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Recent advances in manufacturing of flexible and conformable microelectronics
have opened opportunities for health monitoring and disease treatment. Other
material engineering advances, such as the development of conductive, skin-like
hydrogels, liquid metals, electric textiles, and piezoelectric films provide safe and
comfortable means of interfacing with the human body. Together, these
advances have enabled the design and engineering of bioelectronic devices
with integrated multimodal sensing and stimulation capabilities to be worn nearly
anywhere on the body. Of particular interest here, the external ear (auricle) offers
a unique opportunity to design scalable bioelectronic devices with a high degree
of usability and familiarity given the broad use of headphones. This review article
discusses recent design and engineering advances in the development of
auricular bioelectronic devices capable of physiological and biochemical
sensing, cognitive monitoring, targeted neuromodulation, and control for
human-computer interactions. Stemming from this scalable foundation, there
will be increased growth and competition in research and engineering to advance
auricular bioelectronics. This activity will lead to increased adoption of these
smart headphone-style devices by patients and consumers for tracking health,
treating medical conditions, and enhancing human-computer interactions.
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Introduction

Headphones are an iconic human interface. Current and forthcoming generations of
headphones or auricular bioelectronics have capabilities that will fundamentally change
howwe approach health diagnostics, clinical intervention, and communications. The design
of headphones can be traced back to the 1890’s, when Earnest Mercadier developed binaural
diaphragms enabling handsfree operation for telephone operators controlling switchboards
(Figure 1A) (Mercadier, 2024). A couple decades later Nathaniel Baldwin is credited with
inventing the first audio headphones designed to enhance naval communications aboard
large and noisy ships. Marking an application transition from their industrial use in
communications to personal entertainment use in the audio industry, John Koss designed
the first stereo headphones for listening to music in 1958. Since, electrical, mechanical, and
biomedical engineering advances have enabled headphone miniaturization, microphone
and biometric sensor integration, wireless connectivity, incorporation of digital signal
processors (DSP) for active noise cancellation (ANC), audio filtering, amplification, spatial
audio encoding, and medical device embodiments for the treatment of health conditions
(Figures 1B–D). Today, given their global use in daily communication and digital media
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consumption, we recognize headphones as being deeply connected
to our inner thoughts and emotions, lifestyle, and productivity
(Lieberman et al., 2022; Molesworth et al., 2013). As such,
headphones and devices intended to be worn on the ear have
inspired the design and engineering of modern bioelectronic
devices intended for health, medicine, and communications.

The medical device and personal electronics industries have
begun to witness barriers blurred as health agencies, care providers,
consumers, and patients, motivated by health monitoring, data
analytics, and predictive algorithms have begun to integrate
wearables into our daily lives (Haghi et al., 2017; Muzny et al.,
2020; Perez-Pozuelo et al., 2020; Channa et al., 2021). Markets suffer
from no shortage of low-power consumption, wireless connected,
multimodal sensor integrated clinical grade and consumer health
wearables measuring heart rate, heart rate variability, respiration
rate, sleep and activity patterns, metabolic activity, stress levels, and
oxygen levels. Over the past decade, a great race for data-driven,
predictive insights afforded by modern machine learning (M/L) and
artificial intelligence (AI) methods has attracted additional
engineering resources around wearable electronic research and
development (Acosta et al., 2022; Nahavandi et al., 2022). Many
engineers, scientists, and members of the semiconductor and
microelectronics industries have risen to challenges in wearable
design, testing, packaging, and manufacturing of a bewildering array

of batteries, energy harvesters, microprocessors, MEMS
accelerometers, optical, electrical, and acoustic sensors fueling
growth in consumer and medical wearables (Iqbal et al., 2021;
Mamdiwar et al., 2021; Sreenilayam et al., 2020; Hasan et al., 2021).

Developing wearable electronics that have a size, weight, and
power profile sufficient for wearing as headphones has some unique
engineering challenges. Physical acoustic constraints combined with
the fact that people have ears of different sizes and shapes presents
other challenges (Møller, 1992; Møller et al., 1995; Poldy and
Borwick, 2001). However, the consumer audio, cochlear implant,
and hearing aid industries have solved many of these challenges over
the past couple decades (Zeng et al., 2008; Chung, 2004; Edwards,
2007; Sabin et al., 2020). In fact, the FDA has recently cleared several
over-the-counter (OTC) hearing aids that are now widely available
to patients without the need to be fitted by an audiologist (Sabin
et al., 2020; Knoetze et al., 2024; Sheng et al., 2024; F. D. A.
Commisioner Office, 2024a). More recently in another innovative
step forward, the FDA cleared Apple’s AirPods Pro 2 consumer
headphones as an OTC hearing aid software through a de novo
Software as a Medical Device (SaMD) regulatory pathway (F. D. A.
Commissioner Office, 2024; Apple, 2024).

Other advances in flexible and conformable electronics, as well
as polymer materials for skin-device interfaces have enabled the
development of sophisticated auricular bioelectronics embodied as

FIGURE 1
Evolution of modern headphones. (A) Shown is the “Bi-Telephone” developed to enable telephone operators hands-free operation of switchboards
was invented in 1891 by Ernst Mercadier and is considered to be the first modern headphone (Mercadier). Advances in communications and
microelectronics in the 1980–90’s led to the development of wireless headphones. (B) Shows a patent illustration for an embodiment of wireless
headphones from the Sony Corporation (Wingate, 1999). Numerous advances in headphone design came about with engineering progress in
wireless communication, sensor design, microelectronic packaging, digital signal processing (DSP), and automatic noise cancellation (ANC) in the 2000’s.
(C) These advances led to the development of wireless, wearable headphones with integratedmicrophone arrays, biometric sensors, control electronics,
and power management systems as illustrated by the block diagram showing components of an earbud headphone from an Apple, Inc. patent covering
headphones with biometric sensing (Qian et al., 2017). (D) Patent illustrations showing an embodiment of Apple, Inc. earbud headphones (AirPods) with
biometric sensors in the ear (Qian et al., 2017).
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headphones capable of sensing biochemical and physiological
activity (Figures 1C, D) (Qian et al., 2017; Masè et al., 2020;
Röddiger et al., 2022). The fields of neuromodulation and
bioelectronic medicine have meanwhile been developing various
methods of stimulating auricular branches of cranial and cervical
nerves for various outcomes (Kaniusas et al., 2019; Verma et al.,
2021; Kim et al., 2022). For example, various vibrotactile and
electrical forms of transcutaneous auricular vagus nerve
stimulation (taVNS) have been shown to reduce inflammation
including neuroinflammation associated with long COVID,
reduce stress, improve sleep, decrease depression and anxiety,
and enhance learning, cognition, and neurorehabilitation as
further discussed below. Collectively these advances have
produced a climate where the development of open- and closed-
loop auricular bioelectronics will produce a new generation of
medical devices, health and performance wearables, and brain-
computer interfaces (BCIs) that are as scalable as personal
headphones. The goal of this perspective is to highlight the
anatomy, physiology, and recent engineering milestones enabling
the development of modern auricular bioelectronics.

Neural, vascular, and lymphatic
anatomy of the external ear

The structure of the auricle or external ear serves mammals
unique physiological roles and is tied closely to our evolution and
survival (Webster, 1966; Le Maître et al., 2020). The external ear is a
cartilaginous structure that has dense vasculature and sensorimotor
innervation to help foster heat dissipation, sound location, and
positional awareness. The structure of the external ear has two
essential parts, which are the pinna and the external auditory meatus
(EAM) or outer ear canal ending at the tympanic membrane where
the middle ear begins (Figure 2A). This location provides proximal
access to the brain, which is useful for recording brain activity as
discussed below. The pinna has many distinct anatomical features,
which filter and direct sounds to the EAM as illustrated in Figure 2A,
The EAM directs and conducts these sound waves to the middle ear
before transmitting them to the inner ear for auditory transduction
and processing.

The external ear is innervated by two sensory cervical (C2-3)
brachial nerves known as the great auricular nerve (GAN) and the
lesser occipital nerve (LON; Figure 2B). It is also innervated by three
different sensory cranial nerves (CN), which are the eighth CN nerve

FIGURE 2
Anatomy of the external ear. (A) The anatomical illustration depicts the anatomy of the human external ear showing prominent structures. (B) The
illustrations depict the sensory innervation of the external ear by the lesser occipital nerve (C2; orange), the great auricular nerve (C2, C3; blue), the facial
nerve (yellow), the auriculotemporal nerve (ATN) or third branch of the trigeminal nerve (V3; green), and the auricular branch of the vagus nerve (ABVN;
purple). The image on the right shows this innervation in the external auditorymeatus (EAM) (Jackler, 2019). (C) The images show the lateral (left) and
posterior (right) view of a Spalteholz ear with the auricular vasculature including the superior anterior auricular artery (s), middle anterior auricular artery
(m), inferior anterior auricular artery (i), and the superficial temporal artery* (Cakmak et al., 2018). (D) The images show three-dimensional reconstructions
produced using micro computed tomography (µCT) of auricular vasculature of the external ear (left) and for isolated auricular vascularity (right) (Cakmak
et al., 2018). The images in panels (A, B) were reproduced with permission from the illustrator Chris Gralapp (Jackler, 2019). The images in panels (C, D)
were modified from reference (Cakmak et al., 2018).
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or facial nerve (CN VIII), branches of the third branch of the fifth
CN nerve (CN V3) via the auriculotemporal nerve (ATN), and
auricular branches of the vagus nerve (ABVN) originating from the
superior ganglion of the 10th CN nerve or vagus (CN X). These
sensory nerves have overlapping distributions throughout the skin
of the ear differentially innervating the helix, concha, fossa, tragus,
lobule, EAM, and other regions (Figure 2B). They also serve
common functions, such as mediating physiological reflexes and
gating neurophysiological arousal via the ascending reticular
activating system (Magoun, 1952; Urbin et al., 2021). For
example, ABVN innervation of the EAM serves the anatomical
basis for Arnold’s cough reflex (Ryan et al., 2014; Tekdemir et al.,
1998; Gupta et al., 1986). The EAM is also innervated by branches of
the ATN and facial nerve (Figure 2B), which reflects their close
functional relationship in underlying the mammalian diving reflex
(Andersen, 1963; Gooden, 1994; Lin, 1988; Panneton and Gan,
2020) and trigemino-cardiac reflexes (Khurana et al., 1980; Lapi
et al., 2016; Schaller, 2004). Stimulation of the ABVN can also trigger
anti-inflammatory responses by modulating cytokine activity (Wu
et al., 2023; Salama et al., 2020; Seitz et al., 2022; Tynan et al., 2021).
Given these and other effects discussed below, methods and devices
for stimulation of peripheral nerves of the external ear have broad
biomedical utility (see below, Methods and Effects of Auricular
Neuromodulation).

The vascular structure of the external ear includes a rich arterial
supply, as well as dense venous and lymphatic drainage system.
Several types of perivascular sympathetic and parasympathetic nerve
fibers regulate the vasomotor activity of the ear (Cakmak et al.,
2018). The external ear receives its primary blood supply from the
superior anterior auricular artery, a branch of the external carotid
artery. This artery is essential for providing blood to most parts of
the external ear, including the anterior and inferior aspects (Figures
2C, D). Additionally, the superior auricular artery serves as a
connection between the superficial temporal artery and the
middle anterior auricular artery, ensuring a robust collateral
blood flow to the ear in case of reduced blood supply from one
source. The anterior auricular branch of the superficial temporal
artery specifically supplies the anterior portion of the external ear.
Further vascularization comes from the occipital artery, which
contributes blood to the posterior region of the external ear. The
EAM receives blood from both the inferior auricular artery and the
auricular branches of the maxillary and superficial temporal arteries
(Figures 2C, D). Venous drainage closely follows the arterial supply,
with the veins of the external ear running alongside the
corresponding arteries. This arteriovenous network is believed to
play a major role in thermoregulation. Venous flow from the EAM
drains into the pterygoid plexus, external jugular vein, and
maxillary vein.

Lymphatic drainage of the external ear is achieved through four
primary lymphatic vessels (Pan et al., 2011). The anterior region of
the ear is drained by lymphatic branches that converge into a single
vessel, which then flows into the pre-auricular lymph nodes.
Lymphatic vessels from the superior aspect of the helix may
travel along the anterior part of the ear, ultimately reaching the
infra-auricular lymph nodes. Similarly, vessels originating in the
scaphoid fossa, adjacent to the auricular tubercle, form the middle
branches that drain the anterior region of the external ear, also
converging toward the infra-auricular nodes. Finally, the lobular

branches begin as a network of vessels in the auricular lobule. These
vessels merge and drain toward the infra-auricular lymph nodes,
forming an organized system of lymphatic drainage across the
external ear. The unique anatomy and physiology of the external
ear, including its rich vasculature, diverse sensory innervation, and
proximity to the brain, make it an ideal location for recording
physiological, biochemical, and brain activity data, while also
providing an accessible site for stimulating nervous system
activity as discussed below.

Advances in materials engineering for
bioelectronic devices

A major challenge for bioelectronic devices arises from material
incompatibility between hard charge carriers (i.e., metal electrodes)
and the soft, irregular surface of the skin. Conductive hydrogels,
polymers, and biomedical adhesives have been developed to possess
skin-like mechanical and electrical properties thereby mitigating
many issues encountered when interfacing bioelectronic devices
with the body (Iqbal et al., 2021; Keplinger et al., 2013; Lim
et al., 2021; Yuk et al., 2019; Li et al., 2023). Hydrogels and
conductive polymers have proven particularly advantageous in
neuroengineering through the development of soft bioelectronics
for neural sensing and neuromodulation interfaces (Jeong et al.,
2015; Sunwoo et al., 2020; Zhao et al., 2024). Due to their low
melting points and other physicochemical properties, liquid metals
for the engineering of flexible, stretchable, and wearable electronics
have opened new possibilities in bioelectronics (Deng et al., 2024).
Liquid metals printed onto or incorporated into different hydrogel
and polymer substrates have enabled the development of electric
skin, tattooable circuits, neural interfaces, electronic vessels, and soft
thermoelectric heaters (Iqbal et al., 2021; Sreenilayam et al., 2020;
Deng et al., 2024; Park et al., 2019; Zhao et al., 2023a).

Coating, spinning, or impregnating natural and synthetic fibers
with electric inks and conductive polymers has led to the
development of electronically active, smart textiles and fabrics for
wearable bioelectronics (Baeg and Lee, 2020; Ismar et al., 2020).
These innovations in E-textiles have improved the comfort of
devices since conducting metal fibers historically used create
uncomfortable sensations against the skin despite their superior
electrical conductivity. Carbonized nanoparticles and
nanocomposites are presenting interesting approaches to the
development of wearable electronic textiles. For instance,
chemical vapor deposition of graphene monolayers and transfer
from copper substrates has been used to manufacture transparent,
flexible graphene fibers capable of serving as textile electrodes
(Neves et al., 2015; Fang et al., 2020). Thin piezoelectric films
and electroactive papers provide methods of fabricating flexible
and conformable mechanically active sensors and actuators, as
well as means for energy harvesting and power generation (Khan
et al., 2016; Yun et al., 2007; Sezer and Koç, 2021). One interesting
application is their use in producing piezoelectric textiles, which
pose intriguing possibilities for the future of healthcare and power
generation (Atalay et al., 2016; Lund et al., 2018). With the materials,
fabrication, and engineering knowledge gained over the last decade
in wearable microelectronics, nearly any anatomy can be targeted
and affixed with sensors and stimulators that seamlessly integrate
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hardware with the body. The remainder of this perspective will focus
on the human external ear as a target for bioelectronic devices and
applications in healthcare, medicine, and communications.

Methods and effects of auricular
neuromodulation

The activity of the vagus nerve underlies core aspects of our
health including digestion, cardiovascular reflexes, cardiac activity,
immune responses, arousal (sleep/wake, consciousness, and fight/
flight/freeze), attention, cognition, learning, and memory.
Transcutaneous auricular vagus nerve stimulation (taVNS)
involves the non-invasive modulation of auricular branches of
the vagus nerve (ABVN; Arnold’s nerve or Adleman’s nerve)
located under the skin’s surface of the external ear. Using pulsed
electrical currents to modulate ABVN fibers located in different
locations of the external ear, this approach has gained attention for
its safe ability to modulate autonomic nervous system activity,
inflammation, neuroplasticity, attention, stress, learning, mood,
and sleep, by altering activity of brain nuclei and

neurotransmitters known to regulate these processes such as the
locus coeruleus and norepinephrine respectively (Verma et al., 2021;
Kim et al., 2022; Urbin et al., 2021; Liu C.-H. et al., 2020; Wang et al.,
2021; Butt et al., 2020; Sant’Anna et al., 1992; Tyler, 2017; Tan et al.,
2023; Bottari et al., 2024; Srinivasan et al., 2023; Ma et al., 2022;
Phillips et al., 2021).

Many methods and devices employing taVNS to date however
fall short in providing user comfort due to their reliance on
inefficient body-electrode coupling approaches. Discomfort
during taVNS manifests as an electrical biting sensation, in part
due to electromechanical mismatches between the electrode and
skin. High current densities produced by metal electrodes with a
small surface area of skin coupling, and metal or rubber electrodes
clipped onto the ear create mechanical pinching sensations that are
distracting and uncomfortable (Figure 3A). This can be further
aggravated by wet coupling methods using saline sprays or
electrolyte gels where the microfluidic interface (and local
impedance) undergoes frequent fluctuations and distortions
between the electrode and skin. For enhancing cognition,
reducing stress, or promoting sleep it is critical that the user or
patient has a comfortable experience, or the off target, distracting

FIGURE 3
Electrical methods of auricular neuromodulation. (A) Some transcutaneous auricular vagus nerve stimulation (taVNS) methods and devices utilize
metal clip electrodes like the clip (Soterix Medical, Inc.) shown on the left. These clips are used tomechanically couple the skin to a metal electrode using
an electrolyte solution or gel. This approach creates a distracting pinching sensation and can produce electrical biting or prickling sensations. The Xen
(Neuvana, Inc.) aVNS device shown (middle-left) implements a different skin-electrode coupling approach using a saline-sprayed conductive rubber
electrode placed in the left external acoustic meatus. This creates a distracting wet feeling in the ear of users. Due to body motion, fluid flux, absorption,
and dehydration this wet coupling method also leads to electromechanical distortions in the fluid coupling layer between the charge carrier and irregular
surfaces of the skin. Other taVNSmethods like theNemos device (CerbomedGmbH) shownmiddle-right use small, steel ball electrodes that can produce
high current densities resulting in discomfort or electrical biting and stinging sensations. The Tinnoff device (SaluStim Group) shown at right features a
different type of taVNS clip electrode that can cause distracting sensations as discussed. (B) Images of the BRAIN Buds taVNS electrodes (IST, LLC) shown
in the left andmiddle panels were developed as conductive hydrogel earbud electrodes to produce an easy-to-use, comfortable user-experience. Using
conductive hydrogels to couple electrodes to the skin results in more uniform current distributions and enhanced user comfort during transcutaneous
electrical stimulation. As shown on the right, BRAIN Buds were designed as a bilateral taVNS system to be used like earbud headphones.
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and uncomfortable sensations can override intended taVNS
outcomes (Miyatsu et al., 2024; Jigo et al., 2024). In other words,
stimulating the external ear with electrical currents can both activate
and suppress sympathetic activity (stress) depending on many
variables including interface comfort and usability.

To overcome human factors issues associated with taVNS, we
developed methods of using low-impedance, conductive polymers
and soft hydrogel earbud electrodes or electrode interfaces inserted
into the EAM to achieve external ear stimulation (Figure 3B) (Tyler
et al., 2019; Tyler et al., 2022). Earbud electrodes comprised of a
hydrogel inserted in this location target the ABVN, facial nerve, and
auriculotemporal branches of the trigeminal nerve located just
under the skin of the walls of the external acoustic meatus
(Figures 2B, 3B). These external ear stimulation approaches,
using conductive hydrogel earbud electrodes inserted into the
EAM, formed the basis of methods used and devices designed to
enhance foreign language learning (Phillips et al., 2021; Pandža et al.,
2020) and relieve tinnitus symptoms (Figure 4A) (Tyler Richard
et al., 2024). A major reason modern bioelectronic devices use
hydrogel coupling methods is that they reduce electromechanical
mismatches across skin-electrode interface resulting in stable,
uniform current distributions, enhanced user comfort, and
improved electrical efficiency (Keplinger et al., 2013; Lim et al.,
2021; Yuk et al., 2019; Jia and Rolandi, 2020; Liu K. et al., 2020; Yang
and Suo, 2018; Fu et al., 2020).

Using hydrogel earbud electrodes to achieve comfortable,
bimodal, electro-aural stimulation of the external ear during
presentation of notch-filtered audio stimuli was recently shown

capable of reducing symptoms associated with tinnitus
(Figure 4A) (Tyler Richard et al., 2024). Another study recently
compared different methods of VNS on language learning. The
authors report that taVNS failed to produce an effect on language
learning compared to transcutaneous cervical VNS. Interestingly,
Miyatsu et al. (2024) implemented a saline sprayed, conductive
rubber, earbud electrode that can produce distracting and
uncomfortable sensations (Figure 3A). Any distracting electrical
sensations produced by the saline-coupled earbud electrodes used in
their study might explain why this specific approach to taVNS failed
to produce a significant effect on language learning. Further
supporting this interpretation, evidence from earlier studies using
hydrogel-coupled earbud electrodes to deliver stimulation from the
same device indeed led to significant improvements in foreign
language learning (Phillips et al., 2021; Tyler et al., 2019). These
observations indicate that future taVNS efforts should focus on
optimizing electroconductive hydrogels and polymers for
comfortably interfacing with the human ear. These efforts can be
combined with work to advance neurostimulation algorithms and
parameters for continuing to enhance the electrical sensation
experiences, ease of use, user comfort, and efficacy of electrical
taVNS. This approach should prove valuable considering recent
demonstrations that high-frequency (kHz), sub- perceptual taVNS
produces significant changes in the functional connectivity of the
prefrontal cortex, cingulate cortex, and insula (Mao et al., 2022).

Supported by a growing body of literature, taVNS has immense
clinical potential given its ability to provide drug-free, therapeutic
approaches to treating some of our most pressing health concerns.

FIGURE 4
Multimodal methods of auricular neuromodulation. (A) The figure illustrates a recent approach combining bilateral, pulsed electrical stimulation of
the external ear using hydrogel earbud electrodes inserted into the external acoustic meatus (EAM) presented with notch-filtered auditory stimulation for
the treatment of tinnitus (Tyler Richard et al., 2024). (B) The figure illustrates a caloric vestibular stimulation (CVS) system that uses bilateral thermally
conductive probes inserted into the EAM. In this embodiment the device uses either hot or cold water circulated through the ear probes to achieve
CVS through heating or cooling (Wypych et al., 2019). The images in (A) were adapted from reference (Tyler Richard et al., 2024) and the images in (B)
were adapted from reference (Wypych et al., 2019).
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Several clinical studies have shown that taVNS is effective for
treating insomnia and poor sleep, which is a major contributor
to poor health and chronic disease. In a randomized, placebo-
controlled study, Zhang et al. (2023) demonstrated that taVNS
significantly improved insomnia scores on the Pittsburgh Sleep
Quality Index (PSQI) and the Insomnia Severity Index (ISI), as
well as by EEG polysomnography compared to sham controls
(Zhang et al., 2023). The effects produced by taVNS on PSQI
were equivalent to those produced by a cognitive behavior
therapy for insomnia (CBT-I) control. Interestingly however, ISI
scores demonstrated taVNS produces a more durable effect than
CBT-I in follow-up surveys. Another recent randomized, sham-
controlled study showed that 8 weeks of taVNS treatment produced
significant improvements in insomnia by PSQI scores and that these
improvements were maintained for 12 weeks post-treatment
compared to controls (Zhang et al., 2024). Several recent
functional neuroimaging studies show the effects of taVNS on
insomnia are produced by a significant change in the resting
state functional connectivity of thalamus, cingulate gyrus, angular
gyrus, precuneus, and prefrontal cortex (Zhao et al., 2020; He et al.,
2022; Zhao et al., 2023b). With respect to the impacts of poor sleep
on daily brain function, another study showed taVNS significantly
improves working memory in sleep deprived, stressed human
subjects (Zhao R. et al., 2023). Collectively these studies
demonstrate that taVNS embodied as auricular bioelectronic
devices can transform healthcare by improving the sleep quality
in diverse populations suffering from poor sleep quality
and efficiency.

Many studies documenting the impacts of taVNS on mental
health and quality of life outcomes are also emerging in the
literature. Li et al. (2022) demonstrated that 12-week treatment
with taVNS produced significant reductions in major depression
measured by Hamilton Depression Rating Scores (HAM-D) that
were equal to reductions produced by 12-weeks citalopram
treatment in a randomized clinical trial designed to compare
their effects (Li et al., 2022). An open-label study has
demonstrated the proof-of-concept for reducing HAM-D scores
while using taVNS to treat peripartum depression (Deligiannidis
et al., 2022). Similarly used to treat depression related to life events, a
double-blind, randomized, placebo-controlled study recently
demonstrated that taVNS produced significant reductions in
HAM-D scores while treating post-stroke depression (Liu et al.,
2024). Functional neuroimaging studies investigating the effects of
taVNS on depression have shown immediate and robust changes in
the functional connectivity of several brain circuits following
treatment (Sun et al., 2022; Ma et al., 2022; Guo et al., 2024).
Several studies have demonstrated that taVNS also produces
functional behavioral outcomes that may underlie some aspects
of its ability to treat demoralized or depressed moods by restoring
proper regulation of psychophysiological arousal. For example,
Ferstl et al. (2024) recently conducted a randomized, sham-
controlled study showing that taVNS produces significant
improvements in invigoration and wanting in subjects suffering
from major depression (Ferstl et al., 2024). Another recent
randomized, sham-controlled study demonstrated that taVNS
produced significant changes in bottom-up neurophysiological
arousal leading to significantly improved impulse control during
emotional tasks (Camargo et al., 2024). The changes produced by

taVNS in these studies are consistent with those expected, which
result in improved motivation and mood. Decreased motivation and
blunted affect are not only hallmarks of depression, but they are
signs and symptoms of over-worked, exhausted, stressed, and over-
burdened people struggling with daily life. Interestingly, taVNS has
been shown to significantly improve mood recovery following a
period of high effort, physical and cognitive exertion (Ferstl et al.,
2022). Moreover, another recent human study demonstrated that
taVNS significantly improves the invigoration and motivation to
work for rewards (Neuser et al., 2020). These studies collectively
indicate that electrical taVNS may impact society by improving the
motivation, will, and desire of people to work through periods of
high stress, depression, and low morale.

In addition to electrical taVNS, other modes of auricular
neuromodulation can be intergraded into headphone style
devices. Caloric vestibular stimulation (CVS) involves the thermal
modulation of the vestibular system by cooling or heating the ear
canal (Figure 4B). In a manner similar to electrical taVNS, studies
have shown that CVS can modulate brain activity across different
cortical regions (Wypych et al., 2019), regulate mood and affect
(Preuss et al., 2014), reduce pain evoked potentials (Ferrè et al.,
2015), and modulate sensory perception and conscious experience
in healthy and brain-damaged patients (Bottini et al., 1995; Bottini
et al., 2005; Bottini and Gandola, 2015). A recent study using a
wearable, solid-state device embodied as an aluminum, thermal
headphone probe to achieve cyclic CVS was effective at reducing
both motor and non-motor symptoms in Parkinson’s disease
patients following 8 weeks of at home treatment (Wilkinson
et al., 2019). Advances in flexible and wearable thermoelectric
materials may offer new headphone design opportunities for CVS
in therapeutic neuromodulation applications (Wilkinson et al., 2019;
Du et al., 2018). Other materials advances in thermally conductive
polymers and use of liquid metals for interfacing thermoelectric
materials with the skin can improve thermal transfer and insulation
to optimize CVS methods (Deng et al., 2024).

Vibrotactile and haptic stimulation of external ear has also
shown to have interesting biomedical applications including to
mediate human-computer interactions. Targeting vagal nerves
innervating the cymba concha, vibrotactile stimulation of the
external ear has been shown to modulate arousal (Tan et al.,
2024) and reduce cytokine production of TNF, IL-1β and IL-6 to
attenuate systemic inflammation in patients with Rheumatoid
arthritis (Addorisio et al., 2019). It has been argued the tactile
sensitivity of the external ear has been overshadowed by its
auditory functions and that haptic stimulation of the ear
represents an opportunity for information transfer (Lee et al.,
2019). Lee et al. (2019) demonstrated small ear worn haptic
stimulation devices could encode environmentally relevant
spatiotemporal information by stimulating six different locations
on the external ear. In an adaptive embodiment, ear haptics were
demonstrated as a human-computer interface to enhance the
experience of virtual reality applications for deaf and hard-of-
hearing (DHH) individuals (Mirzaei et al., 2020). Haptic
stimulation of the ear can convey sound direction in relation to
DHH users during a VR experience when a system was not
universally designed and intended for hearing enabled persons
using spatially encoded audio to simulate sound distance
(Mirzaei et al., 2020). The integration of piezoelectric thin films,
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piezopolymers, and electroactive papers (Khan et al., 2016) into
flexible and conformable auricular haptic bioelectronic devices
opens fascinating possibilities for medicine and communications.
Not only can these materials provide for the design of active
stimulation or neuromodulation devices to be worn in the ear,
but they can also serve the basis for a wide range of
electrophysiological and biochemical sensors to record data for
diverse applications in health monitoring and cognitive
enhancement.

Design and application of
auricular sensors

In some embodiments, auricular bioelectronic devices have
sensors that can detect a wide range of physiological, biometric,
and chemical signals such as heart rate or brain activity using
electroencephalography (EEG), head orientation, and even
metabolic markers like lactate. The development of auricular
monitoring devices presents challenges like those discussed above
for neuromodulation. Integrating advanced sensor materials into
devices intended to be worn in or on the ear while ensuring comfort,
durability, and accuracy of them in real-world settings can be
difficult. The development and use of hydrogels and dry EEG
electrode materials represent significant advances over traditional
wet electrodes, which require gels and skin preparation. Advances in
these materials, flexible electronics, and additive manufacturing has
improved the efficiency and comfort of auricular bioelectronic
devices making them suitable for continuous everyday use.

Unlike traditional scalp EEG systems, which rely on wet
electrodes and conductive gels to reduce impedance, in-ear
systems offer a more user-friendly and comfortable experience.
For example, in-ear EEG electrodes can be fabricated using

viscoelastic materials (memory foam) and silver-coated fabric
electrodes (Figure 5A). This approach allows EEG sensors to fit
in the EAM while capturing brain signals such as alpha rhythms,
visual evoked potentials (VEPs), steady-state visual evoked
potentials, and auditory steady-state responses (Goverdovsky
et al., 2017). The approach was also useful for conducting
polysomnography or recording brain activity during sleep
(Goverdovsky et al., 2017). A more custom approach involves the
fabrication of individualized EEG earbud electrodes. Joyner et al.
(2024) recently used optical scans of individual patient’s ears to
create custom EEG earbud electrodes made from a soft silicon
material and conductive polymer-coated silver rivets (Figure 5B).
These electrodes were used to monitor epileptic activity in validation
studies, which demonstrated the earbuds can provide patients with a
discrete and comfortable EEG device for continuous monitoring
while offering clinicians reliable and accurate data compared to
intracranial and scalp recording methods (Joyner et al., 2024).
Beyond this type of clinical diagnostic application, there are
opportunities to develop auricular bioelectronics for brain-
computer interfaces (BCI’s) and human performance monitoring.

EEG metrics provide insights into how focused or mentally
engaged a person may be, making them invaluable for applications
in cognitive performance and mental health. By tracking these
metrics, auricular bioelectronics can offer real-time feedback on
mental states, enhancing both medical and consumer applications.
To reach the scalable potential of these approaches however, highly
personalized auricular bioelectronics as described above will need to
be developed. Another innovative approach towards developing
individualized, in-ear bioelectronics was recently demonstrated
using spiral shaped, electrothermal actuating electrodes (SpiralE)
that conform to the EAM structure of users (Figure 6A) (Wang et al.,
2023). Wang et al. (2023) engineered a flexible electrode using
double-layer shape memory polymers embedded in an

FIGURE 5
Electrophysiological sensing methods for auricular bioelectronics. (A) The images depict an in-ear EEG electrode constructed using viscoelastic
foam and Ag impregnated fabric used to record brain activity at rest, during evoked potentials, and during sleep (Goverdovsky et al., 2017). (B) Custom
bilateral, auricular EEG electrodesmade from a soft silicone, molded from high-resolution optical scans of the external ears of patients. The auricular EEG
systemwas used tomonitor epileptic seizure activity demonstrating good performance compared to scalp and intracranial EEG (Joyner et al., 2024).
The images in (A) were adopted from reference (Goverdovsky et al., 2017) and the images in (B) were adopted from reference (Joyner et al., 2024).
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electrothermal actuation layer with an EEG detection top layer
comprised of Au wires insulated in polyimide (Wang et al.,
2023). This design enabled in-ear EEG electrodes to comfortably
conform to the shape of the ear of individual users (Figure 6A), while
being worn and used for high fidelity recordings in visual and
auditory brain-computer interfaces (BCI’s) (Wang et al., 2023).
These studies have shown that the quality of the signal for EEG
obtained through auricular approaches is sufficient to monitor many
brain states in a manner equivalent to conventional scalp EEG. In
addition, by monitoring electrical impedance and heart rate and
respiration from one integrated device can improve the reliability of
recordings within and across recording sessions. In addition to EEG
monitoring, these devices have incorporated various other sensors,
including accelerometers for tracking head movements and
orientation, as well as biochemical sensors for detecting
metabolic markers like lactate during physical activity.

Optical sensors can also be integrated into headphones to record
heart rate, SpO2 (blood oxygen saturation), VO2max and other
physiological metrics. These optical sensors use
photoplethysmography (PPG) technology to measure blood flow
non-invasively, allowing for continuous monitoring of
cardiovascular health in auricular bioelectronic devices (Patterson

et al., 2009; Leboeuf et al., 2014; Passler et al., 2019). Piezoelectric
and MEMS-based sensors capable of detecting heart rate through
pressure fluctuations in the ear have also been shown useful for
cardiac monitoring (Park et al., 2015; Cui et al., 2022). Advances in
thermoforming techniques allow for the creation of custom and
generic earpieces that can house multiple sensors while maintaining
comfort and stability. Flexible and stretchable materials are used to
integrate multiple sensors into a compact design, suitable for long-
term wear. Xu et al. (2023) recently developed integrated
electrochemical, chronoamperometry sensors with flexible Ag
electrodes, which were 3D-printed, coated with a layer of PVA
hydrogel, bonded to a flexible PCB, and mounted into an earphone
assembly to simultaneously record lactate from sweat and EEG from
the ear during exercise (Figure 6B) (Xu et al., 2023). This multimodal
sensing approach including biochemical measures from sweat may
be useful in monitoring other variables beyond lactate during EEG,
HR, and head position. For instance, obtaining measures of stress
hormones or drug metabolites continuously to gain insights related
to human performance using auricular bioelectronic devices may be
particularly useful.

Another exciting area of development in auricular bioelectronics
is the integration of spatial audio with sensor data, such as EEG and

FIGURE 6
Flexible auricular bioelectronics for electrophysiological and biochemical sensing. (A) The images on the left show a spiralized, electrothermally
conforming EEG electrode (SpiralE) designed to fit in the external auditory meatus (EAM) of users (Wang et al., 2023). The SpiralE conforms to the shape of
individual user’s EAM for a comfortable and electrically efficient fit. The images in the middle show the SpiralE in a baseline state (top) and adapted state
(bottom). The images on the right show SpiralE inserted into the EAM of a user in its conformed state. The SpiralE auricular EEG electrode was
demonstrated to be effective for recording brain activity patterns useful in auditory and visual brain-computer interface embodiments (Wang et al., 2023).
(B) The images on the left depict an approach to recording brain activity using EEG sensors and recording biochemical signals from sweat glands in the ear
using flexible, multimodal sensing, auricular electrodes (Xu et al., 2023). The image in themiddle shows a photograph of the flexible, multi-electrode array
with EEG sensors and electrochemical sensors designed to detect lactate. The photographs on the right show themulti-electrode arraymounted onto an
earbud chassis to create an auricular sensor capable of sensing brain activity and lactate. This approach was demonstrated useful for recording brain
activity and lactate in human subjects during exercise (Xu et al., 2023). The images in (A)were adopted from reference (Wang et al., 2023) and the images
in (B) were adopted from reference (Xu et al., 2023).
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accelerometry. Spatial audio enhances the auditory experience by
simulating how sound moves in the user’s environment. With the
help of accelerometers and gyroscopes, which track head
movements in real-time, spatial audio can adjust sound
orientation based on the user’s head position, maintaining a
consistent and immersive auditory experience. This data,
combined with EEG monitoring of cognitive load, attention, and
engagement can optimize the auditory experience for various
activities, such as work, studying, relaxation, focus, or gaming.
Wireless in-ear EEG systems, with multi-channel, multimodal
recording capabilities will continue to expand the potential for
BCIs and neurotechnology. As the capabilities of wearable
auricular devices continue to evolve, the integration of both
stimulation and sensing functions within a closed-loop system
opens new possibilities for real-time neuromodulation,
personalized health interventions, and advanced brain-computer
interfaces.

Closed-loop auricular bioelectronics

Closed-loop, auricular bioelectronics possess transformative
potential for neuromodulation by integrating real-time sensing
and stimulation capabilities. One prominent application would be
for the treatment of atrial fibrillation or arrhythmias, where in-ear
sensors can monitor for abnormal heart rhythms while taVNS
provides corrective feedback. The sensing of arrhythmic events
using PPG or piezoelectric-based heart rate sensors embedded in
the ear canal could trigger taVNS to regulate parasympathetic
activity and restore normal cardiac rhythms (Kharbanda et al.,
2022; Murray et al., 2016; Stavrakis et al., 2020). Similarly,
stimulation of vagal or trigeminal fibers may hold potential for
treating some forms of sleep apnea and sleep-disordered breathing
(Ratneswaran et al., 2023; Chowdhury et al., 2017). In this
embodiment, auricular bioelectronics can be engineered to sense
abnormal breathing patterns to trigger responsive stimulation of
trigeminal and ABVN fibers in the EAM to reduce airway resistance
and restore proper respiration during sleep.

There are other promising avenues for closed-loop auricular
bioelectronics, such as for the treatment of neuromuscular disorders
like Restless Leg Syndrome (RLS) which benefits from taVNS
treatments (Hartley et al., 2023a; Hartley et al., 2023b; Merkl
et al., 2007). Such an embodiment may include recordings of
muscle activity using wireless electromyography (EMG) sensors
placed on the legs to detect RLS episodes for triggering taVNS to
mitigate symptoms and discomfort. In a similar fashion, EMG
sensors placed in auricular bioelectronic devices could detect
abnormal activity associated with nocturnal bruxism and
responsively trigger taVNS stimulation protocols, which can
reduce bruxism severity (Polini and Budai, 2022). Methods for
cognitive enhancement and attention regulation with closed-loop
auricular bioelectronics are also ripe for development. In-ear EEG
sensors capable of monitoring neural activity related to attention
and cognitive engagement can be paired with taVNS to enhance
vigilance or sustained attention (Tyler, 2017). Cognitive
enhancement with closed-loop taVNS has potential applications
for treating attention, memory, and learning disorders, as well as for
enhancing human performance in high-stakes environments, such

as in military, first responder, or aerospace operations, where
maintaining optimal cognitive function and decision-making
processes under stress is critical (McKinley et al., 2011; Musson
et al., 2004; Dhami et al., 2015; Picano et al., 2006).

In human performance enhancement or health applications,
closed-loop systems can help regulate stress responses by
continuously monitoring physiological and biochemical stress
markers. Integrated electrochemical or optical sensors in
auricular devices can detect cortisol or other stress hormones,
while heart rate variability sensors can report sympathetic tone.
When elevated stress is detected, auricular bioelectronic devices can
deliver taVNS protocols to reduce sympathetic activity and promote
parasympathetic activation thereby dampening stress and
improving overall wellbeing. Additionally, the integration of these
sensors and stimulationmethods with BCIs creates opportunities for
enhanced human-computer interactions like accelerating human
learning. As auricular bioelectronics advance, they will enable
seamless, scalable devices that integrate into our daily lives just
like personal headphones do today. The next generation of
headphones embodied as auricular bioelectronics will provide for
the global delivery of several new medical therapies, human-
computer interfaces, and communication technologies.

Outlook for auricular bioelectronics

Auricular bioelectronics are poised to revolutionize healthcare
and human performance by providing a versatile, wearable, non-
invasive platform for real-time monitoring and neuromodulation.
These devices, integrating advanced sensors and stimulation
capabilities, hold potential for treating a wide range of
conditions, from arrhythmias and sleep apnea to inflammation
and cognitive disorders. As material science and flexible
electronics continue to advance, auricular bioelectronics will
become increasingly dynamic, comfortable, effective, and
personalized. With scalable designs akin to personal headphones,
these devices are likely to play a significant role in BCIs, offering yet
unrealized opportunities for improving health, cognition, and
human-machine interactions.

One of the most promising future applications of auricular
bioelectronics is to enable the scalable delivery of on-demand,
digital immunotherapies to treat acute and chronic inflammation.
It is well established that chronic inflammation is a number one
cause of disease and death, as well as a major driver of health
disparity. By modulating the cholinergic anti-inflammatory
pathway, it has been shown that taVNS can reduce acute and
chronic inflammation in several conditions (Wu et al., 2023;
Salama et al., 2020; Liu et al., 2020a; van Beekum et al., 2022;
Kaniusas et al., 2020; Mastitskaya et al., 2021). Embodied as a set of
headphones taVNS may provide the ability to replace many over the
counter and prescription drugs like non-steroidal anti-inflammatory
drugs, steroidal compounds, antihistamines, and others used one to
treat inflammation. The integration of these approaches with closed-
loop monitoring of cytokines and other inflammatory biomarkers
using wearable bioelectronic methods will enable responsive taVNS
for real-time, personalized, digital immunotherapeutic devices,
which may be capable of disrupting the medical device,
pharmaceutical, and consumer health industries (Figure 7).
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Conclusion

While auricular bioelectronics hold great promise, several
pitfalls and limitations must be addressed for these technologies
to achieve their full potential. First, there are challenges associated
with overcoming the technological barriers to developing reliable,
long-lasting, and comfortable wearable devices. Ensuring the
accuracy, reliability, durability of sensors, particularly in real-
world environments with variable conditions, is essential for
making closed-loop systems robust and effective. Optimizing
energy efficiency will require attention since microelectronics
require advanced power management systems to enable
continuous operation. Several barriers to adoption might be
related to the cost and complexity of engineering devices, which
may limit access to those who can afford them unless manufacturing
and production costs can be minimized. The lack of public
understanding of potential risks, benefits, and functions of
auricular bioelectronics could cause hesitancy among consumers,
patients, and healthcare providers.

From a societal and ethical perspective, data privacy and
security will always pose concerns and challenges. Auricular
bioelectronics, which continuously collect sensitive biometric
and neural data, could pose privacy risks if not properly
protected and safeguarded. Another ethical consideration as
alluded above is the availability and accessibility of this
technology, which could exacerbate existing healthcare
disparities if not distributed equitably. Despite these challenges,
the next era of technological developments, including continued
advances in flexible electronics, packaging, improved sensor
algorithms, and improved energy harvesting methods, will drive
innovation forward in the development of auricular bioelectronics.
It will be critical to form collaborations between medical, research,
semiconductor, and regulatory organizations to establish
standards and guidelines to ensure auricular bioelectronics are
safe, effective, and accessible to a broad range of users. These
collaborations will ultimately pave the way for the integration of
auricular bioelectronics into everyday healthcare and cognitive
performance enhancement.

FIGURE 7
Auricular and wearable bioelectronics for personalized, digital immunotherapies. The figure shows a closed-loop, reactive transcutaneous auricular
vagus nerve stimulation (taVNS) device worn as headphones. The taVNS device is shown integrated into a system comprised of: (1) a wearable sensor
containing microneedles for monitoring cytokines from the interstitial fluid (ISF) using electrochemical and photoelectric methods; and (2) a networked
layer for computation of a predictive Inflammation Index or score from periodic cytokine sampling to reflect an individual’s state of inflammation.
Decisions made in the network layer will serve to (3) trigger taVNS protocols to (4) reduce inflammation via the cholinergic anti-inflammatory pathway
regulated by the vagus nerve. This is an exemplar of future auricular bioelectronic devices that can be used to treat acute and chronic inflammation
causing many health problems and concerns.
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