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Wearable technologies for hand gesture classification are becoming increasingly
prominent due to the growing need formore natural, human-centered control of
complex devices. This need is particularly evident in emerging fields such as
virtual reality and bionic prostheses, which require precise control with minimal
delay. One method used for hand gesture recognition is force myography (FMG),
which utilizes non-invasive pressure sensors to measure radial muscle forces on
the skin’s surface of the forearmduring handmovements. These sensors, typically
force-sensitive resistors (FSRs), require additional circuitry to generate analog
output signals, which are then classified using machine learning to derive
corresponding control signals for the device. The performance of hand
gesture classification can be influenced by the characteristics of this output
signal, whichmay vary depending on the circuitry used. Our study examined three
commonly used circuits in FMG systems: the voltage divider (VD), unity gain
amplifier (UGA), and transimpedance amplifier (TIA). We first conducted benchtop
testing of FSRs to characterize the impact of this circuitry on linearity, deadband,
hysteresis, and drift, all metrics with the potential to influence an FMG system’s
performance. To evaluate the circuit’s performance in hand gesture classification,
we constructed an FMG band with 8 FSRs, using an adjustable Velcro strap and
interchangeable circuitry. Wearing the FMG band, participants (N = 15) were
instructed to perform 10 hand gestures commonly used in daily living. Our
findings indicated that the UGA circuit outperformed others in minimizing
hysteresis, drift and deadband with comparable results to the VD, while the
TIA circuit excelled in ensuring linearity. Further, contemporary machine learning
algorithms used to detect hand gestures were unaffected by the circuitry
employed. These results suggest that applications of FMG requiring precise
sensing of force values would likely benefit from use of the UGA. Alternatively,
if hand gesture state classification is the only use case, developers can take
advantage of benefits offered from using less complex circuitry such as the VD.
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1 Introduction

There is a variety of measurable physiological activity at all levels
of the central and peripheral nervous systems, as well as in the
muscles of the extremities, which can be used to infer motor
intentions and derive control signals for external devices.
Recording of muscle and physiological activity to derive control
signals has become a prominent practice in part due to the growing
market of virtual and augmented reality (VR and AR, respectively),
bionic prostheses, and robotic assistive devices, among many other
technologies. A common method of deriving control signals for
external and assistive devices is the measurement of hand
movements and gestures. Our hands are critical to how we
interact with our environment and communicate with others,
leading to growing interest in non-invasive techniques to reliably
decode hand gestures for various consumer, rehabilitation, and
assistive device applications. A prominent approach to achieving
this task is to capture and analyze muscle activity in the muscles
responsible for actuating hand and wrist movements (muscle in the
forearm and sometimes intrinsic hand muscles) (Tchantchane et al.,
2023). Myoelectric (Scheme and Englehart, 2011), optical (Fujwara
et al., 2019), and even acoustic (Nazari and Zheng, 2023) sensors can
detect muscle activity; each coming with its own benefits and
disadvantages.

An emerging and relatively low-cost, experimental sensing
modality used for hand gesture recognition is force myography
(FMG) (Belyea et al., 2019). These FMG systems measure muscle
activity by employing an array of pressure sensors placed along the
circumference of the forearm (Radmand et al., 2016). Here, muscle
activation during hand and wrist movements results in changes in
muscle configuration and volume that collectively present as local
changes in the outward radial forces measured by each forces sensor.
This force information can in turn be processed and used to derive
device control signal.

There are many types of pressure sensors that can effectively
serve force myography systems (Xiao and Menon, 2019), however,
among the most common is the force sensitive resistor (FSR). FSRs
are passive, two terminal devices that decrease in resistance when a
force is applied. This inverse relationship of force to resistance is
derived from the FSRs polymer thin film composition (Saadeh et al.,
2017). Two interwoven patterns of metal lie on a thermoplastic base
just above semiconductive ink-coated layer. Solder tabs connect to
the patterned metal, and as the layers of ink and metal are pressed
together under the application of force, their resistance decreases.
These sensors offer the benefits of affordability, commercial
availability, and simplicity of implementation (Lebosse et al.,
2011; Young et al., 2023). However, inherent variances exist in
the manufacturing process of semiconductive ink, resulting in a
unique force-resistance response from each FSR (FSRTEK, 2024).
This leads to no two FSRs having the same force-resistance curve,
even for units of the same model, which can be mitigated during
integration using signal acquisition and conditioning circuitry
(Velásquez and Flórez, 2010; Ohmite, 2024).

While conditioning circuitry varies per use case it has the
potential to significantly impact an FSR’s output signal. Across
literature, there are three prominent circuits most typically
employed when FSRs are being used in FMG systems: the voltage
divider (VD) (Sadeghi et al., 2018; Sadarangani et al., 2017; Shaikh

et al., 2015; Barnea et al., 2012; Cho et al., 2016; Rehman et al., 2023),
the unity gain amplifier (UGA) (Velásquez and Flórez, 2010;
Godiyal et al., 2018), and the transimpedance amplifier (TIA)
(Giovanelli and Farella, 2016; Prakash et al., 2020; Esposito et al.,
2018; Prakash et al., 2021). Despite the variety of circuitry employed,
little work has been performed to characterize the influence of
circuitry choices in this unique context of hand gesture
classification. Thus, our objective was to quantitively assess the
effects of circuit choices on the performance of FSR-based FMG
systems, specifically in the context of signal quality during data
acquisition and hand gesture classification performance.

2 Materials and methods

We performed two separate experiments to determine the
benefits and limitations of three circuit types (VD, UGA, and
TIA) as relevant to hand gesture classification applications. In
the first experiment, FSR signal quality metrics were quantified
and compared across circuit types. The metrics evaluated included
signal drift, hysteresis, deadband, and linearity. In the second
experiment, we conducted human testing with a custom multi-
sensor FMG band worn on participants’ forearms to examine the
performance of the circuits when the measured force data were used
with machine learning techniques to classify hand gestures.

2.1 Circuit design

We examined the performance of the VD (Barnea et al., 2012;
Shaikh et al., 2015; Cho et al., 2016; Sadarangani et al., 2017; Sadeghi
et al., 2018; Rehman et al., 2023), UGA (Godiyal et al., 2018;
Velásquez and Flórez, 2010) and TIA (Giovanelli and Farella,
2016; Prakash et al., 2020; Esposito et al., 2018; Prakash, Sharma,
and Sharma, 2021); acquisition circuits as shown in Figure 1. This
figure represents a single channel of each circuit type, highlighting
the signal acquisition components, summarizing the circuits used in
the previously stated works.

Of the three circuits, the VD was the least complex from a circuit
design perspective as it employs only two components. In this
configuration, one lead of the FSR is tied to positive voltage and
the other to a load resistor tied to ground. Per the FSR manufacturer
suggestion, the value chosen for this resistor was 7.5kOhm (±1%) as
it was suggested to provide the most linear voltage response in the
force range most applicable to our work (0–4 N) (Interlink, 2024).

The UGA builds upon the VD such that it incorporates a voltage
follower at the output of the VD. The voltage follower is a subcircuit
containing an operational amplifier (Op-Amp) whose negative
input is tied to its output. This differs from the typical use of an
Op-Amp as it maintains a gain of 1, offering the unique benefit of
maintaining a signal while isolating the low-impedance output of the
voltage follower from the high-impedance output of the VD. A high-
impedance input to any analog to digital converter (ADC) may
cause imprecise measurements, thus voltage followers are used to
transfer high-impedance signals to low-impedance inputs.

The most complex of the three circuits was the TIA. In this
configuration, the FSR was fixed at -5 V at one lead and the other
feeds a signal to the positive input of an Op-Amp. Due to the
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negative voltage input fed into the FSR, the output signal of the
circuit varied from 0 to -5 V. A load resistor of 7.5kOhm (±1%) tied
the negative terminal of the Op-Amp to the output, as suggested by
the manufacturer for the most linear response within our force
range. The TIA is unique in that it offers a low impedance output
regardless of set gain, making it ideal for FSR applications involving
amplification.

2.2 Experiment 1 - signal metric analysis

We assessed four signal quality performance metrics across the
three circuit types. These included: 1) Drift, which was evaluated as
the amount that a sensor’s voltage output varies over time when
statically loaded; 2) Hysteresis, as calculated as the difference in the
voltage output when a sensor was being load compared to unloaded;
3) Deadband, which quantified the required input force needed to be
applied to the FSR prior to registering a voltage change, expressed as
a percentage of its force measurement range; 4) Linearity, which was
defined as the system’s ability to respond (voltage output) linearly to
an input force, which affects the proportionality of the input forces
from the muscle to voltage output measured. These metrics impact
real-world performance of an FMG system. Drift affects FMG
systems that are intended to be used over sustained periods of
time. A higher drift may result in deviations of voltage over time,
potentially impacting hand gesture classification accuracy during
sustained grasps. It is ideal for FMG systems to minimize hysteresis
as they would respond similarly when in both loading and unloading
phases (for example, during the hand closing and opening). This
property may affect the system’s ability to identify grasp states
depending on if users are contracting or relaxing their forearm
muscles (ex. partially closing or opening the hand to arrive at a
position). An FMG system with smaller deadband would be more
responsive during low force phases of hand movements, enabling
the FSRs to more rapidly detect changes, for example, this would
allow a more rapid detection of the onset of hand movements. A
more linear system would result in a predictable sensor output, as
voltage output would more linearly correspond to an applied force.

2.2.1 Touch tactor
To collect data for the assessment of our signal quality metrics,

we employed a custom setup that allowed for controlled application
of force to a Force Sensitive Resistor (FSR) using a tissue analog. This

setup was designed to facilitate easy connection of the FSR to each of
the three tested circuit types, and a load cell was employed to
compare the voltage output from the FSR and circuitry against a
known reference force.

Our force applicator device, or Force Tactor, was attached to a
custom MakerBeam aluminum extrusion frame as shown in
Figure 2. The Force Tactor received control input signals from a
Python script that commanded the rotation of a pinion gear on a
servomotor (DS3235, DS servo), causing linear movement of an FSR
mounted to a toothed rack. The FSR was connected to one of the
three circuit types. Motors were controlled via an Arduino Uno R3,
and the current draw was recorded using an ASC723 current sensor.
A Polydimethylsiloxane (PDMS) dome was adhered to the FSR’s
surface to distribute pressure across the entire sensing surface
(Jensen et al., 1991; Velásquez and Flórez, 2010). Therefore, with
rotation of the servo and downward movement of the rack, the FSR
was pushed into a commercially purchased Syndaver skin, muscle,
and fat tissue analog (Figure 2, below) (Kho et al., 2023). A 3D
printed platform supported the tissue analog and sat above a
calibrated parallel beam loadcell (TAL220B 5 kg, HT Sensor
Technology Co.) wired to an Op-Amp (INA126, Texas
Instruments) that acted as a force reference. Signal output from
the FSR and reference circuitry was recorded by a National
Instrument USB 6210 Data Acquisition System (NI DAQ)
connected to and recorded by a lab PC running a custom script
in MATLAB software.

2.2.2 Data collection and analysis
Data collection and subsequent analysis of drift, hysteresis,

deadband and linearity were collected in accordance with ANSI/
ISA-51.1-1979 (R1993) standards (ANSI/ISA Process
Instrumentation Terminology, 1979). We first defined the testing
voltage range for each circuit. This was accomplished by identifying
the maximum voltage achieved by each circuit during the
participant trials described below to define a testing range
between zero and the identified maximum, or minimum values
(2.539, 2.465, and −2.495 V for the VD, UGA, and TIA circuits,
respectively). Each circuit was individually connected to the same
FSR and experimental setup, then loaded and unloaded through
their respective voltage range as determined by the active test. Sensor
metric tests were conducted in accordance with the ANSI/ISA
protocol similar to Schofield et al. (Schofield et al., 2016), with
each being performed in a randomized order and repeated 5 times.

FIGURE 1
From left to right: Voltage Divider (VD), Unity Gain Amplifier (UGA), Transimpedance Amplifier (TIA). This is a representative diagram of the circuitry
used for a single channel. Note, in FMG systems with multiple sensing elements, this circuitry would be repeated for each element along with
accompanying system specific componentry to accommodate the additional channels.

Frontiers in Electronics frontiersin.org03

Sagastume et al. 10.3389/felec.2024.1503424

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2024.1503424


Sensor drift data was collected by loading the FSR to its
maximum voltage and then holding this load for 45 s. Drift was
then calculated by finding the difference between the starting
voltage and the voltage after the sustained loading period and
reported as a percentage of the input. Hysteresis testing
involved loading the FSR to its maximum voltage and then
unloading it. Hysteresis was calculated by finding the maximum
difference between a loading and unloading state within the
tested voltage range of each circuit as described above. This
value was then reported as a percent of the tested range.
Deadband was tested by loading the FSR at a slow rate
(servo output of 5° per second) into the synthetic skin until a
non-zero voltage reading was first registered. The deadband was
then calculated by finding the minimum voltage registered due
to any input, then reporting the range of 0 to the found value as
a percentage of input span. Linearity testing involved the
downward movement of the FSR into synthetic skin at an
increasing pressure until the maximum voltage was met.
Linearity was calculated by applying a linear line of best fit
to the measured voltage versus applied force, then generating a
coefficient of determination as the desired linearity metric. All
results were averaged among all participants of the same circuit
type and reported in Table 1. Figure 3 shows the experimental
setup of this testing.

2.3 Experiment 2 - hand gesture
classification

In this second experiment, we sought to determine each circuit’s
influence on hand gesture classification accuracies. Here participant
testing was performed with the same three VD, UGA, and TIA
circuits and an FMG armband that incorporated 8 FSRs. Offline
pattern classification and cross validation analysis were then
employed to examine the impacts of circuitry on hand gesture
classification performance.

2.3.1 FMG band design
We used eight of Interlink Electronics’ FSR400 short tail sensors

to measure radial muscle forces (Sadeghi et al., 2018; Cho et al., 2016;
Li et al., 2012; Prakash et al., 2021; Sadarangani et al., 2017). These
FSRs were placed into 3D-printed sensor cradles which offered
support to the sensors, ensuring muscle forces were translated
directly to the sensing surface. A PDMS plastic dome was
adhered to the surface of each FSR to evenly distribute pressure
(Jensen et al., 1991; Velásquez and Flórez, 2010). Adhesive Velcro-
backings were attached to the back of each cradle such that they
could be fit to a Velcro strap. Wiring management was addressed
using a 10 pin DuPont connector located in the middle of the band’s
length, enabling modular use with different circuits during testing by

FIGURE 2
The designed Force Tactor. A cubic MakerBeam assembly housed a 35 kg servo mounted to a rack and pinion gear. The gear assembly translated
rotational servo movement to linear downward movement of a FSR400 into a Syndaver Abdominal Tissue Plate 10 cm × 5 cm. A 3D printed stabilizer
supported the skin and sat atop a loadcell used for applied force reference. Loadcell and FSR voltages were measured through supplemental circuitry
not shown.

TABLE 1 Drift, Hysteresis, Deadband and Linearity metrics for all three circuit types.

Circuit type Metric

Drift (%) Hysteresis (%) Deadband (%) Linearity (%)

M SD M SD M SD R2 SD

VD 1.85 0.32 16.64 1.36 1.34 0.74 0.93 0.002

UGA 0.70 0.26 11.22 1.03 0.25 0.16 0.92 0.003

TIA 5.06 0.72 54.44 34.59 0.64 0.42 0.98 0.001
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simply unplugging and plugging in each circuit via this connector.
The band is shown in Figure 4.

2.3.2 Circuit design
Interchangeability of the three circuits was necessary to allow for

consistency during testing in which the FMG band could be
continuously worn by participants and the circuits tested by
simply unplugging and plugging in each. To achieve this, each
circuit was built on separate protoboards with isolated power and
ground sources and plugged into the FMG band using a detachable
10 pin DuPont connector. The VD circuit was designed as depicted
in Figure 1 however, given the eight FSRs employed in the arm band,
eight 7.5 kOhm (±1%) resistors were used with voltage inputs of
+5 V and GND. The UGA circuit implemented 2, 4-channel Op-
Amps following the output of the 8 FSRs from the VD. We chose to
use the LM324 Op-Amp (Texas Instruments) for its fast response
rate and frequent use in literature (Interlink, 2024; Torres et al.,
2015; Chen et al., 2023). The LM324N through-hole model required
a bipolar voltage range for proper functionality, thus ±5 V was
chosen. The same model Op-Amp was also used for the TIA circuit.
Here, FSR input connections fed directly to the input of the Op-Amp

and reference resistors jumped the connection of the input and
output of the Op-Amp.

2.3.3 Experimental procedure
Fifteen able-bodied participants between of 20–32 years of age

were recruited (mean age 23 ± 3.2 years). Six participants identified
as female and nine identifying as male, with 14 participants being
right hand dominant and one ambidextrous as identified using an
Edinburgh handedness survey (Charman et al., 2013). The testing
protocol was approved by the UC Davis Institutional Review Board
and participants provided written informed consent.

Pre-testing procedures began with the handedness survey and
forearm measurements (circumference, length). The investigator
then fit the FMG band around the muscle bulk of the participant’s
dominant forearm (determined by the survey), approximately 2/
3 the distance from the distal end of the forearm (Figure 5) (Sakr and
Menon, 2017; Battraw et al., 2024). Next, the FMG band was
connected to one of the three circuits, in a randomized order.
Power was supplied to the selected circuit via a TekPower TP-
3005D-3 DC power supply, connected to a 120 V 60 Hz medical
grade isolation transformer (Tripp Lite IS1800HG). The output of

FIGURE 3
Experimental setup of Force Tactor system. The FSR was moved into the synthetic skin at a variable rate until a goal voltage, determined by the
selected test (drift, hysteresis, deadband, linearity), wasmet. FSR voltage drop wasmeasured by the selected circuit (VD, UGA, TIA) and fed into an NI DAQ
for data acquisition. A lab computer recorded raw voltages for offline analysis.

FIGURE 4
The designed FMG band. Eight FSR400 sensors with PDMS caps rested within ABS plastic cradles connected to a Velcro strap. Velcro was used such
that the device was adjustable and could be tightened to the participant’s forearm with wiring run outside of the band.
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the selected circuit, ground, and signal pins were connected to the
analog input channels of an NI DAQ (described above). The NI
DAQ was connected to a lab computer running a custom MATLAB
script that recorded all 8 FSR raw voltages and accompanying time
stamp. Once the FMG band was fit and wired, participants were
instructed to sit in a relaxed position with their arm at a 90-degree
angle. A preliminary test was run where the participant would
perform a maximum voluntary contraction such that we could
verify sensor activation to ensure FMG band fit and acquisition
of data. After verification, testing began.

2.3.4 Testing
Participants were tasked with making one of ten hand gestures:

Cylindrical Rotation (CR), Cylindrical Wrap (CW), Index Flexion
(IF), Index Point (IP), Key Pinch (KP), Pulp Pinch (PP), Tripod
Pinch (TP), Wrist Extension (WE), Wrist Flexion (WF), and Wrist
Rotation (WR) (illustrated in Figure 6) (Battraw et al., 2024). These
gestures were chosen as they account for a wide range of hand
movements which included individual digit flexion, pronation and
supination, along with those commonly used in activities of daily
living (Feix et al., 2016). Our custom MATLAB script was then run,

FIGURE 5
The experimental setup. The FMG band was fit 2/3 the length of a participant’s forearm from the wrist and the participant was instructed to perform
hand gestures timed to an auditory tone. Upon muscle contraction, radial muscle forces at the surface of the skin caused changes in FSR resistances,
which were measured and recorded via the band’s wire outputs by benchtop equipment.

FIGURE 6
The ten hand gestures that were performed in the experiment: Cylindrical Rotation (CR), Cylindrical Wrap (CW), Index Flexion (IF), Index Point (IP),
Key Pinch (KP), Pulp Pinch (PP), Tripod Pinch (TP), Wrist Extension (WE), Wrist Flexion (WF), and Wrist Rotation (WR).
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which visually prompted participants to perform a hand movement
followed by an auditory tone for 3 s, signaling the participant to
perform the gesture, followed by silence for 3 s, signaling the
participant to rest. This was repeated two more times for a given
hand gesture and repeated for all 10 hand gestures resulting in three
contractions and relaxations per hand gesture and 30 contractions
per circuit type. Hand gesture order was randomized and after all
gestures were completed, the active circuit was disconnected and the
next circuit would connect in its place, repeating until all circuits
were tested.

2.3.5 Data analysis
Hand gesture classification accuracy was the primary metric

used to evaluate circuit performance. This measure was defined as
our system’s ability to correctly predict an executed hand gesture
from the patterns in the muscle-force data. To achieve this, we
performed an offline analysis using linear discriminant analysis
(LDA) paired with leave-one-out cross validation (LOOCV). As
is consistent with prior literature the mean absolute value (MAV) of
the voltages produced by the 8 FSRs served as the primary feature
used to compute classification accuracies (Ahmadizadeh et al., 2019;
Scheme and Englehart, 2011). As defined by literature, theMAVwas
calculated by averaging the absolute value of the signal produced by
the FSR. This feature was used as it makes changes in voltage during
contraction more discernible from periods of rest (Abbaspour et al.,
2020). For our pattern classification model, we segmented the FSR
voltages using 200 ms windows with a 50 ms time increment (Smith
et al., 2010). The MAV of these windows were then calculated and
used as our feature vectors to train and test the LDA classifier using
LOOCV through a custom Python script, utilizing the LDA function
from the sklearn package. Each feature vector contained a label
attached to it that represent a specific hand gesture. These labels
were stored in an array and used as the model’s ground truth. We
then used LOOCV which removed a single feature vector from the
data set and trained the classifier on the remaining features.
Afterwards, the classifier made a prediction on the “left out”
feature. This process was repeated for all feature vectors and
afterwards, the predictions from the classifier were compared to

the ground truth values to create a classification accuracy, the
percent at which the classifier correctly predicted the feature
vectors. Hand gesture classification accuracies were plotted in
confusion matrices (see results, Figure 7), which display the
percentage of accurate predictions and the likelihood of each
hand gesture being misclassified as other gesture types. Figure 8
details the overall process that data flows from initial windowing to
confusion matrix generation. A Python script was written to average
classification accuracies across participants for each circuit.
Additionally, we analyzed these classification data in feature
space using the following measures:

- Interclass Nearest Neighbors (IDNN) which quantified the
distance between hand gesture clusters within feature space
(Kristoffersen et al., 2019), and thus served as a metric to
describe the distinguishability between hand gestures.

- Within-Class Distance (WD) compared the distance in non-
dimensional space between repetitions of the same gesture
(Kristoffersen et al., 2019), offering a quantitative measure of
the consistency of each hand gesture.

- Mean Semi-Principal Axis (MSA) measured the overall
variance of grasp clusters determined through means of
ellipsoid radius estimations (Bunderson and Todd, 2012),
providing a measure of the variability in the semi-principal
axis, and thus quantitative insights into the distinct clustering
of gestures in feature space.

The resultant values were averaged among all participants,
assigning an average to each circuit type for all three metrics.
Data were tested for normality and sphericity using Shapiro-Wilk
and Mauchly tests, respectively, were found to be non-normal and
spherical. Non-parametric Friedman and Wilcoxon signed-rank
tests were conducted to check for statistical differences between
resultant circuit type data (Kim, 2014). We also calculated the
variance of the classification accuracy of each hand gesture across
participants. These variances were found to be non-normal and
spherical, thus were examined using the same non-parametric tests
to determine if a statistical difference was present.

FIGURE 7
Confusion matrices averaged over all participants for each circuit type. The vertical axis represents actual grasps, and the horizontal represents
predicted grasps. A color closer to yellow indicates a higher proportion of instances that a prediction was made, and purple indicates lower. The most
important region is the diagonal which shows the correct predictions for actual grasps. All values of the diagonal were averaged, producing an average
accuracy reported for each circuit type.
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3 Results

3.1 Experiment 1

3.1.1 Pressure application
For all three circuit types, measured values of drift, hysteresis,

deadband, and linearity and their standard deviations are shown in
Table 1. Drift, hysteresis and deadband were reported as a
percentage of their tested voltage range. Linearity was reported as
a coefficient of determination value, R2. In these results, the UGA
demonstrated the lowest drift at 0.7% and the TIA the highest at
5.06%. Hysteresis results were similar to drift with the UGA
producing the lowest values at 11.22% and TIA the highest at
54.44%. Deadband followed a similar trend demonstrating lowest
with the UGA at 1.13% and highest with the VD at 2.44%. TIA
demonstrated the most linear response with R2 = 0.98 and UGA the
least with an R2 = 0.92.

3.2 Experiment 2

3.2.1 Gesture classification
Confusion matrices generated from hand grasp classification

accuracies are shown in Figure 7, noting the diagonal for correct
classifications. The overall accuracy score is the average of the values
along this diagonal, resulting in an average accuracy of 94.28% (SD
6.88%) for the VD, 94.67% (SD 6.71%) for the UGA, and 94.36% (SD
4.20) for the TIA.

3.2.2 Feature space metrics
Feature space metrics of Interclass Distance Nearest Neighbors,

Within-Class Distance and Mean Semi-Principal Axis were
computed for each participant then averaged over all participants
per circuit as follows in Table 2. In the IDNN metric, the VD
reported the highest averaged distance of 7.696 while the TIA
yielded the lowest of 5.529. In WD, the TIA reported the lowest
average distance between grasp repetitions of 6.264 and the VD
yielded the highest of 8.927. In the MSA metric, the UGA produced
the lowest average variance between grasps with a value of
0.091 while the TIA yielded a higher value of 0.145.

3.2.3 Statistical analyses
Friedman and Wilcoxon signed-rank tests were used to find

statistical differences between the average classification accuracies of
each circuit type. No statistical differences were found, results are

FIGURE 8
Raw voltages to confusionmatrix data pipeline. Raw FSR data was first segmented in 200mswindowswith 50ms time increments. TheMAV of these
windows was found and used as feature vectors to train and test the LDA classifier using LOOCV. Resultant predictions from the classifier were displayed
in a series of confusion matrices for each input dataset.

TABLE 2 Computed feature space metrics for each circuit type, averaged
over all participants.

Circuit type Feature space metric

IDNN WD MSA

M SD M SD M SD

VD 7.696 2.810 8.927 5.641 0.091 0.141

UGA 6.971 3.289 7.891 5.767 0.079 0.105

TIA 5.529 2.129 6.264 2.516 0.145 0.247
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shown in Table 3. Additionally, the same tests were run on the
population variances for each grasp between all circuit types, shown
in Table 4. No statistical differences were found between
population variances.

4 Discussion

This work highlights the differences found between FSR signal
acquisition circuits and their impact on FMG system performance in a
hand gesture classification application. The signal quality analyses
showed that of the three circuits, the UGA produced favorable
results in most metrics, scoring lowest in drift, hysteresis and
deadband, seen in Table 1. As it is not uncommon in daily tasks to
grasp and hold objects for extended periods of time, a low drift circuit
may help improve an FMG system’s performance during such sustained
grasping activities. Conversely, drift-related changes in FSR signal
output over long contraction periods may result in erroneous
gesture classification, which may be further magnified by the
presence of multiple FSR signals (8 in our experimental setup). As
FMG has the potential to extend beyond simple state classifications to
proportional control, hysteresis becomes a critical consideration (Belyea
et al., 2018). While there is inherent hysteresis in muscle activation,
lower sensor hysteresis will support the accurate measurement of radial
muscle forces during both muscle contraction and relaxation phases
(i.e., sensor loading and unloading). Interestingly, hysteresis measures
illustrated the greatest differences in standard deviation between circuits
as the UGA had the lowest of 1.03%, while the TIA reported 34.59%.
Greater deadband performance makes the UGA more sensitive to
minute changes in skin deflection at lower forces and better at detecting
subtle hand movements. This may help FMG systems to be more
capable of detecting partial hand gestures that do not fully contract
forearmmuscles due to a greater low-end resolution. While the VD did
not achieve the highest performance in any category, its results among
these metrics was highly comparable to that of the UGA. The TIA
demonstrated the most linear force to voltage response at a 5% increase
over the nextmost linear circuit, the VD. If an FSR in an FMG system is
nonlinear and is placed on a large bulk of muscle, output voltage may
either quickly saturate or not be registered, leading to an overall
decreased resolution in given force ranges. The TIA provides the
most linear response to a given force input within the desired force
range; thus, it is more likely to resolve accurate force values over the
sensor’s voltage range.

The VD, UGA, and TIA all independently predicted hand gestures
at an average of 94.28% (SD 6.88%), 94.67% (SD 6.71%), and 94.36%
(SD 4.20%), respectively, across all 10 gestures, seen in Figure 7. Despite
investigators carefully fitting the FMG band to each participant’s
forearm as consistently as possible, inherent variabilities related to
the dimensions of each person’s arm and their comfort tolerance to
the tightness of the band likely introduced individual variability into our
data. Despite this variability, these high classification rates were
consistently achieved with minimal deviation, demonstrating the
robustness of the system. No statistical differences were found
between the classification accuracies of each circuit type, as seen in
Table 3. When examining each circuit type and comparing variances
between grasps across our participants similar results were found
(Table 4), demonstrating a consistent classification of hand gestures
regardless of circuit type. Practically, our findings suggest that in offline
hand gesture classification applications, each of the three tested circuits
offers nearly the same performance in terms of classification accuracy.

Our feature space analysis offers a more nuanced understanding of
the gesture classification data. The VD circuit produced the largest
IDNN value, illustrating a greater separation between hand gesture
clusters. This suggests that if used in control applications the VD circuit
may produce a control signal that leverages a more unique
representation of gestures in feature space. While there were no
significant differences found between classification accuracies, real-
world applications could potentially benefit from this property as
the greater distance between grasps in feature space allows
classification algorithms to distinguish between grasp types more
accurately and reliably (Franzke et al., 2021). This may be
particularly advantageous in real-time control applications as a
larger IDNN value may correspond with more distinct features.
Real-time gesture classification inherently produces less accurate
results (Abbaspour et al., 2021) and nuanced differences in feature
space have the potential to significantly impact the overall accuracy and
consistency of predictions. The TIA reported the lowest value for WD,
demonstrating the least variance for repetitions of the same grasp. In
feature space, hand grasp repetitions are clustered in a smaller region for
the TIA than other circuit types. However, even though the TIA resulted
in the lowest WD value, it yielded the smallest distance between grasp
types in feature space (IDNN), indicating that grasp clusters are closer
together, perhaps mitigating this effect. The distribution within feature
space, as measured by the MSA, produced the largest results from the
UGA. The UGA yielded the lowest MSA value, indicating the lowest
intra-class variability within the gesture dataset when compared to those

TABLE 3 Computed Friedman and Wilcoxon signed-rank tests for circuit type classification accuracies.

Results Friedman Wilcoxon (VD vs. UGA) Wilcoxon (UGA vs. TIA) Wilcoxon (VD vs. TIA)

P 0.904 0.422 0.461 0.278

Χ2/T 0.200 30.0 29.0 34.0

TABLE 4 Computed Friedman and Wilcoxon signed-rank tests for circuit type classification variances.

Results Friedman Wilcoxon (VD vs. UGA) Wilcoxon (UGA vs. TIA) Wilcoxon (VD vs. TIA)

P 0.315 0.658 0.445 0.122

Χ2/T 2.310 46.0 63.0 71.0
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of other circuit types (Franzke et al., 2021). This represents a lower
signal variability and tighter clustering over all hand gestures in feature
space. Practically in hand gestures classification applications, this has
the potential for improved robustness to noise and minor signal
variations from biological or electrical sources.

Finally, it is worth noting that there may be interrelationships
among our signal performance metrics and the feature space metrics.
For example, one would anticipate sensor drift and MSA to be closely
related as increases in sensor drift tend to cause greater variance in
recorded data. This, in turn, results in a greater spread of data in feature
space, leading to a higher variance in the grasp clusters, as quantified by
MAS. Similar relationships may likely be observed with other metric
pairs, such as linearity and WD. From this, we note that further
investigation into the causal impact of sensor characteristics on
feature space metrics is likely important in future work.

Our findings have a variety of implications for design the design of
FMGhand gesture recognition systems. Collectively they suggest that the
voltage divider, unity gain amplifier, and transimpedance amplifier all
offer similar hand gesture classification performance in a single-limb
position offline classification task yet differ in the signal characteristics
and feature space that each circuit outputs. The UGA demonstrated the
lowest measures of drift, hysteresis, and deadband. The TIA produced
the most linear voltage response to an applied force but exhibits large
amounts of hysteresis. Finally, the VD showed similar results as the
UGA, with slightly larger measures of drift, hysteresis, and deadband.
While feature space metrics offer further insight into the separation of
gesture related muscle activity and the spread of these data, there was
ultimately no significant differences in classification accuracies and
standard deviation across circuit types. While not statistically relevant
in this work, these feature space metrics and their relation to signal
characteristics could be more impactful in real-time applications. Future
work in FMG systems with FSRs should be completed with these
performance metrics in mind when choosing a signal acquisition
circuit. For a more comprehensive understanding of signal metric
impact on FMG system performance, investigations of real-time
gesture classification performance are a critical next step. This may
provide assessment of circuit performance in applications more closely
reflective of real-world use. For example, although the UGA
outperformed other circuits across most metrics, its dependency on a
bipolar power supply can limit its application in untethered, free-moving
systems, like the inevitable challenges a TIA circuit will face. Although
additional circuit design can address this issue, it will introduce further
complexity into the system’s design. However, this work suggests that if
the FMG application is being performed for the purposes of simple
gesture classification in offline applications, less complex circuitry such
as a VD circuit can produce high accuracy results. However, if precise
readings of the forces introduced to the FMG sensors is a priority, more
complex circuit designs may be useful to help produce linear force-
voltage responses and mitigate challenges such as hysteresis, drift, and
deadbands. Ultimately, the choice of circuit should align with the
application or objectives of the study being performed.

In future work, we intend on fabricating a system capable of
conducting real-time gesture classification. The results presented
here represent offline classification accuracies, which differ from
real-time gesture classification, a model more reflective of real-world
applications. Testing our systems in real-time may demonstrate
nuances in driving FMG circuitry that are not present in offline
classification. Further, these future experiments may point to

different circuitry options that are more robust for real-time use.
Thus, creating an FMG system capable of on-board real-time
classification is necessary to conduct this work.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found below: https://github.com/BEAR-Labs?
tab&equals;repositories.

Ethics statement

The studies involving humans were approved by UC Davis
Institutional Review Board. The studies were conducted in
accordance with the local legislation and institutional
requirements. The participants provided their written informed
consent to participate in this study.

Author contributions

GS: Formal Analysis, Investigation, Writing–original draft,
Writing–review and editing. PY: Conceptualization, Investigation,
Software, Writing–original draft, Writing–review and editing. MB:
Conceptualization, Writing–review and editing. JK: Formal
Analysis, Investigation, Writing–review and editing. JS:
Conceptualization, Funding acquisition, Resources, Supervision,
Writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. Funding for
this research project was provided by UC Davis Next Level
Research Award.

Acknowledgments

The authors would like to thank the participants for their
patience during testing.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Frontiers in Electronics frontiersin.org10

Sagastume et al. 10.3389/felec.2024.1503424

https://github.com/BEAR-Labs?tab&equals;repositories
https://github.com/BEAR-Labs?tab&equals;repositories
https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2024.1503424


Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Abbaspour, S., Lindén, M., Hamid, G., Naber, A., and Ortiz-Catalan, M. (2020).
Evaluation of surface EMG-based recognition algorithms for decoding hand
movements. Med. Biol. Eng. Comput. 58 (1), 83–100. doi:10.1007/s11517-019-02073-z

Abbaspour, S., Naber, A., Ortiz-catalan, M., Gholamhosseini, H., and Lindén, M.
(2021). Real-time and offline evaluation of myoelectric pattern recognition for the
decoding of hand movements. Sensors Basel, Switz. 21 (16), 5677. doi:10.3390/
S21165677

Ahmadizadeh, C., Pousett, B., and Menon, C. (2019). Investigation of channel
selection for gesture classification for prosthesis control using force myography: a
case study. Front. Bioeng. Biotechnol. 7 (December), 331. doi:10.3389/FBIOE.2019.
00331

ANSI/ISA Process Instrumentation Terminology (1979). ANSI/ISA standard 51.1.

Barnea, A., Olaru, D., Asachi, G., and Oprisan, C. (2012). “Force sensitive resistors
calibration for the usage,” in gripping devices the 3 rd international conference on
diagnosis and prediction in mechanical engineering systems dipre 12 the 3 r d
internationa l conference on diagnosis and prediction in mech anical engineering
systems force sensitive resistors calibration for the usage in gripping devices. Available
at: https://www.researchgate.net/publication/335754343.

Battraw, M. A., Fitzgerald, J., James, M. A., Bagley, A. M., Joiner,W.M., and Schofield,
J. S. (2024). Understanding the capacity of children with congenital unilateral below-
elbow deficiency to actuate their affected muscles. Sci. Rep. 2024 14 (1), 4563–4616.
doi:10.1038/s41598-024-54952-7

Belyea, A. T., Kevin, B. E., and Erik, J. S. (2018). A proportional control Scheme for
high density force myography. J. Neural Eng. 15 (4), 046029. doi:10.1088/1741-2552/
AAC89B

Belyea, A. (2019). FMG vs emg: a comparison of usability for real-time pattern
recognition based control. TBME. 66 (11), 3098–3104. doi:10.1109/TBME.2019.
2900415

Bunderson, N. E., and Todd, A. K. (2012). Quantification of feature space
changes with experience during electromyogram pattern recognition control.
IEEE Trans. Neural Syst. Rehabilitation Eng. 20 (3), 239–246. doi:10.1109/
TNSRE.2011.2182525

Charman, T., Hepburn, S., Lewis, M., Lewis, M., Steiner, A., Rogers, S. J., et al. (2013).
Edinburgh handedness inventory. Encycl. Autism Spectr. Disord., 1051–1054. doi:10.
1007/978-1-4419-1698-3_877

Chen, P., Li, Z., Togo, S., Yokoi, H., and Jiang, Y. (2023). A layered SEMG-
FMG hybrid sensor for hand motion recognition from forearm muscle activities.
IEEE Trans. Human-Machine Syst. 53 (5), 935–944. doi:10.1109/THMS.2023.
3287594

Cho, E., Chen, R., Karim Merhi, L., Xiao, Z., Pousett, B., and Menon, C. (2016). Force
myography to control robotic upper extremity prostheses: a feasibility study. Front.
Bioeng. Biotechnol. 4 (MAR), 18. doi:10.3389/fbioe.2016.00018

Esposito, D., Andreozzi, E., Fratini, A., Gargiulo, G. D., Savino, S., Niola, V., et al.
(2018). A piezoresistive sensor to measure muscle contraction andmechanomyography.
Sensors Switz. 18 (8), 2553. doi:10.3390/s18082553

Feix, T., Romero, J., Schmiedmayer, H. B., Dollar, A. M., and Kragic, D. (2016). The
GRASP taxonomy of human grasp types. IEEE Trans. Human-Machine Syst. 46 (1),
66–77. doi:10.1109/THMS.2015.2470657

Franzke, A.W., Kristoffersen,M. B., Jayaram, V., Van Der Sluis, C. K., Murgia, A., and
Bongers, R. M. (2021). Exploring the relationship between EMG feature space
characteristics and control performance in machine learning myoelectric control.
IEEE Trans. Neural Syst. Rehabilitation Eng. 29, 21–30. doi:10.1109/TNSRE.2020.
3029873

FSRTEK (2024). FSR 101 force sensing resistor theory and applications. Available at:
https://www.fsrtek.com/standard-sensor/fa101-force-sensing-resistor (Accessed July
17, 2024).

Fujwara, E., Wu, Y. T., Villela, C. S., Gomes, M. K., Soares, M. C. P., Suzuki, C. K., et al.
(2019). “Design and application of optical fiber sensors for force myography,” in
2018 SBFoton International Optics and Photonics Conference, SBFoton IOPC, January,
2018.

Giovanelli, D., and Farella, E. (2016). Force sensing resistor and evaluation of
Technology for wearable body pressure sensing. J. Sensors 2016, 1–13. doi:10.1155/
2016/9391850

Godiyal, A. K., Mondal, M., Joshi, S. D., and Joshi, D. (2018). Force myography based
novel strategy for locomotion classification. IEEE Trans. Human-Machine Syst. 48 (6),
648–657. doi:10.1109/THMS.2018.2860598

Interlink (2024). FSR® integration guide Interlink Electronics FSR ® force sensing
resistors ® FSR ® integration guide. Available at: www.interlinkelectronics.com.

Jensen, T. R., Radwint, R. G., and Webster, J. G. (1991). A conductive polymer sensor
for measuring external finger forces. J. Biomchanics. 24, 851–858. doi:10.1016/0021-
9290(91)90310-j

Kho, A. S. K., Béguin, S., O’Cearbhaill, E. D., and Annaidh, A.N. (2023). Mechanical
characterisation of commercial artificial skin models. J. Mech. Behav. Biomed. Mater.
147 (November), 106090. doi:10.1016/J.JMBBM.2023.106090

Kim, H.-Y. (2014). Statistical notes for clinical researchers: nonparametric statistical
methods: 2. Nonparametric methods for comparing three or more groups and repeated
measures. Restor. Dent. and Endod. 39 (4), 329. doi:10.5395/RDE.2014.39.4.329

Kristoffersen, M. B., Franzke, A. W., Van Der Sluis, C. K., Murgia, A., and Bongers, R.
M. (2019). The effect of feedback during training sessions on learning pattern-
recognition-based prosthesis control. IEEE Trans. Neural Syst. Rehabilitation Eng.
27 (10), 2087–2096. doi:10.1109/TNSRE.2019.2929917

Lebosse, C., Renaud, P., Bayle, B., and De Mathelin, M. (2011). Modeling and
evaluation of low-cost force sensors. IEEE Trans. Robotics 27 (4), 815–822. doi:10.
1109/TRO.2011.2119850

Li, N., Yang, D., Jiang, L., Liu, H., and Cai, H. (2012). Combined use of FSR sensor
array and SVM classifier for finger motion recognition based on pressure distribution
map. J. Bionic Eng. 9 (1), 39–47. doi:10.1016/S1672-6529(11)60095-4

Nazari, V., and Zheng, Y. P. (2023). Controlling upper limb prostheses using
sonomyography (smg): a review. Sensors. MDPI 23, 1885. doi:10.3390/s23041885

Ohmite (2024). Ohmite FSR series integration guide: force sensing resistor integration
guide force sensing resistor. Available at: www.ohmite.com.

Prakash, A., Kumar Sahi, A., Sharma, N., and Sharma, S. (2020). Force myography
controlled multifunctional hand prosthesis for upper-limb amputees. Biomed. Signal
Process. Control 62 (September), 102122. doi:10.1016/J.BSPC.2020.102122

Prakash, A., Sharma, N., and Sharma, S. (2021). An affordable transradial prosthesis
based on force myography sensor. Sensors Actuators A Phys. 325, 112699. doi:10.1016/j.
sna.2021.112699

Radmand, A., Scheme, E., and Kevin, E. (2016). High-density force myography: a
possible alternative for upper-limb prosthetic control. J. Rehabilitation Res. Dev. 53 (4),
443–456. doi:10.1682/JRRD.2015.03.0041

Rehman, M.U., Shah, K., Haq, I.U., Iqbal, S., Ismail, M. A., and Fatih, S. (2023).
Assessment of low-density force myography armband for classification of upper limb
gestures. Sensors 23 (5), 2716. doi:10.3390/s23052716

Saadeh, M. Y., Carambat, T. D., and Arrieta, A. M. (2017). Evaluating and modeling
force sensing resistors for low force applications. Available at: http://
asmedigitalcollection.asme.org/SMASIS/proceedings-pdf/SMASIS2017/58264/
V002T03A001/2568042/v002t03a001-smasis2017-3703.pdf.

Sadarangani, G. P., Jiang, X., Simpson, L. A., Eng, J. J., and Menon, C. (2017). Force
myography for monitoring grasping in individuals with stroke with mild to moderate
upper-extremity impairments: a preliminary investigation in a controlled environment.
Front. Bioeng. Biotechnol. 5, 42. doi:10.3389/fbioe.2017.00042

Sadeghi, C., Rana, and Menon, C. (2018). Regressing grasping using force
myography: an exploratory study. Biomed. Eng. Online 17 (1), 159. doi:10.1186/
s12938-018-0593-2

Sakr, M., and Menon, C. (2017). “Study on the force myography sensors placement
for robust hand force estimation,” in 2017 IEEE International Conference on Systems,
Man, and Cybernetics, SMC 2017, 2017-January, 1387–1392. doi:10.1109/smc.2017.
8122807

Scheme, E., and Englehart, K. (2011). Electromyogram pattern recognition for control
of powered upper-limb prostheses: state of the art and challenges for clinical use.
J. Rehabilitation Res. Dev. 48 (6), 643–660. doi:10.1682/JRRD.2010.09.0177

Schofield, J. S., Evans, K. R., Hebert, J. S., Marasco, P. D., and Carey, J. P. (2016). The
effect of biomechanical variables on force sensitive resistor error: implications for
calibration and improved accuracy. J. Biomechanics 49 (5), 786–792. doi:10.1016/j.
jbiomech.2016.01.022

Frontiers in Electronics frontiersin.org11

Sagastume et al. 10.3389/felec.2024.1503424

https://doi.org/10.1007/s11517-019-02073-z
https://doi.org/10.3390/S21165677
https://doi.org/10.3390/S21165677
https://doi.org/10.3389/FBIOE.2019.00331
https://doi.org/10.3389/FBIOE.2019.00331
https://www.researchgate.net/publication/335754343
https://doi.org/10.1038/s41598-024-54952-7
https://doi.org/10.1088/1741-2552/AAC89B
https://doi.org/10.1088/1741-2552/AAC89B
https://doi.org/10.1109/TBME.2019.2900415
https://doi.org/10.1109/TBME.2019.2900415
https://doi.org/10.1109/TNSRE.2011.2182525
https://doi.org/10.1109/TNSRE.2011.2182525
https://doi.org/10.1007/978-1-4419-1698-3_877
https://doi.org/10.1007/978-1-4419-1698-3_877
https://doi.org/10.1109/THMS.2023.3287594
https://doi.org/10.1109/THMS.2023.3287594
https://doi.org/10.3389/fbioe.2016.00018
https://doi.org/10.3390/s18082553
https://doi.org/10.1109/THMS.2015.2470657
https://doi.org/10.1109/TNSRE.2020.3029873
https://doi.org/10.1109/TNSRE.2020.3029873
https://www.fsrtek.com/standard-sensor/fa101-force-sensing-resistor
https://doi.org/10.1155/2016/9391850
https://doi.org/10.1155/2016/9391850
https://doi.org/10.1109/THMS.2018.2860598
www.interlinkelectronics.com
https://doi.org/10.1016/0021-9290(91)90310-j
https://doi.org/10.1016/0021-9290(91)90310-j
https://doi.org/10.1016/J.JMBBM.2023.106090
https://doi.org/10.5395/RDE.2014.39.4.329
https://doi.org/10.1109/TNSRE.2019.2929917
https://doi.org/10.1109/TRO.2011.2119850
https://doi.org/10.1109/TRO.2011.2119850
https://doi.org/10.1016/S1672-6529(11)60095-4
https://doi.org/10.3390/s23041885
www.ohmite.com
https://doi.org/10.1016/J.BSPC.2020.102122
https://doi.org/10.1016/j.sna.2021.112699
https://doi.org/10.1016/j.sna.2021.112699
https://doi.org/10.1682/JRRD.2015.03.0041
https://doi.org/10.3390/s23052716
http://asmedigitalcollection.asme.org/SMASIS/proceedings-pdf/SMASIS2017/58264/V002T03A001/2568042/v002t03a001-smasis2017-3703.pdf
http://asmedigitalcollection.asme.org/SMASIS/proceedings-pdf/SMASIS2017/58264/V002T03A001/2568042/v002t03a001-smasis2017-3703.pdf
http://asmedigitalcollection.asme.org/SMASIS/proceedings-pdf/SMASIS2017/58264/V002T03A001/2568042/v002t03a001-smasis2017-3703.pdf
https://doi.org/10.3389/fbioe.2017.00042
https://doi.org/10.1186/s12938-018-0593-2
https://doi.org/10.1186/s12938-018-0593-2
https://doi.org/10.1109/smc.2017.8122807
https://doi.org/10.1109/smc.2017.8122807
https://doi.org/10.1682/JRRD.2010.09.0177
https://doi.org/10.1016/j.jbiomech.2016.01.022
https://doi.org/10.1016/j.jbiomech.2016.01.022
https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2024.1503424


Shaikh, M. F., Salcic, Z., and Wang, K. (2015). “Analysis and selection of the force
sensitive resistors for gait characterisation,” in 2015 6th International Conference on
Automation, Robotics and Applications (ICARA), 370–375.

Smith, L. H., Hargrove, L. J., Lock, B. A., and Kuiken, T. A. (2010). Determining the
optimal window length for pattern recognition-based myoelectric control: balancing the
competing effects of classification error and controller delay. IEEE Trans. Neural Syst.
Rehabilitation Eng. A Publ. IEEE Eng. Med. Biol. Soc. 19 (2), 186–192. doi:10.1109/
TNSRE.2010.2100828

Tchantchane, R., Zhou, H., Zhang, S., and Alici, G. (2023). A review of hand gesture
recognition systems based on noninvasive wearable sensors. Adv. Intell. Syst. 5 (10),
2300207. doi:10.1002/AISY.202300207

Torres, M., Sagaró, R., Broche, L., Delisle, D., Reyes, A., López, A., et al. (2015).
Robotic system for upper limb rehabilitation. IFMBE Proc. 49, 948–951. doi:10.1007/
978-3-319-13117-7_240

Velásquez, A., and Flórez, J. A. (2010). Calibration of force sensing resistors (fsr) for static
and dynamic applications. IEEE ANDESCON, 1–6. doi:10.1109/andescon.2010.5633120

Xiao, Z. G., and Menon, C. (2019). A review of force myography research and
development. Sensors Basel, Switz. 19 (20), 4557. doi:10.3390/S19204557

Young, P. R., Hebert, J. S., Marasco, P. D., Carey, J. P., and Schofield, J. S. (2023).
Advances in the measurement of prosthetic socket interface mechanics: a review of
Technology, techniques, and a 20-year update. Expert Rev. Med. Devices 20, 729–739.
doi:10.1080/17434440.2023.2244418

Frontiers in Electronics frontiersin.org12

Sagastume et al. 10.3389/felec.2024.1503424

https://doi.org/10.1109/TNSRE.2010.2100828
https://doi.org/10.1109/TNSRE.2010.2100828
https://doi.org/10.1002/AISY.202300207
https://doi.org/10.1007/978-3-319-13117-7_240
https://doi.org/10.1007/978-3-319-13117-7_240
https://doi.org/10.1109/andescon.2010.5633120
https://doi.org/10.3390/S19204557
https://doi.org/10.1080/17434440.2023.2244418
https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2024.1503424

	Comparative analysis of force sensitive resistor circuitry for use in force myography systems for hand gesture recognition
	1 Introduction
	2 Materials and methods
	2.1 Circuit design
	2.2 Experiment 1 - signal metric analysis
	2.2.1 Touch tactor
	2.2.2 Data collection and analysis

	2.3 Experiment 2 - hand gesture classification
	2.3.1 FMG band design
	2.3.2 Circuit design
	2.3.3 Experimental procedure
	2.3.4 Testing
	2.3.5 Data analysis


	3 Results
	3.1 Experiment 1
	3.1.1 Pressure application

	3.2 Experiment 2
	3.2.1 Gesture classification
	3.2.2 Feature space metrics
	3.2.3 Statistical analyses


	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


