in WLCSP on the left-hand side portion of the
package labelled as “SiP.” Thus, the encapsulation material is a
dominant part of an electronic package. It is exposed the most to the
surrounding environment and, thus, is prone to degradation
and ageing.

2.1 Degradation factors

The factors responsible for component degradation can either be
“environmental” or “functional” loads. The former depends on
aspects such as the geographic location, season, and time of the
day, while the latter on the application field and operating
conditions such as the power requirement, runtime, etc. These
factors can be categorised into eight types–thermal, electrical,
mechanical, chemical, electromagnetic, radiation, humidity, and
dust (ZVEI, 2015). Among these, harsh conditions such as high
temperature, moisture, and mechanical vibrations have the most
relevance for electronic components in a broad variety of
applications. Exposure to these “stress-factors” alters the thermal,
mechanical, electrical, and chemical behaviour of the constituting

FIGURE 3
A schematic representation of different options for electronic
packages, classified into three categories–single-chip packages,
multi-chip 2D integration, and advanced 2.X and 3D integration. All
options indicate the encapsulating material in black colour,
which also has a dominant volume-share.

FIGURE 4
Four key “stress-factors” responsible for causing failures in
electronic components–temperature, humidity, vibration, and dust.
The pie chart indicates the percentage share of each factor in failures
(Pecht, 1991; Chu et al., 2013; Xu et al., 2015; Qiu et al., 2022).
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materials, which influences the performance, behaviour, and lifetime
of an electronic component. Figure 4 indicates the distribution of the
share of four major “stress-factors” in causing failures in electronic
components.

The data originates from a 1990 study by the US Air Force
Avionics Integrity Program, which has later been reported on in
handbooks such as Pecht (1991) and a variety of publications on the
studies of different failure modes in electronics packages (Chu et al.,
2013; Xu et al., 2015; Qiu et al., 2022). Temperature is the most
significant stress-factor (accounting for more than 50%) to facilitate
failure mechanisms in electronic components, while humidity and
mechanical vibrations are the next two dominant ones. Failure
mechanisms are also often accelerated by these factors, and thus,
the knowledge of the exposure of an electronic component to the
dominant stress-factors is crucial in determining its current state of
degradation and predicting a potential failure mode.

In addition to these factors, exposure to gas (chemical exposure),
salt (corrosion), ultraviolet light (ageing effects), electromagnetic
radiation, power surges (electromigration), etc. have also been
considered as a part of the reliability qualification tests in the
recent past (ZVEI, 2015; ITA Labs, 2014; Sierra Circuits, 2021).
However, the relevance of these additional factors remains
application-dependent, keeping the aforementioned four stress-
factors as almost exclusively cited degradation factors in a
plethora of publications to date. The modern trends in reliability
testing for microelectronics packaging also reflect the same (Bender
et al., 2024).

Each of the dominant stress factors has certain degradation
effects and associated failure mechanisms. Exposure to high
temperature leads to oxidation of the encapsulating moulding
compound, which is a chemical reaction leading to the formation
of a stiffer layer compared to the original material (Inamdar et al.,
2021). A PCB substrate also shows a similar degradation effect with a
significant shift in its mechanical properties (Van Dijk et al., 2022;
van Dijk et al., 2024). High temperature also accelerates the creep in
solder joints, leading to a significant shift in its material properties
and, thus, its mechanical behaviour (Lall et al., 2024; Mazumder
et al., 2024). Thermal cycling and thermal shocks also have unique
effects on the die-attach layer (which sits between the die and
substrate for certain packaging configurations) and solder joints,
leading to fatigue (Fahim et al., 2019; Abueed et al., 2019).

Humid environments can cause hygroscopic swelling of
encapsulating moulding compounds due to moisture diffusion
(Kwak and Park, 2015; Teverovsky, 2002; Jansen et al., 2020),
which reflects in a change in thermomechanical behaviour
(Zulueta et al., 2021). This effect, in particular, is partially
reversible through the desorption of moisture, since it is a
diffusion-dominated physical phenomenon (Placette et al., 2011;
Chen et al., 2015). This degradation primarily leads to delamination,
bond wire failure, and cracks in substrates, encapsulation, and solder
joints (van Driel et al., 2010). A combination of thermal and
humidity loads results in adhesion failure of moulding
compounds (Ahsan and Schoenberg, 2014) as well as the
“popcorning” effect in electronic packages (Chen and Li, 2011).
Hygrothermal exposure causes a combination of physical and
chemical degradation effects and has a significant influence on
die-level mechanical stresses (Nguyen et al., 2018), which can
lead to interfacial delamination (Wang and Wu, 2020).

Mechanical vibrations impose repetitive mechanical stresses on
several layers within an electronic package or system (Thukral et al.,
2024b). The effects of such a loading condition are heavily reflected
in fatigue failure of solder joints (Wang et al., 2017; Libot et al., 2016)
and can depend on the magnitude of vibration in a particular
direction (Jian et al., 2024). These effects are typically accelerated
under thermal loads and thus, a combined degradation due to
thermal and mechanical stress has been extensively studied and
characterised (Maruf et al., 2024; Arabi et al., 2020) and several
board-level reliability studies are designed around solder fatigue
under thermal-cyclic and mechanical vibratory loads (Bani Hani
et al., 2023; Thukral et al., 2023; An et al., 2018).

The aforementioned stress-factors and corresponding
degradation mechanisms and failure modes are applicable to
different electronic packages depending on the utilised packaging
technology. Simpler chip designs (single chip packaging in Figure 3)
can experience a single dominant failure mode, such as wire-bond
liftoff or popcorning effect. On the other hand, multi-chip 2D
integration or advanced packaging (refer to the rest of Figure 3)
have more complex structures and, thus, the complex interaction of
multiple layers consisting of different materials. This leads to a
combination of failure modes including solder interconnects at
different layers, electromigration, and substrate cracking.
Bernstein et al. (2024) shows the distribution of most commonly
observed package-level failure mechanisms in the field as bond wire
failure (32%), die cracking or damage (28%), delamination (13%),
substrate cracking (10%) among others. These failure modes are
identified using several Highly Accelerated Stress Testing (HAST)
and cyclic loading profiles, which are based on temperature variation
(thermal cycling, shock, isothermal), humid environments
(moisture ingress), and mechanical loads (vibrations) (Bender
et al., 2024).

2.2 Failure modes

Package-level degradation mechanisms can lead to both
package-level failures as well as board-level failures. Figure 5
shows the distribution of different types of package-level and

FIGURE 5
The distribution of failure modes associated with different sub-
components of power electronic systems based on the data
presented in Wolfgang (2007), Yang et al. (2010), Wang et al. (2012).
The failures related to the semiconductor (die), connector
(interconnects), and solder joints together account for over a third of
total failure modes.
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board-level failure modes associated with power electronic systems.
The original source (Wolfgang, 2007) is not accessible, but the data
were later reproduced in Yang et al. (2010) and Wang et al. (2012).
The package-associated failure modes–semiconductors (die),
connectors (interconnects), and solder joints–together account
for a significant share of 37%. In general, there can be a large
number of failure modes for an electronic component or system
[(Ardebili et al., 2018, ch.5)]. Thus, a selection is necessary to focus
the efforts on modelling the physics-of-degradation and building a
physics-based Digital Twin for prognosis. The following three
criteria were considered to determine the dominant failure modes
and degradation mechanisms: (1) the three dominating stress-
factors (viz., temperature, humidity, and vibration); (2) the large
volume-share of the encapsulation material with a dominant role in
the thermomechanical behaviour of a package; and (3) the trend of
commonly observed categories of package-associated failures.

Delamination, i.e., separation of two heterogeneous surfaces,
and cracking of materials are two of the most common mechanical
failure mechanisms. Delamination is often observed at the interfaces
between the moulding compound and other materials, such as
EMC-leadframe, EMC-die, etc. Delamination can also lead to
crack propagation in the bulk of EMC. Figure 6A shows the
schematics of these failure modes, which are mainly caused by
the difference between the thermomechanical properties (e.g., CTE-
mismatch) and temperature differences between different layers. A
cyclic thermal load during the component’s operation causes stress
cycling which leads to crack initiation and propagation.
Delamination can affect not only the electrical performance but
also the thermal performance by altering the heat distribution within
the package (Nieuwenkamp and Bosco, 2021).

A cyclic thermal or mechanical load is also a primary cause of
crack initiation and propagation within solder joints. Figure 6B
depicts a crack in the bulk of solder material, which is also referred to
as a Mode-II failure. Solder cracks can also develop within the
intermetallic layer formed up to a certain depth from its contact with
the metallisation (commonly copper) layer. This is called a Mode-I
failure. The former is a predominantly ductile failure due to plastic
deformation (i.e., the accumulated plastic strain), while the latter is a
brittle failure. A mixed-mode failure can also be observed in solder
joints. Both of the described failure modes (illustrated in Figure 6)
have one common factor, which is they occur during product-

operation, i.e., the in-use phase of an electronic product. Moreover,
they can be accelerated by the changed thermomechanical behaviour
of a package due to the ageing of the encapsulating EMC. Thus, the
changes in material properties of the encapsulating material are of
great significance when considering the effects of package-level
degradation on the component-level failure modes.

3 Degradation monitoring and
reliability

The reliability of a component refers to its future performance or
behaviour, which inherently has the uncertainty and randomness
involved (Kapur and Pecht, 2014). Thus, the mathematical
formulation of reliability is a function of the random variable t
(i.e., the variate), which can be a suitable time-related parameter
indicating the age of the component. Traditionally, reliability is
estimated based on standard tests documented in specification
manuals, such as reliability handbooks [e.g., generic/purely
mathematical handbooks: Pham (2003), Stapelberg (2009) and
topic-specific handbooks; Department of Defense USA (1998),
Renesas Electronics (2017)] and international standards (e.g.,
electronics-related standards: JEDEC, IPC, etc. and application-
specific standards: AEC, SAE, etc.). The tests are primarily done
in a batch during the product qualification phase. They include a (n
idealised) plot of hazard rate h(t), which forms a “bathtub curve” to
indicate the trend of failures as a function of component age and is
modelled using Probability Density Functions (PDF) (e.g., a Weibull
distribution) to fit the data collected in qualification tests.

This approach, being in use since the 1960s, has been heavily
criticised in the past for being inaccurate and invalid because of
being based on insufficient knowledge of component failures (Pecht
and Kang, 2018). It has also been highly recommended to replace
them with newer approaches, e.g., physics-of-failure (PoF). In
addition, it provides only a collective overview and broader
insights into an entire batch using a statistical approach, which
also implies that it lacks the details of sample-specific insights.
Methods of reliability estimation have evolved quite a lot from
the birth of fault-tree analysis in the 1970s, the use of accelerated
testing in the 1980s, the adoption of the physics-of-failure approach
in the 1990s, to the hybrid approach using physics and statistics

FIGURE 6
Examples of package-associated failuremodes– (A) delamination of EMC-leadframe interface and cracking of bulk-EMC and (B) crack propagation
in the bulk of a solder joint. Both failure modes are initiated by fatigue load and accelerated by thermomechanical degradation of EMC.
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together (Azarkhail and Modarres, 2012; Wang and
Blaabjerg, 2021).

The methodology needs to further develop to match the needs
created by the next-generation and rapid electronification of
industries and involvement of mission critical electronics. It
should provide per-product (sample-specific) health monitoring
but at a much larger scale, possibly for all the products (not just
a smaller sample set) while they are in use. The industries are
expected to move from an “application-based” to a “degradation-
based” wave in reliability in the near future (van Driel et al., 2022),
which means the focus would transition from a physics-of-failure to
a physics-of-degradation approach to estimate a product’s service
lifetime or its Remaining Useful Life (RUL).

In the physics-of-failure approach, the focus is on failure
mechanisms and understanding the physics behind them. For
instance, the mechanics behind the development of cracks due to
solder fatigue under a cyclic load is the main focus. In a physics-
of-degradation approach, the focus is on understanding the
physics behind the change of state from nominal to degraded,
until failure. Thus, this approach is aimed at capturing more
information on the intermediate stages of degradation before
failure. An example is presented in Thukral et al. (2024a), where
four different stages of solder joint degradation are identified
based on the four-point resistance measurement technique.
These stages appear before the crack (i.e., the failure mode)
actually starts to develop. Thus, a physics-of-degradation
approach provides far more detailed information on the
degradation and failure phenomena.

This approach can be realised using a Digital Twin-based
framework for Prognostics and Health Management (PHM) of
electronics. Figure 7A indicates the two-branched Digital Twin
model, which leverages two modelling approaches–physics-based
and data-driven. The model keeps a clear separation between the
real and virtual spaces, and either one of these two branches can be
the digital model on its own to provide a prognosis while forming a
closed feedback loop with the physical product. Furthermore, the
two modelling approaches can be combined to a varied capacity to
get a hybrid Digital Twin. A Digital Twin implementation can exist
in three forms, viz., Digital Twin Prototype (DTP), Digital Twin
Instance (DTI), and Digital Twin Aggregate (DTA), during different
phases of product lifecycle Grieves (2023). The last one refers to the
in-use phase and facilitates component-level (product-specific)
health monitoring at scale. An expanded version of the two-
branched model and its workflow throughout a product life-cycle
has been described in great detail in Inamdar et al. (2024b).

Figure 7B summarises the six-step framework for component-
level PHM and degradation monitoring. The workflow of PHM
begins with condition monitoring, which requires the collection of
relevant data using appropriate sensors for capturing environmental
loads, operating conditions, and additional measurements (e.g.,
current or voltage). Thus, the first three steps in the PHM
workflow are data sensing, acquisition, and preprocessing. The
second phase of the PHM framework is diagnostics. The
collected data is processed to provide a preliminary assessment of
the component’s condition, such as the detection of an anomaly. The
state of component health is then evaluated, which requires physics-

FIGURE 7
The two-branched Digital Twin architecture that leverages two modelling approaches (viz., physics-based and data-driven) and the six-step
framework for PHMofmicroelectronics. The two branches of the digital models can be combined for a hybrid approach to component-level degradation
monitoring. (A) Two-branched Digital Twin Architecture (B) Framweork for Prognostics and Health Management (PHM).
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based validated models for quantifying degradation and fault
progression. In the last phase, prognostics and decision-making
come into the picture. A prognosis of the component’s performance
and an estimation of its RUL is made. Based on the prediction,
decisive action is chosen, such as scheduling maintenance for repair
or replacement.

3.1 Hardware for degradation monitoring

Product-specific health monitoring and reliability prediction
can be achieved when its exposure to the dominant stress-factors
is known, which can be used to determine the current state of
degradation. This requires incorporating embedded sensors and
component-level measurement techniques in an electronic system.
Thus, certain hardware considerations are necessary to realise the
data-driven branch of the Digital Twin architecture presented in
Figure 7A, especially the edge-processing aspect, and to establish the
data flow from the physical product and its digital models in the
virtual space. This is important for the “instance” (DTI) and crucial
for the “aggregate” (DTA) phase of the Digital Twin. The hardware
requirements are categorised into sensing and processing units.

3.1.1 Sensors and measurements
A set of sensors to measure temperature at various locations of a

component, moisture content in the surroundings, and certain
aspects of mechanical vibrations is the basic necessity. Multiple
locations to measure the temperature are recommended. A
measurement outside a package records the environmental (i.e.,
external temperature), while the ones within a component can
measure the effects of joule heating due to the active power
cycling. Moreover, a failure mode such as delamination could
also be monitored as it affects the heat distribution. An example
of temperature sensor-based prediction of the EMC-die
delamination has been presented in Nieuwenkamp et al. (2023).
A temperature sensor also helps in estimating the stresses when it is
linked with a physics-based model such as a Finite Element model.
Additional analogue sensors and external thermocouples can also
serve to monitor the temperature at a specific location.

Moisture diffusion into EMC affects the mechanical behaviour
of the encapsulation layer and, in turn, of the whole package
(Sugiman et al., 2016). Relative humidity (%RH) measurements
aided with an atmospheric pressure sensor can help quantify these
effects. Humidity and temperature both affect the
thermomechanical properties of EMC. Thermal ageing produces
permanent oxidative changes, whereas the effects of moisture
diffusion are reversible to a certain extent (Netting, 2012). Thus,
real-time and accurate humidity measurements are crucial to
accumulating moisture-induced effects on the
mechanical behaviour.

Mechanical vibrations are a common source of the dynamic
operating load for electronics in the automotive and manufacturing
field. It causes stress cycling, leading to fatigue failures such as
delamination and cracking due to cumulative damage of the EMC-
die interface (package-level) and solder fatigue due to accumulated
plastic strains (board-level). Linear motion is sensed by a 3-axis
accelerometer, while angular motion is by a 3-axis gyroscope. A
standard 6-axis Inertial Measurement Unit (IMU) (or a 9-axis IMU

which includes a 3-axis magnetometer for the orientation in space)
should be integrated at one or more locations to record the vibration
load at the component- or board-level.

Apart from the individual effects of the stress-factors, it is also
crucial to see the effect of coupled loading because such loads
represent a more realistic scenario and generally have a greater
influence on the acceleration of failure modes. Several publications
indicate this by studying the effect of coupling temperature-
humidity (Wang and Wu, 2020; Jansen et al., 2020; Zulueta
et al., 2021) and temperature-vibrations (An et al., 2018; Arabi
et al., 2020). Some ageing and degradation processes can have much
longer characteristic times than the operation times of the device
(Swingler and Feinberg, 2014, ch.3). Thus, the frequency of
measurements should be tweaked according to the target failure
mechanisms and the involved physics-of-degradation.

In addition to capturing the effects of the dominant stress-
factors, specialised sensors and measurement methods can be
implemented to get additional information about the state of
degradation. For instance, electrical resistance measurements can
identify a failed solder joint and also a few degraded stages before
failure (Zhang, 2023, ch.4), as well as effects such as
electromigration. Measurements from a piezoresistive sensor can
represent the changes in stresses and indicate the progress of
degradation or damage. Some examples of this have been
demonstrated in Prisacaru et al. (2021), Prisacaru and Gromala
(2021), Inamdar et al. (2024a).

3.1.2 Processing and communication
Data collection through sensors requires a controlling on-board

unit, which a Microcontroller Unit (MCU) along with a multiplexer
(or “mux”) can fulfil. The MCU needs to be selected so that some
data processing can be done on the edge. The advantages of this are
twofold – (1) high quality data can be directly processed without it
leaving the device, and only the inference can be stored or
transmitted. This is also a more secure option with respect to
data privacy; and (2) it simplifies the workflow while saving a lot
of energy by avoiding at least a part of data stream transmissions,
which inherently has high energy consumption (Warden and
Situnayake, 2019; Edge Impulse, 2021).

ARM-based architecture for processors is known for its energy
efficiency and also provides a wide variety of high and low-power
compute cores. Their “M” series of designs have limited compute
power compared to the “A” series but are energy efficient, making
them suitable for in-situ health monitoring. ARM recommends
several tiers of processing units (xPUs) for data processing across
different use cases (Vachani, 2020). The in-situ health monitoring
implementation requires making sense of the data coming from
different sensors or multiple sensors of the same kind (i.e., sensor
fusion) and having embedded Machine Learning (ML) capabilities
such as feature extraction, failure classification, and anomaly
detection. Thus, at the least, Cortex M7 or equivalent compute
architecture should be selected.

Since the computational power available at the edge (MCU) has
its limitations, some sorts of data analysis (e.g., federated learning)
can only be done on an external system (or cloud). This can be
achieved by wireless communication interfaces such as WiFi and
Bluetooth Low Energy (BLE). Wireless connectivity is also
paramount for maintaining a continuous feed of sensor data to
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continuously update the physics-based model in the cloud. For
transmitting data to a locally available but external computation
infrastructure, connections for wired communication channels such
as SPI and I2C should be available on the board-level. A USB
interface or a dedicated port might also be necessary for data transfer
and software/firmware updates. Finally, flash memory solutions can
be considered for local storage of processed data and inferences.

3.2 Virtual sensors and Digital Twins

Predicting failures directly from the collected sensor data is not
possible without a robust (purely) data-driven model, which
typically requires huge amounts of training data gathered from
experiments or in-field use of the product. The hybrid Digital Twin
approach for prognostics and health monitoring of electronics
(Figure 7) can address this challenge, and thus, linking the sensor
data to physics-based models is necessary. Experimentally validated
models can then also serve as a source for training data that is
convenient and not as resource-intensive as a purely experimental
approach. Moreover, these models can extract results from intricate
places of the electronic component, serving as “virtual sensors,”
where placing and physical sensor or performing actual
measurements is either not possible or practical.

As concluded in Section 2, temperature-induced effects on
the encapsulating layer of an electronic package are crucial.
Thermal ageing results in progressive oxidation of the

encapsulating EMC, forming a much stiffer outer layer. This
affects the stresses on the EMC-die interface and may accelerate
the delamination process. While embedding a piezoresistive
stress sensor is a possible solution, it is also resource-
intensive. As an alternative, an experimentally validated model
of a thermally aged electronic package can be prepared to
simulate its thermomechanical behaviour as a function of
EMC oxidation. A step-by-step procedure of creating such a
continuously updated and experimentally validated model for
thermo-oxidative ageing of EMC is demonstrated in Inamdar
et al. (2024c). This model can serve as a virtual sensor to extract
the stress values along the EMC-die interface to evaluate the risk
of delamination.

Figure 8 shows the aforementioned model with a quarter
geometry of a flip-chip ball grid array package, that updates the
thickness and material properties of the oxidized layer of EMC
based on the quantified exposure (i.e., time) to a high
temperature ( ≥ 150°C). The top 10 µm thick layer of the
silicon die with a 30 × 30 finite element array serves as the
virtual stress sensor. The results of von Mises equivalent stress
at room temperature (25°C) for four different stages of thermal
ageing (viz., 0 h, 1,000 h, 2,000 h, and 3,000 h) are indicated in
Figure 8. In this way, high-quality data can be extracted from
continuously updated simulation models (Digital Twins).
Therefore, in conjunction with the hardware requirements
discussed earlier, Digital Twins for degradation models should
be used for the PHM of electronic components.

FIGURE 8
An example of implementing a virtual sensor for extracting stress along the EMC-die interface as a function of thermal ageing of an electronic
package. The plots indicate the vonMises equivalent stress at room temperature for four different levels (hours) of EMC oxidation due to exposure to high
temperature. (A) EMC 0 h (B) EMC 1,000 h (C) EMC 2,000 h (D) EMC 3,000 h.
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4 Conclusion

This paper reviews the state of the art of electronics packaging
and materials used for encapsulation. It shows that over 99% of
commercial electronics utilise plastic encapsulation with epoxy-
based moulding compounds being a popular choice. The
encapsulation layer retains a dominant volume-share in several
types of conventional or advanced packages and, thus, is a
critical layer when package-level degradation and associated
mechanical failure modes are concerned. Exposure to
temperature, moisture, and mechanical vibrations influences the
package-associated failure mechanisms, among which delamination
and solder fatigue are two of the most commonly identified
failure modes.

Dominant stress-factors have their individual effects on
material degradation that lead to the acceleration of failure
modes. However, it is also crucial to study the coupled effects,
as they represent more realistic loading conditions. Thus, multi-
physics superposition is necessary when preparing a physics-
based Digital Twin model. In addition, a set of sensors and
measurement techniques should be in place to achieve
component-level, continuous, and in-situ condition
monitoring. The advantages are twofold – (1) it can be utilised
to update the physics-based model in the cloud to represent the
current state of degradation, and (2) the data can be processed in-
situ using sensor fusion and ML for quantification of degradation
parameters, failure detection, and classification of failure modes.

The additional hardware required to realise in-situ component-
level health monitoring can be categorised into sensing and
processing units. The selection of suitable computing hardware,
such as anMCU, depends on the required computational power and
the necessary energy efficiency at the edge. Apart from the sensors
for measuring the basic environmental loads, the inclusion of
additional specialised sensors, such as a piezoresistive sensor,
provides more insights into the progressive degradation of
electronic components. In addition to the hardware sensors,
Digital Twin-based virtual sensors serve as a more practical
solution for gathering data. Thus, experimentally validated
physics-based degradation models are a crucial aspect in realising
a hybrid approach to component-level PHM of electronics.
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