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Fault detection in charging piles is crucial for the widespread adoption of electric
vehicles and the reliability of charging infrastructure. Currently, due to the lack of
sufficient fault data for charging piles, achieving stable and accurate fault
identification is challenging. Moreover, distinctive fault features are key to
accurate fault recognition. To address this, we designed a simulated charging
pile system and collected fault data at multiple power levels by manually
introducing faults. Furthermore, we proposed a fault identification algorithm
based on spatiotemporal feature fusion using machine learning. This algorithm
first collects fault data through a sliding window and utilizes Fourier transform to
extract frequency domain information to construct temporal features. These
features are then fused with spatial current amplitude information to form a
distinctive feature set, enabling fault identification based on a machine learning
model. Extensive experiments conducted on the constructed dataset show that
this method can accurately identify charging pile faults. Compared with random
forest and gradient boosted decision tree, the proposed method improves the
macro-average score by 2.99% and 7.28%, respectively. We also explored the
importance of each feature for fault identification results and the impact of
window length on identification outcomes, demonstrating the necessity of the
extracted features and the robustness of the proposedmethod to data resolution.
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Highlights

• In order to deal with the problem of insufficient fault detection data of current
charging piles, charging pile simulation systems of various capacity levels are
constructed to obtain rich fault data.

• The spatiotemporal information of current data is considered to obtain key features
associated with faults.

• A method for fault detection in charging based on spatiotemporal fusion of machine
learning is proposed, which realizes accurate and stable non-invasive fault
identification.
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1 Introduction

With the growing global awareness of environmental protection
and the increasing demand for sustainable transportation, the
electric vehicle (EV) industry has been rapidly developing.
According to a report by the International Energy Agency (IEA),
global electric vehicle sales have significantly increased over the past
decade, and it is expected that by 2030, the number of electric
vehicles will reach 145 million (Global EV Outlook, 2021). In this
context, the construction of EV charging infrastructure has become
a crucial component in promoting the adoption of electric vehicles.
As the core equipment for EV charging, the reliability and safety of
charging piles are directly related to the user experience and the
promotion of electric vehicles. However, the current development of
charging piles faces challenges. On one hand, there is a shortage of
infrastructure, with overall development lagging behind the growth
of electric vehicle and plugin hybrid vehicle penetration rates. On
the other hand, the failure rate of charging piles is relatively high,
with complex fault types involving various factors such as electrical
faults, semiconductor device failures, and capacitor faults (Xu et al.,
2024), further exacerbating the shortage of charging resources. It is
of great significance to improve the availability of charging piles to
realize early warning and rapid identification of charging pile faults,
thereby promoting rapid maintenance.

Traditional fault identification methods typically rely on the
installation of wired sensors and regular manual inspections, which
not only increase operational costs but also risk missing the optimal
maintenance window due to untimely inspections. In contrast, non-
intrusive fault identification technology, with its advantages of not
interfering with the normal operation of equipment, easy
installation, and low cost, has become a current research hotspot
(Yousaf MZ. et al., 2023; Yousaf et al., 2022; Yousaf M. Z. et al.,
2023). Non-intrusive fault identification technology mainly achieves
early fault detection and diagnosis by monitoring the operational
parameters of charging piles (such as voltage and current) (Xu et al.,
2024) and using advanced signal processing and machine learning
algorithms for data analysis and pattern recognition. This approach
not only enables real-time monitoring of the charging pile’s working
status but also provides detailed information on fault types and
locations, helping maintenance personnel to quickly take corrective
actions and reduce the impact of faults.

The main structure of a charging pile is the switched-mode
power supply converter. In the early stages of charging pile fault
research, fault detection was primarily carried out through physical
modeling and feature matching analysis. These studies typically
involve establishing an electrical model of the charging pile and
predicting potential faults by building a fault feature library (Poon
et al., 2017). Although this approach can provide some theoretical
guidance, the actual operating environment is complex and variable,
making it difficult to accurately reflect the real situation solely by
relying on fault feature templates. In addition, such methods rely on
preset failure modes and the physical characteristics of the system,
lacking the ability to adapt to complex and unknown failure modes.
Moreover, they are sensitive to real-time and environmental changes
and have difficulty coping with the variability of different equipment
and working conditions.

With the development of machine learning technology,
researchers have begun to apply it to fault detection of charging

piles (Gao et al., 2020; Dai et al., 2021; Wang et al., 2021; Yang et al.,
2024). By collecting and analyzing the operation data of charging
piles, machine learning models can adaptively learn fault features,
thereby realizing the detection and prediction of charging pile faults.
Common methods include support vector machines (SVM),
decision trees, random forests, and artificial neural networks
(Jiajia et al., 2019; Xu et al., 2019; Gao et al., 2020; Dui et al.,
2023; Wang et al., 2023). Deng et al. (2022). collects arc data in a
real-time digital simulation system and constructs a support vector
machine model based on particle swarms to accurately identify arc
faults in charging piles. Piao et al. (2023). decomposes and extracts
features from fault data based on variational modal decomposition
technology, and then uses support vector machine algorithms to
detect open circuit faults in charging piles. Although these machine
learning-based fault detection methods have improved accuracy,
they face a high dependence on data quality and quantity.
Insufficient training data or noisy data may lead to model
overfitting or performance degradation. In addition, the model’s
generalization ability is limited and may not be able to effectively
adapt when encountering new fault types or system configurations,
resulting in unstable detection results. In practice, obtaining
sufficient fault data is often a significant challenge, especially
when it comes to rare fault types.

In recent years, the rise of deep learning technology has provided
new solutions for fault detection in charging piles. Deep learning
models, particularly Convolutional Neural Networks (CNNs) (Gao
et al., 2018) and Recurrent Neural Networks (RNNs) (Zhang et al.,
2021), possess powerful capabilities in feature extraction and pattern
recognition, allowing them to handle more complex data and tasks.
A deep learning-based fault diagnosis method for DC charging piles
was proposed in (Du et al., 2021), where the accuracy and
effectiveness of the method were validated through the analysis
of various fault types in the charging modules of DC charging piles,
achieving an accuracy rate of over 95.56%. To address the issue of
imbalanced fault data (Shen et al., 2021), proposed a fault data
balancing correction algorithm based on Borderline-SMOTE, which
improves the degradation of algorithms caused by differences in
sample sizes. This method designed a LightGBM ensemble learning
model that achieved high-precision fault diagnosis. In (Zhang et al.,
2021), an improved RNN model was proposed to detect faulty
conditions in charging piles. By modeling the relationship between
the state parameters of the charging piles and the faulty conditions,
the accuracy of fault detection was significantly enhanced. However,
deep learning models also face the challenge of data scarcity.
Without sufficient data, it is difficult to adequately train deep
learning models, limiting their performance in practical
applications. Additionally, although computationally intensive
algorithms such as deep learning can adaptively extract fault
features from data, the high hardware requirements and
execution time constraints limit the speed of fault recognition.
While machine learning models do not involve complex
computations and offer a certain level of interpretability, the
difficulty in obtaining distinctive features leads to lower fault
recognition accuracy. Therefore, it is necessary to design fault
features that are significantly correlated with fault characteristics.

To address the aforementioned challenges, we have designed a
charging station simulation system. This system simulates charging
station systems of various capacity levels and introduces different
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types of faults to generate sufficient fault data. Furthermore, we
collect three-phase data within small time windows and extract
temporal information and spatial information from the current
through frequency domain transformation and key feature
computation, respectively. Finally, efficient machine learning
models are utilized to identify the type of fault under the current
state. This approach effectively enhances the accuracy and reliability
of fault detection in charging piles, ensuring the stable and safe
operation of the charging station system.

2 Methods

2.1 Multi-level capacity charging station
fault data simulation

Figure 1A shows the system structure of the charging station,
which mainly consists of the power grid, transformer, and charging
station. The internal structure of the charging station includes an
AC/DC rectifier and a DC/DC converter. Figure 1B presents the
topology of the converter. The AC/DC rectifier of the charging
station uses a simple and reliable three-phase bridge rectifier circuit
(Liserre et al., 2005; Safayatullah et al., 2022). To provide electrical

isolation or extend the output voltage range, the DC/DC converter
adopts an isolated Dual Active Bridge (DAB) converter (Zhao et al.,
2014). The use of an isolated converter also greatly reduces the
damage caused by faults. When a fault occurs on the secondary side
of the isolated DC-DC converter, the presence of the isolation
transformer does not affect the grid. In contrast, when a fault
occurs on the primary side of the isolated DC-DC converter, the
energy during the fault is supplied by the cascaded capacitor, and the
grid current remains unchanged. The extended fault duration
provides sufficient time for the circuit breaker to protect the
circuit, thus minimizing the impact on the grid. Therefore, when
a fault occurs in the bridge rectifier circuit directly connected to the
grid, the impact on the grid is more severe and requires extra
caution, along with adequate protective measures. This paper
focuses on predictive studies of faults in bridge converter circuits.

A certain data set is required to make predictions, which is
collected from the charging pile simulation system shown in
Figure 1. The 600 VAC grid-side voltage is converted to
380 VAC three-phase AC voltage through a three-phase
transformer. This is then rectified using a three-phase bridge
rectifier circuit, converting the 380 V AC into 500 V DC. The
collected data includes the three-phase voltage and three-phase
current on the grid side. When different faults occur in the

FIGURE 1
Charging pile simulation system. (A) System Block Diagram. (B) Circuit Topology Diagram.
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charging pile, the voltage and current on the grid side will change
correspondingly, allowing for the identification of the fault type. To
obtain data on faults occurring at different operational power levels
in real scenarios, the experiments start at a power of 100 kW,
increasing in steps of 5 kW, and ending at the rated power of
200 kW, resulting in a total of 21 sets of fault data at different power
levels. Using Ohm’s Law, the current can be calculated from the
power and voltage. For example, when the power is 100 kW, the DC

side current is 200 A, and the RMS value of the AC side current is
approximately 263 A.

Since the three-phase power of the grid is symmetrical, the
impact of any fault of the same type in any phase on the grid is the
same. Therefore, it is sufficient to collect and analyze fault data for
phase a. Furthermore, in real scenarios, faults in the charging pile
mainly arise from the damage to switches in the rectifier converter.
At the same power level, the types of faults can be categorized into

FIGURE 2
Fault waveforms. (A) Fault A. (B) Fault B. (C) Fault C.
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three types based on the condition of the damaged switches: Type A
represents a short-circuit condition between two phases, where any
two phases are directly connected due to overheating and failure of
the switching devices. This failure may result from overcurrent or
elevated environmental temperatures, leading to a short circuit
between two AC bus phases. For instance, if the upper or lower
bridge switches of phases a and b fail simultaneously, a short circuit
will occur. Each phase, such as phase a, includes two switches: an
upper bridge switch and a lower bridge switch. Type B indicates a
situation where the upper bridge switch of phase a fails, while the
rest of the external circuitry remains functional. Similarly, Type C
describes a failure of the lower bridge switch in phase a, with all other
external circuits operating normally. While Type B and Type C
faults are more likely to occur, they can often escalate into Type A
faults if not addressed promptly.

The waveforms of the three types of faults are shown in Figure 2.
From the waveforms of the same fault under different power levels, it
can be observed that power only affects the amplitude of the current
before the fault but does not influence the current waveform after the
fault. This is because the post-fault current is determined by the grid
voltage and the parasitic resistance of the faulted line, which remain
nearly constant across different power levels. As a result, the current
waveform is essentially unchanged.

When a short circuit occurs between phases a and b of the grid,
the grid current rises sharply, and the grid voltage is correspondingly
affected and drops, causing significant impact on the grid, as shown
in Figure 2A. Similarly, when a short circuit occurs between phase a
and the positive or negative terminal of the DC side, the short-circuit
current increases rapidly, also leading to severe impacts on the grid,
as shown in Figures 2B, C.

As illustrated in Figure 2, when fault Type A occurs, the current
in phase a increases in both forward and reverse directions.
However, during faults Type B and Type C, the phase a current
exhibits a larger forward or reverse magnitude, resembling the
addition of a positive or negative DC offset. In practice, due to
the mutual influence of the three-phase currents, a surge in one
phase current unbalances the grid, causing increases in the currents
of the other phases. Consequently, other switches may also be
affected, potentially resulting in cascading faults that lead to
more severe failures.

2.2 Spatiotemporal information fusion-
based fault detection method

During the operation of electric vehicle charging stations, if
faults are not detected and identified in a timely manner, and
appropriate safety measures such as shutdowns are not
implemented, it may lead to physical damage to the equipment,
and even result in safety accidents, endangering users’ personal
safety and causing economic losses. Therefore, promptly and
quickly identifying faults in charging stations is a critical task of
this research. To this end, we collect three-phase alternating
current data from the charging station within a small time
window, instead of voltage data, as voltage changes are less
apparent during fault occurrences. Additionally, constructing
fault features with significant discriminative power is another
crucial task to ensure that the machine learning model can

accurately identify faults. This not only prevents the failure to
detect faults but also reduces false positives during normal
operation, thereby lowering the maintenance burden.

To achieve fast and accurate fault detection in charging stations,
we propose a fault detection method based on spatiotemporal
information fusion. The architecture of the proposed fault
identification scheme is shown in Figure 3. Since the impact of a
fault on voltage data is weak, we only consider the fault features
contained in the three-phase AC current. We use a sliding window
to obtain input data to achieve real-time fault identification. Based
on the input current, we use feature engineering to extract data
spatial features and time series features represented by the frequency
domain to reduce the difficulty of learning the classification model.
For the fault modeling part, the decision tree model is employed to
adaptively obtain the relationship between the extracted features and
the fault, thereby realizing the fault identification function. The
detailed fault identification process is as follows. For the three-phase
current data of the charging station, we first extract the operating
data within a short time frame using a sliding window. Current
methods primarily focus on identifying amplitude characteristics of
operating currents while neglecting the extraction of temporal
features. Therefore, we use Fourier transform to extract the
frequency data of each phase current as the temporal features of
faults. Since the amplitude in the high-frequency range is relatively
small, we retain only the low-frequency temporal features.
Additionally, we calculate the mean value of each phase current
as the spatial amplitude information of the fault. Finally, we process
the above spatiotemporal features simultaneously using simple
machine learning models, such as decision trees, to output
the fault type.

To demonstrate the features in the frequency domain that are
significantly related to fault types, we visualized the current
frequency characteristics for different types of faults and the no-
fault condition, as shown in Figure 4. Based on the frequency
characteristics under various conditions, the current amplitude in
each phase at low frequencies exhibits significant distinction across
different states. However, the behavior in the high-frequency range
is consistent across these states. Therefore, using low-frequency data
as the temporal information for fault detection is a
reasonable approach.

3 Experiments and analysis

3.1 Experiment description and metrics

Since the fault is introduced at 0.2 s, the input data window
containing this time is labeled as fault data, while other data are
labeled as no-fault data. The sampling rate is set to 15 kHz, and
the output window length is set to 100. This study validates the
effectiveness of the proposed method using the following
baseline algorithms: Adaptive Boosting (AdaBoost, ABA),
SVM, Decision Tree (DT), Multilayer Perceptron (MLP),
Gradient Boosting Decision Tree (GBDT), and Random
Forest. The number of base classifiers in the Random Forest
is set to 5. The GBDT uses a learning rate of 0.1 and has 5 base
classifiers. The Multilayer Perceptron uses ReLU as the
activation function, with two hidden layers, each containing

Frontiers in Electronics frontiersin.org05

Duan et al. 10.3389/felec.2024.1490939

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2024.1490939


64 neurons, and a maximum of 100 iterations. The ABA
algorithm also has 5 base classifiers. All other parameters for
the baseline methods are set to the default values in the
sklearn library.

To objectively evaluate the effectiveness and superiority of the
proposed method, this paper introduces the metrics of accuracy,
recall, and macro-average F-score (F-macro). The definition of
accuracy is given in Equation 1:

accuracy � TP + TN
TP + TN + FN + FP

(1)

where, TP, TN, FN, and FP represent the number of true positives,
true negatives, false negatives, and false positives, respectively. The
definition of recall is as Equation 2:

recall � TP
TP + FN

(2)

The F-macro metric provides a comprehensive evaluation of the
classification results under imbalanced sample conditions. It is
defined as Equation 3:

F −macro � 1
C
∑
C

i�1
F1i (3)

C is the number of fault categories, and F1 is defined as
Equation 4:

F1 � 2 · recall · precision
recall + precision

(4)

3.2 Fault detection results and analysis

The average ± standard deviation of the fault detection results
over three trials for various baseline methods and the proposed
spatiotemporal fusion method are reported in Table 1. Upon
comprehensive analysis, the proposed method achieves a
significant improvement in accuracy for fault detection in
charging stations, with the exception of the ABA method. This
improvement is evident not only in the mean values of various
metrics but also in the reduction of variance, demonstrating the
significant robustness of the proposed method. Specifically,

FIGURE 3
Fault detection method architecture based on spatiotemporal information fusion.

FIGURE 4
Current frequency characteristics under different faults and no-
fault condition. (A) Fault free. (B) Fault A. (C) Fault B. (D) Fault C.

TABLE 1 Fault detection performance of baseline methods and proposed
method.

Method Accuracy F-macro Recall

RF 96.84 ± 0.0003 96.28 ± 0.0002 95.81 ± 0.0005

RF + ST 99.40 ± 0.0002 99.27 ± 0.0002 99.17 ± 0.0003

GBDT 75.73 ± 0.0019 68.18 ± 0.0035 65.42 ± 0.0027

GBDT + ST 79.88 ± 0.0017 75.46 ± 0.0028 71.33 ± 0.0025

SVM 86.58 ± 0.0012 82.01 ± 0.0018 80.88 ± 0.0018

SVM + ST 91.33 ± 0.0014 88.66 ± 0.0018 87.64 ± 0.0020

MLP 82.83 ± 0.0235 75.34 ± 0.0395 75.57 ± 0.0334

MLP + ST 98.41 ± 0.0025 98.07 ± 0.0019 98.22 ± 0.0009

ABA 65.28 ± 0.0100 48.60 ± 0.0213 50.53 ± 0.0142

ABA + ST 61.62 ± 0.0033 40.12 ± 0.0094 46.18 ± 0.0041

DT 96.58 ± 0.0002 95.95 ± 0.0002 95.76 ± 0.0003

DT + ST 99.31 ± 0.0002 99.13 ± 0.0002 99.11 ± 0.0002
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accuracy improvements of 5.56%, 4.15%, 4.75%, 15.58%, and
2.73% were observed for RF, GBDT, SVM, MLP, and DT,
respectively. For the decision tree algorithm, its performance
is nearly identical to that of the random forest algorithm, which
uses multiple base classification trees. Moreover, compared to
other algorithms, except for the random forest, it achieved the
best performance. Therefore, considering computational cost
and real-time requirements, we selected the decision tree as
the classifier for fault detection.

To analyze the fault detection algorithms’ performance on
different fault types in detail, we visualized the detailed fault
classification results using confusion matrices, as shown in

Figure 5. According to the confusion matrices for the DT and
MLP methods, both with and without the proposed method, the
spatiotemporal fusion features improve the identification
accuracy for each type of fault. However, various methods
show confusion in recognizing Fault A and Fault C. This may
be due to the similar characteristics exhibited by the rectifier
phase a lower bridge arm short circuit and the grid-side phase a-b
short circuit fault.

We used the RF algorithm to output the fault detection results
and the importance of various fault features to demonstrate the
necessity of including frequency domain features. The importance of
each feature is shown in Figure 6. Here, c1 to c3 represent the spatial
features of the three-phase currents. c1_f1 to c1_f3, c2_f1 to c2_f3,
and c3_f1 to c3_f3 represent the three lowest frequency values in the
frequency domain for the three-phase currents. According to the
importance results for each type of feature, there are strong
correlations between the frequency domain features of each
phase current and fault types. Additionally, the spatial current
amplitudes also exhibit significant importance.

Due to variations in sensor and data processing equipment
across different application scenarios, the input data resolution for
models may vary. Therefore, fault detection methods need to be
capable of handling different data input window lengths. We
collected data with various input window lengths and used DT as
a baseline model to validate the adaptability of the proposed method
to different data window lengths. The experimental results are
shown in Figure 7. Compared to the DT algorithm using only
spatial features, the proposed spatiotemporal fusion features provide
better adaptability to changes in data window length for the DT
algorithm. However, as the window length increases, the
performance of the fault detection model decreases, which is due
to longer data windows containing more non-fault data within
fault samples.

4 Conclusion

As a key infrastructure for electric vehicles, fault detection in
charging stations is crucial for ensuring the safety and reliability

FIGURE 5
Confusion matrices for prediction results of decision tree and
MLP methods. (A) DT without spatiotemporal fusion. (B) DT with
spatiotemporal fusion. (C) MLP without spatiotemporal fusion. (D)
MLP with spatiotemporal fusion.

FIGURE 6
Importance of each feature in the RF method.

FIGURE 7
Impact of data sampling window length on model performance.
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of the charging process. This study addresses the issues of scarce
fault data and the lack of significant fault features in existing
algorithms by proposing a machine learning-based fault
recognition algorithm that integrates spatiotemporal features.
In order to deal with the problems of scarce fault data and poor
recognition rate of fault detection algorithms in current research
on charging pile fault detection, we first build a charging pile
simulation system to collect rich fault data. By building systems
of different capacity levels, we can obtain fault characteristics of
different application scenarios, thereby increasing the
generalization of the fault detection algorithm. Continuously,
in order to obtain key features related to faults in the data, we
propose a fault spatiotemporal feature fusion method. This
method applies Fourier transform to extract frequency domain
information, and integrates it with spatial current amplitude
information. The acquired spatiotemporal fusion features can
not only reduce the modeling difficulty of the fault identification
model, but also enhance the robustness of the algorithm.

Experimental results on the collected dataset show that the
proposed method significantly improves fault detection accuracy
compared to baseline methods. Additionally, we investigated the
importance of various features for fault output results,
demonstrating the necessity of the extracted features. We also
examined the impact of window length on detection results,
validating the robustness of the proposed method to data
resolution. In this study, we explored three typical fault types of
charging piles. However, some potential hazards, such as device
aging, cannot be effectively simulated to obtain training data. In
addition, the characteristics of some hazards in three-phase AC
current may not be obvious, and the recognition effect of the
proposed method will be limited. Therefore, richer data types
need to be introduced.
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