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Open stubs in a strip (microstrip) transmission line are one of the most common
elements of planar circuits used in numerous devices in the various types of
wireless systems. Therefore, the urgent problem is to develop an analyzing
method for discontinuities in the form of the open stub in a microstrip
transmission line at frequencies at which the high-frequency effects must be
considered. In the paper, a technique of scattering characteristics calculating on a
symmetrical microstrip open stub by transverse resonance method is presented.
Boundary value problems for a rectangular volume resonator based on a
microstrip transmission line with a symmetric open stub are solved for the
three options boundary conditions in the symmetry plane and on the
longitudinal boundaries. The intersection of the spectral curves obtained by
the numerical solution of the “electric” and “magnetic” boundary value
problems determines the minima of a reflection or transmission coefficients
of fundamental wave on discontinuities. To algebraize the boundary value
problems for the eigen frequencies of volume resonator with discontinuity,
the corresponding two-dimensional functions of the magnetic potential are
constructed, through which the components of the current density on the
strip are determined. The functions of magnetic potential were defined by
decomposing them into expansion by Fourier series, which ensures stable
convergence of the series and numerical calculation algorithm. The
developed technique has been tested by calculating the eigenfrequency
spectra of an open microstrip stub using the transverse resonance method on
the example of an open stub in a microstrip transmission line with a resonant
frequency of about 3.0 GHz. Also, a technique for numerical solutions of “electric”
and “magnetic” boundary-value problems for resonators with two
electrodynamically coupled symmetric open stubs in a microstrip transmission
line is developed.
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1 Introduction

Open or short-circuit stubs in a strip (microstrip) transmission line are one of the most
common elements of planar circuits used in numerous devices in the microwave frequency
range: various types of filters, couplers, power amplifiers, antennas, sensors, wireless energy
transfer systems, etc. Modern planar circuits in the microwave frequency range already
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contain stubs of a complex shape and a complex pattern inside the
microstrip line (Yang et al., 2022; Martín et al., 2003; Boutejdar et al.,
2009; MezaalY et al., 2018; Fan et al., 2018; Deshmukh et al., 2012;
Deb Roy et al., 2018; Henderson et al., 2018).

The scattering characteristics of ordinary rectangular stubs in
a microstrip line are easily determined by transmission line
theory by which calculates the input admittance of the stub. A
more accurate analysis of such discontinuity, which considers
edge and other effects of a microwave circuit with an open or
shorted stub, is already a difficult problem of applied
electrodynamics. Given the computing capabilities of modern
computer technology, complex planar circuits are analyzed using
commercial programs by numerical methods, mostly by the
moment’s method followed by the construction of an
equivalent discontinuity circuit. Rigorous analysis of stub
discontinuities in strip and microstrip lines can be carried out
using the mode matching method, which is based on the
decomposition method and describes the field in them by the
eigenwaves of each partial region. But that is a
cumbersome method.

More promising for rigorous analysis of such discontinuities, in
our opinion, is the transverse resonance method, which was
introduced by Sorrentino and Itoh (Sorrentino, 1989) and allows
analyzing complex structures without breaking the microwave
circuit into small elements. The idea of the method is that there
is a relationship between the eigenfrequencies of the volume
resonator, in which the discontinuity is located, and the
scattering matrix elements on this discontinuity. The transverse
resonance method is a universal method for analyzing waveguide
and planar circuits, which calculates both the dispersion
characteristics of regular transmission lines and the scattering
characteristics of unregular distributed circuits (Uwano et al.,

1987; Alessandri et al., 1992; Bornemann, 1991; Schwab and
Menzel, 1992; Tao, 1992; Green, 1989; Barlabe et al., 2000;
Varela and Esteban, 2011). Using the example of the periodic
structures scattering characteristics (Rassokhina and
Krizhanovski, 2009), it was shown that for symmetrical in the
transverse direction discontinuities, the intersection points of the
eigenfrequency spectra obtained from the solutions of boundary
value problems with two different conditions in the symmetry plane
directly indicate the zeros or poles of the scattering characteristics.
We are talking about the conditions of the electric and magnetic
walls (e.w. and m. w.) in the symmetry plane and on the longitudinal
boundaries of the resonator, according to which the boundary value
problems with such boundary conditions are called “electric” and
“magnetic” boundary value problems, respectively (Rassokhina and
Krizhanovski, 2018).

The aim of the study is to develop a technique of algebraization
of boundary value problems for the analysis of distributed
discontinuity in the form of a symmetric open stub in a
microstrip transmission line by the transverse resonance method.

2 Formulation and solution of boundary
value problems

The topology of the two-layer planar structure under
consideration is provided in Figure 1, which shows a
symmetrical open stub in a microstrip transmission line.
According to the transverse resonance method, to determine
the resonant interaction frequencies of the fed transmission line
1 with discontinuity 2-3, the two boundary value problems with
electric and magnetic wall conditions (e.w. or m. w.) in the plane
of symmetry z � 0 must be solved. At the resonator boundary
z � L the conditions of an electric or magnetic wall must also
be fulfilled.

Consider the solution of the boundary value problem for the
current density �Jτ of a microstrip resonator expressed in terms of
magnetic type potentials: Jh,n(x, z):

�Jτ x, z( ) � − 1
j · k0 ∑Pn�1∇Jh,n x, z( )Ch,n (1)

where k0 � ω0/c - wavenumber, Jh,n are eigenfunctions of the
magnetic potential for the current density, Ch,n is unknown
expansion coefficient, P is the order of series reducing.

The electromagnetic field components in the shielded structure
satisfy the Helmholtz equation in Cartesian coordinates. The current
density distribution function in the microstrip line is determined by
the difference of the magnetic field’s tangent components and
therefore also satisfies the Helholtz equation.

Polynomial solutions of the Helmholtz equation were studied in
(Burskii and Buryachenko, 2013) as dual problem for high-order
hyperbolic problems in elliptic planar domains. For simple
discontinuities such as microstrip step discontinuity, the function
can be constructed as a series of orthogonal polynomials
(Rassokhina and Krizhanovski, 2018; 2023). For a more complex
topology to avoid the cumbersome calculations, the current density
distribution function in partial regions should be described in the
form of Fourier series.

FIGURE 1
(A) Topology of a symmetrical open stub in a microstrip line, top
view, and (B) cross section of volume resonator with a microstrip line.
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The current density distribution function for a strip line with an
open stub satisfies the Helmholtz equation:

∂2Jh,n
∂x2

+ ∂2Jh,n
∂z2

+ χ2h,nJh,n � 0,

when ∂Jh,n
∂ �n

� 0 by free boundaries in partial regions 1–4, ∂Jh,n(0,z)∂x � 0
in symmetry plane, Jh,n(x, 0) � Jh,n(x, L) � 0 for the “electric”
boundary value problem and ∂Jh,n(x,0)

∂z � ∂Jh,n(x,L)
∂z � 0 for the

“magnetic” boundary value problem.
Considering the above, the two-dimensional function for the

magnetic potential Jh,n(x, z) of the “electric” boundary value
problem in partial regions 1-4 can be presented in a Fourier
series form:

Jh1 x, z( ) � ∑M
k�0

A1k

��������
4 − 2 · δk0

w1

√
cos

2πk
w1

x · sin kz1k L − z( )
kz1k cos kz1kl

for |x|≤w1/2, w2/2≤ z≤L, where L � l + w2/2,

Jh2 x, z( ) � ∑M
k�0

A2k

���
2
w2

√
sin

π 2k + 1( )
w2

z
cos kx1k Ls − x( )
kx1k sin kx1kls

for |z|≤w2/2, w1/2≤ x≤Ls, where Ls � ls + w1/2,

Jh3 x, z( ) � ∑M
k�0

A3k

���
2
w2

√
sin

π 2k + 1( )
w2

z
cos kx1k Ls + x( )
kx1k sin kx1kls

for −w1/2≤ x≤ − Ls. In partial region 4, the solution of the
Helmholtz equation consists of the sum of two functions with
boundary conditions at x � 0, x � w1/2 and z � 0, z � w2/2,
respectively:

Jh4 x, z( ) � ∑M
k�0

A41k

��������
4 − 2 · δk0

w1

√
cos

2πk
w1

x
sin kz1kz

kz1k cos kz1kw2/2( )+
+∑M

k�0
A42k

���
2
w2

√
sin

π 2k + 1( )
w2

z
cos kx1kx

kx1k sin kx1kw1/2( ) (2)

for |x|≤w1/2, |z|≤w2/2. There k2z1,k � χ2hn − (2πkw1
)2, k2x1,k � χ2hn −

(π(2k+1)w2
)2 and χhn are eigenvalues of the eigenfunction Jh,n(x, z),

which is found from the solution of the boundary value problem.
From the continuity conditions of the functions on the partial

domains boundaries, a system of linear algebraic equations (SLAE)
is obtained in the form:

∑
m�0

A41m F1k kz1k( )δkm −∑
n�0

1
F2n

S1,knS2,nm⎡⎣ ⎤⎦ � 0. (3)

Equating the determinant of SLAE Equation 3 to zero, we obtain
a spectrum of eigenvalues χhn and, accordingly, eigenfunctions for
the magnetic vector potential Jh,n(x, z), which determines the
components of the current density on the strip. Expressions for
matrix elements in Equation 3 have the form:

F1k kz1k( ) � tan kz1kl
kz1k

+ tan kz1kw2/2( )
kz1k

,

F2n kx1n( ) � cot kx1nls
kx1n

+ cot kx1nw1/2( )
kx1n

.

The expansion coefficients A41m, A42m of the functions
according to the trigonometric basis are calculated with accuracy

up to some constant factor, which is determined from the
normalization condition of the magnetic potential basis functions
(integration over the area of the microstrip SMSL):

∫
SMSL

∇Jh,n x, z( )[ ]2dS � χ2h,n∫
SMSL

J2h,n x, z( )dS � 1.

It is worth noting that the “electrical” boundary value problem
also has a solution by χh,n � 0, which must be considered by rigorous
solving of the boundary problem.

For the “electric-magnetic” boundary value problem under the
condition of a magnetic wall in the symmetry plane z � 0 and an
electric wall at the longitudinal boundary z � L, the magnetic
potential eigenfunctions in partial regions 1-4 can be determined as:

Jh1 x, z( ) � ∑
k�0

A1k

��������
4 − 2 · δk0

w1

√
cos

2πk
w1

x · sin kz1k L − z( )
kz1k cos kz1kl

,

Jh2 x, z( ) � ∑
k�0

A2k

��������
4 − 2 · δk0

w2

√
cos

2πk
w2

z · cos kx1k Ls − x( )
kx1k sin kx1kls

,

Jh3 x, z( ) � ∑
k�0

A3k

��������
4 − 2 · δk0

w2

√
cos

2πk
w2

z
cos kx1k Ls + x( )
kx1k sin kx1kls

,

Jh4 x, z( ) � ∑
k�0

A41k

��������
4 − 2 · δk0

w1

√
cos

2πk
w1

x
cos kz1kz

kz1k sin kz1kw2/2( )+
+∑

k�0
A42k

��������
4 − 2 · δk0

w2

√
cos

2πk
w2

z
cos kx1kx

kx1k sin kx1kw1/2( ),
where k2z1,k � χ2hn − (2πkw1

)2, k2x1,k � χ2hn − (2πkw2
)2. The SLAE for

determining the eigenvalues and expansion’s coefficients into
series of the magnetic potential has the form:

∑
m�0

A42m F2 kx1k( )δkm +∑
n�0

1
F1n kz1n( )S2knS1nm⎡⎣ ⎤⎦ � 0, (4)

where, by analogy with the “electrical” boundary problem,

F1k kz1k( ) � tan kz1kl
kz1k

− cot kz1kw2/2( )
kz1k

,

F2n kx1n( ) � cot kx1nls
kx1n

+ cot kx1nw1/2( )
kx1n

.

In the same way, the two-dimensional function of the magnetic
potential is defined for the boundary value problem with boundary
conditions of the magnetic wall in the plane of symmetry and on the
longitudinal boundary of the volume resonator (“magnetic”
boundary problem).

The boundary value problems solving for current density
eigenfunctions in an irregular microstrip line is used for solving
of boundary problem for rectangular volume resonators with this
discontinuity. In this case, the discontinuity is an open symmetric
stub in the microstrip transmission line.

According to the transverse resonance method, the points of
spectral curves intersection, corresponding to the solutions of the
electric and magnetic–electric boundary value problem, determine
the minimum transmission coefficient points (Rassokhina and
Krizhanovski, 2009). And the points of spectral curves
intersection, corresponding to the solutions of the electric and
magnetic boundary value problem, determine the minimum
reflection coefficient points.
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The Helmholtz equation and boundary conditions for an electric
Aey,i and magnetic Ahy,i vector potentials for field in volume
resonator (Figure 1B) are follows (Collin, 1990):

ΔAh e( )y,i + k20εr,iAh e( )y,i � 0, i � 1, 2,

where Aey,i(A, y, z) � 0, ∂
∂yAey,i(x, 0, z) � ∂

∂yAey,i(x, B, z) � 0,
Aey,i(x, y, 0) � Aey,i(x, y, L) � 0 for “electric” boundary value
problem and ∂

∂zAey,i(x, y, 0) � ∂
∂zAey,i(x, y, L) � 0 for “magnetic”

boundary value problem; ∂
∂xAhy,i(A, y, z) � 0,

Ahy,i(x, 0, z) � Ahy,i(x, B, z) � 0, ∂
∂zAhy,i(x, y, 0) �

∂
∂zAhy,i(x, y, L) � 0 for “electric” boundary value problem and
Ahy,i(x, y, 0) � Ahy,i(x, y, L) � 0 for “magnetic” boundary
value problem.

The electric and magnetic vector potentials of a rectangular
volume resonator are presented in the form of double Fourier series:

Aey,i � ∑N
m�1∑N

n�1 0( )ϕmn x, z( )Fei,mn kyi,mny( ),
Ahy,i � ∑N

m�1∑N
n�0 1( )ψmn x, z( )Fhi,mn kyi,mny( ), (5)

where k2yi,mn � k20εri − χ2mn, i � 1, 2 is a partial area number, N is
order of series reduction, and

Fe1,mn y( ) � cos ky1,mny( )
ky1,mn sin ky1,mnh( )R1mn,

Fe2,mn y( ) � cos ky2,mn B − y( )( )
ky2,mn sin ky2,mnb1( )R2mn,

Fh1,mn y( ) � sin ky1,mny( )
sin ky1,mnh( )T1mn,

Fh2,mn y( ) � sin ky2,mn B − y( )( )
sin ky2,mnb1( ) T2mn,

when R1(2)mn, T1(2)mn is unknown coefficients of expansion
into series.

The coupling integrals αmh,q,mn, β
m
h,q,mn between a strip resonator

with discontinuity and a volume resonator are calculated by the
formulas Rassokhina and Krizhanovski (2018):

αmh,q,mn � ∫
SMSL

∇Jh,q x, z( ) ∇ψmn x, z( ) × ey[ ]dS,
βmh,q,mn � ∫

SMSL
∇Jh,q x, z( )∇ϕmn x, z( )dS, (6)

where ψmn, ϕmn are basis functions of the electric and magnetic
vector potential of a volume resonator, kxm � π(2m − 1)/2A, kzn �
πn/L for the “electric” and “magnetic” boundary value problem or
kzn � π(2n − 1)/2L for the “magnetic-electric” problem:

ϕmn x, z( ) � Pmn cos kxmx sin kznz, ew − ew,
Pmn cos kxmx cos kznz, mw −mw,

{
ψmn x, z( ) � Pmn sin kxmx cos kznz, ew − ew,

Pmn sin kxmx sin kznz, mw −mw,
{

Pmn �
��
2
A

√ ������
2 − δn0

L

√
1
χmn

, χ2mn � k2xm + k2zn.

The SLAE for the eigenfrequencies of a three-dimensional
resonator is as follows:

∑
q�1

Ch,q ∑
m�1

∑
n�0

αmh,q,mnα
m
h,l,mn

1
Fh,mn

+ 1

k20εr
βmh,q,mnβ

m
h,l,mn

1
Fe,mn

[ ] � 0, (7)

where

Fh,mn � ky1l cot ky1lh + ky2l cot ky2lb1,

Fe,mn � cot ky1mnh

ky1mn
+ 1
εr

cot ky2mnb1
ky2mn

.

From the condition that the determinant of system Equation 7 of
equations is zero, we obtain the eigenfrequencies k0 of the
volume resonator.

3 Algorithm testing and results of
symmetric open stub analysis

The algorithms were developed and tested on the example of a two-
dimensional planar structure on a Ro3010 laminate with a thickness of
h � 0.635 mm with dielectric constant εr � 10.2, the width and height
of the grounding volume resonator are equal, respectivelyA � 15.0mm
and b1 � 8.0 mm, other parameters of the structure: w1 � w2 � w �
0.58 mm (the characteristic impedance of the main transmission line is
Z0 � 50 Ohm). With a constant number M � 5 of basis functions by
Fourier series Equation 2 considered and reduction of series Equation 1
by eigenfunctions of vector potentials up to P � 3, sufficient algorithm
convergence is observed when reduction of series Equation 5 up to
N � 150. The Newton method was used to determine the zeros of the
SLAE determinants Equations 4, 7.

Numerical calculations have shown that using trigonometric
basis in the expansion of the current density distribution function
provided uniform convergence of the algorithms for calculating
eigenvalues and, accordingly, eigenfunctions Jh,n(x, z). This led to
the uniform convergence of the algorithm for numerical calculation
of the eigenfrequency spectrum of a volume resonator with
discontinuity in it.

Eigenvalues of a strip resonator with a symmetric open stub of
length ls � 10.5 mm and ls � 8.5 mm, which were obtained from
solutions of three boundary value problems, are shown in Figure 2.
In the first approximation, the wave numbers of the “electric”
resonator correspond to the values χ(e.w.)h,n � πn/L for the
magnetic-electric problem χ(m.w.−e.w.)

h,n � πn/2(L + ls) and for the
magnetic problem χ(m.w.)

h,n � πn/(L + ls).
According to the approximation of the transmission lines theory,

the input conductivity of a symmetrical open stub is equal to:

Yin � 2j · Y0 tan θs,

where Y0 � 1/Z0, θs � ωls · χ/c is the wave delay factor, which for
this material is equal to about χ ≈ 2.62. Resonant frequency of the
stub with length ls (that is, the frequency at which the electric length
is θs � π/2) calculated by transmission lines theory
is fres � 2.85 GHz.

For an MSI personal computer with an Intel(R) Core(TM)
i3 CPU 2.13 GHz processor, the time to calculate the one points
for one root of the characteristic Equation 7 by accuracy ε � 10−6 1/
mm on average is 8 s. The quickness of calculation of the resonator
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eigenfrequency spectra is ensured by the fact that at each iteration
step the coupling integrals Equation 6 are calculated only once.

Figure 3A shows the spectra of the resonator’s eigenfrequencies
obtained from solutions of three boundary value problems for a
volume resonator with discontinuity in the form of a symmetric
open stub in amicrostrip transmission line. The intersection point of
the spectral curves of the “electric” and “magnetic-electric”
boundary value problems corresponds to the frequency at which
the minimum of the transmission coefficient is observed S21 (about
3.08 GHz), and the point of intersection of the spectral curves of the
“electric” and “magnetic” boundary value problems corresponds to
the minimum of the reflection coefficient S11 at frequency
about 5.8 GHz.

Figure 3B shows the spectra of the resonator’s eigenfrequencies
with a stub width w2 � 2w1 in microstrip transmission line. Such
stubs are called capacitive stubs and serve to increase the frequencies
of resonant interaction in the microwave circuit.

The results of the scattering characteristics calculations were
verified using the microwave design software. The values of the

frequencies of resonance interaction obtained from the
eigenfrequency spectra and full-wave electrodynamic modeling
are almost in agreement.

Thus, according to the results of numerical calculation, a
physically correct result was obtained for the scattering
characteristics on a symmetrical stub in a microstrip
transmission line, considering high-frequency effects, namely,
dispersion and marginal capacitance of the open stub.

In Figure 4 the dependence of the resonance frequency on the
stub width is shown. As expected from physical considerations, the
frequency of resonance reflection increases with the ratio w1/w2

increase, the frequency of resonant interaction also increases.

4 Electromagnetically coupled open
microstrip stubs

Electromagnetically coupled discontinuities in planar circuits
can also be analyzed by the transverse resonance method. For this

FIGURE 2
The first three eigenvalues χh,n of magnetic potential basic functions for a strip resonator with a symmetrical open stub, obtained from the solutions
of the electrical, magnetic-electrical and magnetic boundary value problems. Dimensions, in mm: (A) – w2 � 0.58, ls � 10.5; (B) – w2 � 1.16, ls � 8.5.

FIGURE 3
Spectrum of eigenfrequencies of a three-dimensional rectangular resonator based on an microstrip line with a symmetrical open stub, obtained
from the solutions of boundary value problems with parameters (in mm): (A) w � 0.58, ls � 10.2; (B) w1 � 0.58, w2 � 2w1, ls � 8.5.
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purpose, the planar scheme is symmetrized and two boundary value
problems are solved under the conditions of an “electric” and
“magnetic” wall in the symmetry plane.

The analyzed structure is shown in Figure 5. The plane of
symmetry is located at z � 0, the distance between the stubs is
2z0. The figure also shows the geometric parameters and numbering
of partial regions for calculating the current density potentials.

For the “electrical” boundary value problem, the expressions for
the current density potential are as follows:

Jh1 x, z( ) � ∑
k�0

Ah1k

��������
4 − 2 · δk0

w1

√
cos

2πk
w1

x
sin kz1kz

kz1k cos kz1kl1
,

where l1 � z0 − w22, k
2
z1,k � χ2hn − (2πkw1

)2,

Jh2 x, z( ) � ∑
k�0

��������
4 − 2 · δk0

w1

√
cos

2πk
w1

x Bh21k
cos kz1k z − z0( )
kz1k sin kz1kw22

+ Bh22k
sin kz1k z − z0( )
kz1k cos kz1kw22

( )
+ +∑

k�0
Ch2k

������
2 − δk0
w2

√
cos

πk

w2
z − z0 + w2

2
( ) cos kx1kx

kx1k sin kx1kw12( ),

Jh3 x, z( ) � ∑
k�0

Ah3k

������
2 − δk0
w2

√
cos

πk

w2
z − z0 + w2

2
( ) cos kx1k Ls + w1

2 − x( )
kx1k sin kx1kLs( ) ,

Jh4 x, z( ) � ∑
k�0

Ah4k

��������
4 − 2 · δk0

w1

√
cos

2πk
w1

x
sin kz1k L − z( )
kz1k cos kz1kl2

,

where k2x1,k � χ2hn − (πkw2
)2, l2 � L − (z0 + w22).

From the continuity conditions of the basis function and its
derivatives at the partial regions boundaries, a homogeneous SLAE
is obtained, the condition for the solution of which is the equality of
its determinant to zero, from which the spectrum of eigenvalues χhn
is determined. To solve the “electrical” boundary value problemwith
zero eigenvalue χhn � 0, the expression for the current density
distribution function on the microstrip line is simplified to the
potential of the current density of an ordinary regular microstrip line
of width w1 and length L. Taking into account the condition of
eigenfunctions normalization, this expression will take the form:

Jh,0 x, z( ) �
���
2
w1

√ ��
3
L

√
· z
L
.

The coupling integrals with the basic functions of volume
resonance are calculated according by Equation 6.

For the “magnetic” boundary value problem, only the
expressions for the current density potentials in partial regions
1 and 4 are changed:

Jh1 x, z( ) � ∑
k�0

Ah1k

��������
4 − 2 · δk0

w1

√
cos

2πk
w1

x
cos kz1kz

kz1k sin kz1kl1
,

FIGURE 4
Frequency shift of the of eigen frequencies spectrumof a volume
resonator with a symmetric open stub in microstrip line depending on
the stub width w2 with parameters (in mm): w1 � 0.58, ls � 8.5.

FIGURE 5
The coupled microstrip stubs: principal scheme of analyzing structure and their decomposition in partial regions.
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Jh4 x, z( ) � ∑
k�0

Ah4k

��������
4 − 2 · δk0

w1

√
cos

2πk
w1

x
cos kz1k L − z( )
kz1k sin kz1kl2

.

The results of calculations of eigen frequencies of the resonator,
obtained from the solution of the “electric” and “magnetic”
boundary value problem, are shown in Figure 6, where the
spectrum of eigen frequencies for two different distances values
z0 between symmetrical stubs of a planar structure with two coupled
open stubs of the width w1(2) � w � 0.58 mm and the length Ls �
6.0 mm are presented. By z0 � 1.5 mm (Figure 6A) we have a case of
uncoupled open stubs, since the distance between them is
l � 2z0 ≈ 5w. The coupling between discontinuities by z0 � 0.5
mm (Figure 6B) is manifested, firstly, in the fact that as this
distance decreases, the interval between the two frequencies of
resonant interaction of the discontinuity with the main
transmission line decreases. Second, the relationship between

discontinuities determines the X-shaped forms of the
spectral curves.

Figures 7A, B also shows the spectrum of eigen frequencies of a
planar structure with two coupled symmetrical stubs of widthw � 0.58
mm, Ls � 8.5 mm. In this case also, several frequencies of resonant
transmission of the signal are also observed, in comparison with a
single discontinuity. With closely spaced stubs z0 � 0.5 mm, the
resonant reflection and resonant transmission frequencies of the
signal are close to each other, which is inconvenient for practical
use. At distance z0 � 1.89 mm, we have three frequencies with a
minimum reflection coefficient |S11|, and in the upper frequency range
we have a bandpass filter. These areas are separated by a broadband
bandstop filter with a minimum transmission coefficient |S21|.

Thus, the resonator’s spectral characteristics with discontinuity
fully determine the frequencies of resonant interaction of microstrip
stubs with the main transmission line.

FIGURE 6
Spectrum of eigenfrequencies of a volume resonator based on an microstrip line with two coupled symmetrical open stubs, obtained from the
solutions of boundary value problems with parameters (in mm): w1 � w2 � 0.58, Ls � 6.0; (A) z0 � 1.5, (B) z0 � 0.5.

FIGURE 7
Spectrum of a volume resonator eigenfrequencies based on an microstrip line with two coupled symmetrical open stubs, obtained from the
solutions of three boundary value problems with parameters (in mm): w1 � w2 � 0.58, Ls � 8.5; (A) z0 � 0.5, (B) z0 � 1.89.
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5 Conclusion

A method of an open stubs analyzing, single and
electrodynamically coupled, in a microstrip transmission line
by the transverse resonance technique is proposed. To
implement the method, the boundary problems for the
eigenfunctions of the strip resonator’s current density with a
symmetrical open stub were previously solved under the
condition of an electric and magnetic wall in the symmetry
plane and at the longitudinal boundary. To determine the
eigenfunctions of the current density, the trigonometric basis
was used, which ensures fast and uniform convergence of
numerical calculation algorithms for the eigenfunctions. The
use of the trigonometric basis led to the uniform and stable
convergence of the algorithm for numerical calculation of the
eigen frequency spectrum of a volume cavity with a
discontinuity in it.

From the study of the eigenfrequency spectra of volume
resonators containing a planar circuit calculated under two
different conditions in the symmetry plane, preliminary
information about the frequencies of resonant interaction of
the discontinuity with the fed microstrip transmission line is
obtained. The developed technique of algebraization of
boundary value problems for a microstrip line with
discontinuity can be applied to the analysis of more complex
topologies of microstrip stubs, multi-plane discontinuities and
the development of various devices in the microwave
frequency range.
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