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Hardware-based acceleration approaches for Machine Learning (ML) workloads
have been embracing the significant potential of post-CMOS switching devices to
attain reduced footprint and/or energy-efficient execution relative to transistor-
based GPU and/or TPU-based accelerator architectures. Meanwhile, the
promulgation of fabless IC chip manufacturing paradigms has heightened the
hardware security concerns inherent in such approaches. Namely, unauthorized
access to various supply chain stages may expose significant vulnerabilities
resulting in malfunctions including subtle adversarial outcomes via the
malicious generation of differentially-corrupted outputs. Whereas the Spin-
Orbit Torque Magnetic Tunnel Junction (SOT-MTJ) is a leading spintronic
device for use in ML accelerators, as well as holding security tokens, their
manufacturing-only security exposures are identified and evaluated herein.
Results indicate a novel vulnerability profile whereby an adversary without
access to the circuit netlist could differentially-influence the machine learning
application’s behavior. Specifically, ML recognition outputs can be significantly
swayed via a global modification of oxide thickness (Tox) resulting in bit-flips of
the weights in the crossbar array, thus corrupting the recognition of selected
digits inMNIST dataset differentially creating an opportunity for an adversary.With
just 0.05% of bits in crossbar having a flipped resistance state, digits “4” and “5”
show the highest overall error rates, and digit “9” exhibit the lowest impact, with
recognition accuracy of digits “2,” “3,” and “8” unaffected by changing the oxide
thickness of SOT-MTJs uniformly from 0.75 nm to 1.2 nm without modifying the
netlist nor even having access to the circuit design itself. Exposures andmitigation
approaches to such novel and potentially damaging manufacturing-side
intrusions are identified, postulated, and quantitatively assessed.
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1 Introduction

Recent advancements in hardware designs and emerging devices have shown promising
potential for accelerating machine learning (ML) and neural network (NN)-driven
computation (Roy et al., 2020; Cheng et al., 2021; Lu et al., 2024) Such computation
requires rapid and reliable operations at the hardware level to ensure minimal loss in the
algorithm accuracy. These hardware accelerators typically utilize various emerging
technologies such as resistive random-access memory (RRAM), spin transfer torque
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magnetic RAM (STT-MRAM), spin orbit torque MRAM (SOT-
MRAM), phase change memory (PCM), etc. to achieve orders of
magnitude increase in speed and decrease in energy of the
computations (Mishty and Sadi, 2021). Among these emerging
devices, MRAM has shown to be a highly promising technology
in its category, and it can be readily integrated with the traditional
baseline CMOS design with minimal incurred fabrication cost.
MRAM devices benefit from non-volatility, high endurance,
compact cell size, and faster read and write capability.
Additionally, among the several varieties of MRAM devices,
SOT-MRAM has demonstrated superior performance and
reliability while providing small area footprint and high density,
low read and write energy, and near-zero leakage power.

Furthermore, with technological advancement in the
semiconductor processing industry as well as the increased
complexity of the current chip design, the cost of maintaining
and creating tools for integrated circuits (IC) manufacturing has
increased rapidly. Thus, the majority of IC design companies, with
few exceptions, have adopted a fabless business model that utilizes a
distributed global supply chain. Moreover, the globalization of the
IC supply chain has resulted in the emergence of several hardware
vulnerabilities and threats (Salmani and Salmani, 2018). A simplified
IC supply chain process is illustrated in Figure 1, which provides an
overview of the entire IC supply chain process, accompanied with
potential hardware security threats. Current IC supply chain model
allows adversaries to introduce malicious design modifications at
various stages of the process (Hu et al., 2021). Notably, these include
IP piracy, IC overuse, reverse engineering, hardware Trojan,
counterfeiting and side channel attacks (Kolhe et al., 2022; Kolhe
et al., 2022; Bryant et al., 2023; Gubbi et al., 2023).

Trustworthiness of the hardware platform attains significance
due to exposures of authorized and unauthorized accesses during
various manufacturing processes. If the security of an IC is
compromised, it could result in vulnerabilities to algorithms
running on the platform, as well as to other hardware
components within the platform. Therefore, it is imperative to
understand the supply chain exposures, especially in applications

such as ML where the output behavior is intricate and well-
recognized as challenging to observe and/or explain/elucidate.
Currently, however, there is a gap in the research regarding the
reliability of the computing operations and the security threats
affecting the hardware components, including the ML hardware
accelerators. Whereas in the future, when every smart device will be
equipped with an AI-integrated chip (Mobile AI: On-device ai:
Qualcomm Wireless Technology and Innovation, 2023), there
will be a question of liability for these devices, as the AI chips
will be manufactured using emerging technologies like spintronics
(Barla et al., 2021). If we cannot secure the spintronics device itself,
then it will cause the accelerator devices to produce incorrect
outputs compared to the intended ones. As these issues persist
into the future, it will lead to reliability concerns for these AI-
enabled chips. Thus, it is critical to analyze such designs in order to
optimize the computation speed and minimize the overhead in
terms of energy and area while ensuring the security and reliability
of the hardware.

In this paper, we explore the sensitivity of SOT-MTJ device
behavior to the presence of various manufacturing parameter
changes from the viewpoint of security. An adversary in the
supply chain could intentionally modify relatively benign aspects
of the MRAM manufacturing processes for SOT-MTJs, which
expose vulnerabilities to a variety of more complex and stealthy
attacks. Even a slight alteration in MRAM device physical
parameters, such as a change in the thickness oxide layer (Tox)
by a fraction of a nanometer can modify device functionality, as well
as leverage unwanted behavior in the favor of an adversary.

We explore how internal changes in different layers of the device
can affect its behavior, as well as the impact on the performance of
the ML accelerators designed using these devices. Simulation
involving detailed comparison with an ideal SOT-MRAM device
is used to identify how a modified SOT-MRAM device performs
under specific conditions. It is shown that a malicious global change
to Tox across the wafer can introduce a gainful vulnerability to the
ML recognition system. The contributions of this paper can be
summarized as follows:

FIGURE 1
Simplified overview of IC supply chain process and security threats associated with the process.
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• A new security threat in SOT-MRAM devices that may be
exploited independently of the circuit netlist.

• The paper exhibits how this vulnerability might be exploited in
an attack, illustrating how differences in oxide thickness can
cause ML accelerators to behave differently.

• Demonstrates the significant influence of device-level
vulnerabilities on application-level performance, particularly
on the precision of digit identification in machine
learning models.

• Links the reported vulnerability to the MITRE Common
Weakness Enumeration (CWE) database, especially
referencing CWE-1248 and CWE-1384, which pertain to
semiconductor faults and mishandling of physical
circumstances.

• This paper offers mitigation recommendations to tackle the
observed vulnerability, such as implementing
countermeasures against reverse engineering and fault
injection attacks. Also, the use of meta-training to enhance
neural network resistance to manufacturing discrepancies.

The manuscript is organized as follows: It begins with a
background presentation, followed by our proposed sensitivity
analysis method in Section 3. Section 4 discusses the simulation
and evaluation results. Mitigation suggestions are provided in
Section 5, and the paper concludes in Section 6.

2 Background and related works

In this Section, we will first provide an overview of emerging
SOT-MRAM devices followed by the threats that could potentially
affect these devices using various exploits presented in the
literature.

2.1 SOT-MRAM for ML accelerators

The conventional RAMs have been traditionally used for
memory applications, and they are not designed to implement
state-of-the-art training and learning algorithms such as Deep
Neural Networks (DNNs). Recent advancements in emerging
technologies have shown these devices to be promising
candidates for rapid memory operations as well as logic
implementation and computation (Jung et al., 2022). In
particular, SOT-MRAMs have been utilized in literature to
implement ML Accelerators more efficiently to achieve orders of
magnitude improved energy-efficiency and speed compared to the
traditional CPU or GPU-based ML implementations. Such
accelerators take advantage of SOT-MRAMs to build crossbar
arrays for efficient implementation of the vector matrix
multiplication (VMM), which is commonly used to perform ML
training and inference. Given the increase of utilizing ML
accelerators in critical systems, such as autonomous vehicles and
systems as well as defense and health applications, it is important to
ensure confidentiality, reliability, security, availability, and integrity
of these accelerators.

The SOT-MRAM devices utilize the magnetic tunneling
junction (MTJ) with CMOS transistors as peripheral circuit to

read and write information in the MTJs (Ali et al., 2018). The
MTJ is a structure consisting of a thin oxide layer positioned
between two layers of ferromagnetic material. The magnetization
of the free layer within the MTJ can be altered by applying either
a current or a voltage. SOT-MTJ uses two separate paths for a
reliable read and write operation. As shown in Figure 2, in order
to change the state of the MTJ cell from Anti Parallel (1 or high
resistive state) to Parallel (0 or low resistive state), a charge
current is applied to terminals T2 and T3 to perform the write
operation. To determine the magnetization orientation of the
free layer in the MTJ cell, a spin current due to SOT will be
produced in a downward or upward direction which is
perpendicular to the charge current in the HM. In order to
read the value stored in an SOT-MTJs, a current is applied
through terminals T1 and T2 and a sense amplifier is utilized.
We used the approach given in paper (Zand et al., 2016) to
simulate the behavior of SOT-MTJ devices in this paper, in which
a Verilog-AMS model is built utilizing the physics equations
provided in (Manipatruni et al., 2014). The model is then used in
the SPICE circuit simulator to test the functionality of the
constructed circuits. Additionally, (Jin et al., 2023), have
demonstrated the use of high-reliability, reconfigurable, and
fully non-volatile full-adders based on SOT-MTJ for image
processing applications, further emphasizing the practical
applications and robustness of SOT-MTJ devices in
various fields.

2.2 Supply chain threats on SOT-MRAM

Recent research has explored the benefits of alternatives to von-
Neumann architectures using emerging devices for emerging
applications such as hardware-aware intelligent edge devices as
well as the application of hardware-enabled security. Considering
the increased interest in using SOT-MRAMs for deploying energy-
efficient computing for resource-constrained edge devices and the
Internet of Things (IoT), they are an expected target for adversaries
to exploit potential vulnerabilities. Below is a concise list of potential
threats that could affect the integrity of the SOT-MRAM-based ML
accelerator chips:

• Side-Channel and Probing Attacks: require physical access to
the supply voltage and electromagnetic emission traces of the
ML accelerator chip. In addition, for probing attacks locating
memory components generating inputs and observing the
behavior of the hardware is required.

• Reverse-Engineering Attack: ML accelerator chips are
designed in a dense and modular fashion on top of the
baseline CMOS devices, which makes reverse engineering
challenging. With physical access to the chip, adversaries
can apply inputs and observe output behavior to extract
model parameters such as weights as well as their
relationship with the inputs, and eventually clone the
design. The modular design of the ML accelerators makes
this more significant.

• Fault Injection and Focused Ion Beam Attacks: require access
to the ML accelerator chip to perform fault injection (FI)
attacks. The adversary needs to decapsulate the chip, locate the
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region of interest on the layout, apply inputs, and observe
outputs’ behavior or inject voltage glitches. Additionally,
without physical countermeasures in the front or backside
of the chip, a focused Ion beam attack can cause random bit-
flips and random faults.

• Hardware Trojan Attack: the threat of hardware Trojans
(HTs) is present at various stages of the IC supply chain.
HTs are malicious modifications at any stage of the design that
can remain stealthy until triggered by a rare event in the
design. Once triggered a payload will be deployed to degrade
accuracy and performance, cause faults and failures, or leak
information.

Furthermore, recent approaches have utilized SOT-MRAMs to
mitigate hardware security vulnerabilities within the supply chain
process (Divyanshu et al., 2022). For example, the work in
(Divyanshu et al., 2023) introduces an innovative approach to
generate hardware watermarks by utilizing SOT-MTJ devices,
which aims to secure intellectual property (IP) cores within the
context of system-on-chip (SoC) design. Considering the device-
level threats on SOT-MRAM, such approaches may not result in a
secure implementation of hardware. Although these works provide
useful insights into vulnerabilities affecting ML accelerators using
emerging devices, they do not explore the manufacturing threats to
the device-level that induce significant algorithm-level impacts.
Thus, herein we introduce a novel threat model, demonstrate a
vulnerability in ML accelerators utilizing emerging devices such as
SOT-MRAM, and provide mitigation suggestions to thwart
such threats.

3 Proposed approach for
sensitivity analysis

In this Section, we propose a threat model that exploits the
sensitivity of device characteristics to process variation.

Subsequently, we detail our approach to study the impact of such
attacks at the application level.

3.1 Threat model

This Section presents the development of a threat model
premised on a benign modification of critical physical
parameters of the SOT-MTJ during the manufacturing process
that can disrupt the device’s expected operation. A white-box
threat model is devised based on the following assumptions: 1)
The attacker is a hardware supply chain insider, capable of
introducing variations in one or more critical MTJ parameters
during fabrication; 2) the introduced variations fall within an
acceptable range while maintaining a stealthy nature, making
them challenging to detect; and 3) the attacker also has prior
knowledge of the memory architecture of the neural network,
i.e., the knowledge of the critical nodes in the weight matrix, that
when affected by bit-flips can significantly affect the accuracy.
These assumptions are valid due to side-channel information
leakage in recent times, which can transpire if the attacker has a
subset of the test data and uses it for inference. In Section 4, we
provide experimental evidence that modification of device
physical characteristics could leverage process variation (PV).
In particular, we demonstrate how changing the thickness of the
oxide layer, Tox, can result in modification of the resistive
behavior of MTJs; thus, affecting the read current flowing
through the device. Considering an ML accelerator design
that utilizes a crossbar architecture with MTJs, such changes
in the read current can accumulate across neighboring branches,
resulting in incorrect firing of neurons within a neural network
application. An attacker having this knowledge can determine
the minimum threshold for variation for a stealthy attack, which
falls within the acceptable range to pass functional testing.
However, this can significantly disrupt the usual operation of
a target application.

FIGURE 2
Device structure of an SOT-MTJ cell.
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3.2 Approach to examine sensitivity against
various threats

Our high-level approach to examine the sensitivity of the
application against such threats is depicted in Figure 3. The goal
is to introduce PV on various device characteristics and study the
impact on performance of a larger in-memory computing
application implemented with these devices, such as digit
recognition, to demonstrate how changes in physical parameters
at the device level can transcend and impact the performance at the
application level. Furthermore, we analyze how read operations on
few devices in a row can affect the original resistive states of the
devices under process variation. It is observed that accumulated
currents from multiple branches in the weight matrix, such as the
read currents, Iread1 and Iread2, shown in Figure 3, may be large
enough to cause either bitflips of multiple weight nodes in the
crossbar array or incorrect firing of neurons in a given ANN. Such
bitflips eventually affect the performance, e.g., reducing the accuracy
of a handwritten digit recognition application based on the
MNIST dataset.

For this study, we initially consider a 10% isolated variations of
oxide thickness as well as length, width, and thickness of both free
layer and heavy metal layer of the SOT-MTJ and observe its effect of
device resistance characteristics. Furthermore, we study the
combined effect of process variation on all three, i.e., the free
layer length, width, and the oxide thickness parameters, by
performing Monte Carlo (MC) simulations, such that the

combined total variation is limited to less than 10%. We avoid
exceeding this limit, since beyond this the variations in physical
dimensions of the device could be detectable during the testing,
violating the attack’s purpose of remaining stealthy. After careful
analysis, we study the effects of PV on the switching behavior of a
single device via simulation in HSPICE. Finally, we study the
impacts of such variations on the performance of a hand-written
digit recognition application working with the PIN-Sim framework
(Ahmed et al., 2017) for intelligent inference.

4 Results and discussion

In this Section we provide the simulation results and discuss
potential detection and mitigation techniques.

4.1 Tools and models used for simulation

Our evaluation framework and process flow are depicted in
Figure 4. We utilize a MATLAB-based SOT-MTJ model to identify
the critical device parameters, alteration of which significantly
affects the device resistance characteristics. To analyze the effect
of the physical variations on device performance, we utilize a
HSPICE model of the SOT-MTJ device with parameters listed in
Table 1 (Ahmed et al., 2017; Hossain et al., 2023; Hossain et al.,
2024) along with the resistance values, i.e., high (anti-parallel (AP),

FIGURE 3
Approach to examine sensitivity against various threats.
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and low, i.e., parallel (P), resistive states and tunnel
magnetoresistance (TMR) as obtained from MATLAB
simulations. We measure the read current (Iread) and the
corresponding read duration of the SOT-MTJ, and study whether
due to PV, the same read current can end up causing the device to
switch its state within the measured read duration. Moreover, we
designed a 786 × 200 × 10 ANN using the PIN-Sim framework and
introducedmultiple targeted bitflips in the weights and bias arrays of
the ANN to study the impact on applications targeted for ML
accelerators (Ahmed et al., 2017).

4.2 Single device results

The resistance of MTJ in a SOT-MRAM is modeled using Eqs
1, 2:

RMTJ � Tox

f × A ×√φ
exp 1.025 tox

��
φ

√( ) (1)

TMR � TMR0

1 + Vbias
Vh

( )2, (2)

where RP = RMTJ and RAP = RMTJ(1+TMR), Tox is the oxide layer
thickness, f is a material-dependent parameter that depends on the
resistance-area product of the device, A is the surface area of the
device, φ is the energy barrier height of the oxide layer, Vbias is the
bias voltage, and Vh is the bias voltage at which TMR drops to half of
its initial value (Hossain et al., 2023; Hossain et al., 2024). Figure 5
shows our findings by performing MC simulations with
2,000 instances to observe the effect of isolated 10% PV of
various device parameters on RP, RAP, and TMR. The effect of
PV on the dimensions of the heavy metal is found to be negligible on
the device resistances and the TMR, and hence not included herein.
However, the length and width of the device and the thickness of
oxide layer shows high dependency with the device resistive
behavior and TMR, which we explore further to investigate our
threat model. Figure 5A, B show that device resistive behavior has a
linear proportional relation with the width (WFL) and length (LFL) of
the free layer. It is found that the TMR, being a ratio of the device
resistances, remains constant for both the variations. Figure 5C
depicts that the device resistance increases exponentially with
increase in the oxide thickness (Tox), especially beyond 1.15 nm,
whereas TMR vs. Tox has a linear relationship as per Figure 5D. The
TMR value of the MTJ device utilized in our simulations is 100%, as

FIGURE 4
Simulation Framework and Process flow.

TABLE 1 HSPICE device simulation parameters.

Symbol Parameter Value

α Damping Coefficient 0.02

T Temperature 300 K

P Polarization 0.73

TMR Tunnel Magnetic Ratio 100%

Tox Thickness of oxide layer 1 nm

q Electron charge 1.602e−19 C

RAp Resistance Area Product 5 Ω μm2

Ms Saturation Magnetization 1185 A.m-1

ћ Reduced Planck’s Constant 6.626e-34/2π J.s

Hk Anisotropy field 80 Oe

MTJ Volume L × W × T × π/4 (60 × 45 × 0.07 × π/4) nm3

HM Volume L × W × T (60 nm × 80 nm × 2) nm3

KΩ, kilo-ohm; K, kelvin; mV, milli-volt; nm, nanometer.
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indicated in Table 1. In comparison to recent research (Chiang et al.,
2020) that has reported TMR values of 250% or higher, this value is
comparatively moderate. Nevertheless, it serves as a valuable
baseline for assessing the effect of PV on device performance.
Higher TMR values would generally result in a larger difference
between the R_P and R_AP resistance states, enhancing the
distinguishability of these states and potentially improving the
robustness of the ML model against PV-induced errors. In the
presence of PV, devices with higher TMR could exhibit reduced
sensitivity to minor variations in device parameters and potentially
maintain higher accuracy in ML model predictions. However,
accuracy degradation can still occur in case of significant
variations, resulting in increased error rates under extreme PV
conditions. It can be observed that with the decrease in WFL and
LFL, the gap between the resistances of the R_P and R_AP states
increases. This is illustrated in Figures 5A,B, where the spread in
resistance values widens asWFL and LFL decrease. Conversely, with a
decrease in Tox, the gap between the resistances of the R_P and R_
AP states narrows, as shown in Figure 5C. This narrowing of the
resistance gap with decreasing Tox could potentially result in
complications including reliability issues such as read failure,
oxide breakdown, and unwanted bitflips.

Furthermore, in the scenario considering the combined effect of
PV, amounting to a total 10% variation, on length, width, and
thickness parameters, we observe from Figures 6A, B, that RP and
RAP device resistances exhibit comparable distributions with respect
to the width and length of the free layer, with multiple overlapping

samples, as well as a few unexpected anomaly points that do not fall
within either cluster. Such anomalies may be of particular interest to
a malicious attacker seeking to exploit the unanticipated device
behavior to inject faults or cause device malfunction. Figure 6C
demonstrates the exponential dependence of device resistance with
thickness of oxide layer, in combination with variation in width and
length of free layer. Moreover, Figure 6D demonstrates the linear
dependence of TMR w.r.t. variations in oxide thickness, width, and
length of free layer. For the range of oxide thickness between 0.8 nm
and 1.15 nm, the RP, RAP values appear to be very close, as shown in
Figure 5C. Considering these results, it is valid to hypothesize that a
minor variation in oxide thickness may cause a change in device
resistance from RP to RAP, and vice versa, making the devices prone
to faults and bitflips from Logic “0” to Logic “1.” Our experimental
values of Tox, WFL and LFL lie within 96% confidence intervals of
1 nm ± 1.45e-3 nm, 60 nm± 8.85e-11 nm, and 45 nm± 6.65e-11 nm,
respectively, for the 2,000 samples.

According to the SOT-MTJ model used (Hossain et al., 2023;
Hossain et al., 2024), the device oxide thickness should be in the
operating range of 0.85 nm–1.15 nm. Thus, we apply this as a
limitation for our investigation to consider variations within −3% of
1nm, which is our baseline. First, we measure the read current that
passes through the SOT-MTJ device as well as capture the read
duration, with parameters listed in Table 1 for different oxide
thicknesses values, by modeling the device connected with simple
read-write peripheral circuitry in HSPICE designed with CMOS
PTM 45 nm HP library, at VDD = 0.8V (Ahmed et al., 2017). We

FIGURE 5
Individual PV analysis of (A) width of free layer, (B) length of free layer, and (C) oxide thickness on RP, and RAP, and (D) effect of oxide thickness
on TMR.
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aim to determine whether the read current through a device is
significant enough to cause bitflips in the devices affected through
PV within the read duration (<5 ns). In particular, we study the
effect of variation on Tox and observe if accumulated read currents
from neighboring branches in the crossbar is higher than the critical
switching current and can result in an undesirable switching of the
device state from “P” to “AP” or vice versa during the read operation.
We calculate the switching current for the device model based on
(3), where q is the electron charge, ћ is the Reduced Planck constant,
α is the Gilbert damping coefficient, Hk is the anisotropy field,Ms is
the saturation magnetization, and V is the volume of the
nanomagnet (Rakheja and Naeemi, 2012). The values of critical
switching current, Icrit_sw, for “AP” to “P,” and “P” to “AP” switching

of the MTJ device are shown by the dotted lines in Figure 7 as
observed in HSPICE simulation and found from (Eq. 3). It aligns
with the critical switching current of the device in literature and the
asymmetric switching characteristics of such devices (Rakheja and
Naeemi, 2012).

Icrit sw � 2
q

ћ
αHkMsV 1 + 2πMs

Hk
[ ] (3)

Figure 7 shows the read current values (Iread) that cause
successful switching of initial state of MTJ for the particular
values of Tox, and are marked in red. These represent the
targeted bitflips by the attacker via introduction of malicious
modifications into the MTJ device parameters. Specifically, for

FIGURE 6
Applying combined PV to length, width, and thickness parameters. Effect of modification in (A) width of free layer, (B) length of free layer, and (C)
oxide thickness on device resistance and (D) effect of Tox variation on TMR.

FIGURE 7
SOT-MTJ device read current (Iread) variation with change in oxide layer thickness during (A) “AP” to “P,” and (B) “P” to “AP” switching.
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Tox < 1.1 nm in case of Figure 7A “AP” to “P” switching, as Iread
flowing through the device is above Icrit_sw, targeted bitflips occur.
Similarly, for Tox > 1.05 nm, the Iread is insufficient to cause bitflips
and hence represents safe limit of Tox for such bitflip attacks through
read current. Likewise, this safe range for the “P” to “AP” switching
in Figure 7B is found to be Tox >1.1 nm, as the device is able to hold
its initial stable resistance state and remains immune to
unwanted switching.

4.3 Crossbar array results

We utilize the PIN-Sim consolidated framework developed in
MATLAB, Python, and HSPICE for evaluating the performance
for large scale applications. A 784 × 200 × 10 ANN is designed
and trained on 3,000 training samples in MATLAB and the
testing results are presented via running 100 test samples in
HSPICE, containing a mixture of the ten different digits from
0–9. The training weights and biases extracted from the
MATLAB-based model are translated to their corresponding
memristive values in HSPICE. A python-based module is
utilized to implement the memristive crossbar and a low-
energy/-footprint spin-based neuron with sigmoidal activation
function (Ahmed et al., 2017). The overall error rate achieved for
the 100 test samples along with individual error rates for each
digit recognition are listed in Table 2, where Error Rate = (# of
incorrect recognitions of a digit)/(# of samples of that digit) ×
100%. Initially, with weights and biases ranging from 1 KΩ to
5 KΩ, the overall error rate achieved for the 100 test samples is
41%, which can be attributed to the small network size with only
one hidden layer. Herein, we focus on the effect of Tox variation
resulting in bitflip, applied to a single row of the weights in the
crossbar array. In order to analyze the performance within the
target Tox confidence interval mentioned in Section IVB, we
modify the weights and biases resistances to two discrete
levels, 2.5 KΩ and 5 kKΩ, which results in an overall error
rate jump to 58%. It is observed that if only 0.05% of the
overall weights are affected by bitflips, the resulting overall
error rate increases by another 2%. Among the digits, digits
“0,” “4,” and “9” show an increase in error rates due to
bitflips, whereas digits “1,” “5,” “6,” and “7” show a decrease
in error rates due to implemented bitflips. With 0.05% of bits in
crossbar having a flipped resistance state, digits “4,” and “5” show
highest overall error rates and digit “9” the lowest. The

recognition accuracy of digits “2,” “3,” and “8” remain
unaffected by bitflip attacks. These findings can be tactically-
exploited by an attacker to affect certain digit recognition more
than others, thereby influencing the performance of other
embedded applications interfacing with this digit recognition
for further processing.

4.4 Scope and feasibility of mitigation
techniques

According to the MITRE Common Weakness Enumeration
(CWE) database, the vulnerability exposed in this paper closely
relates to “CWE-1248: Semiconductor Defects in Hardware Logic
with Security-Sensitive Implications” and “CWE-1384: Improper
Handling of Physical or Environmental Conditions.” Such
weaknesses can have varying consequences. For example, based
on the CWE database, CWE-1248 can result in a Denial of Service
(DoS) and can be detected and mitigated during the testing phase
(CommonWeakness Enumeration, 2023). Although semiconductor
manufacturing companies are dedicated to refining their processes
continuously to minimize defects, some defects cannot be fully
addressed during manufacturing. Thus, testing the silicon die
utilizing fault models is paramount to detect such weaknesses.
Beyond manufacturing variations, the sense amplifier circuit
which is utilized to read the state of MTJ is highly susceptible to
aging-related degradation of the threshold voltage of its constituent
transistors. Thus, a lifetime mitigation strategy should consider Bias
Temperature Instability (BTI)-induced variations which may mask
or otherwise interfere with an effective vulnerability mitigation
strategy (Khoshavi, et al., 2014). Furthermore, various strategies
exist to safeguard ICs against threats like logic locking system, deep-
learning power side-channel attack mitigation, neuromorphic
computing modules for IoT, etc. (Divyanshu et al., 2022; Kolhe
et al., 2022). We are currently investigating the benefits of meta-
training to make the NNmore resilient to manufacturing parameter
variations. In addition, the accuracy of decision-making in these ML
models can be influenced by the incorporation of Hardware Trojans
(HTs) at the hardware level during the manufacturing process.
Additionally, countermeasures such as the one proposed in
(Kannan et al., 2014) have been used to prevent probing and
reverse engineering attacks on ML accelerators using emerging
memory devices. The various detection and mitigation strategies
in literature can be classified into two broad categories:

TABLE 2 Crossbar array analysis results - effect of bitflips on error rates (%), accuracy = (100-error rate)%.

Test conditions Digit
0 (%)

Digit
1 (%)

Digit
2 (%)

Digit
3 (%)

Digit
4 (%)

Digit
5 (%)

Digit
6 (%)

Digit
7 (%)

Digit
8 (%)

Digit
9 (%)

Overall
(%)

With weights and biases
ranging 1KΩ - 5KΩ

0 66.67 25 45 42.8 42.8 20 64.28 0 33.33 41

With 2 discrete weight
levels 2.5KΩ & 5KΩ

42.85 80 50 36.36 64.28 100 60 85.71 50 0 58

With bitflips in 0.05%
nodes of overall weight

matrix

57.14 73.33 50 36.36 85.71 85.7 20 78.57 50 11.11 60

Minimum-No impact on accuracy Moderate impact on accuracy Significant impact on accuracy.
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4.4.1 Detection and mitigation of hardware
Trojan attacks

Reverse-engineering is the enabler of HT attacks and some
countermeasures to mitigate reverse engineering attacks are
proposed in the literature (Yang et al., 2016). Some process
variation mitigation techniques for spintronic and memristive
devices have also been researched, such as tunable stochasticity
using feedback mechanism, radiation hardening (Zhao et al., 2014).
etc. Although the first method is applicable for low barrier stochastic
SOT-MRAMs, a similar approach could potentially be modified to
mitigate bit flips in memristive crossbars resulting from targeted Tox

manipulation from adversaries to collect useful information or
disrupt the proper functioning of the edge applications. The
authors in (Divyanshu et al., 2022) present an approach that
utilizes the spintronics device technology to showcase a secure
hardware implementation that thwarts reverse engineering,
hardware Trojan insertion, or IP piracy type attacks. The work in
(Forte et al., 2013) puts forth a novel low overhead method for trojan
identification at run-time. It leverages thermal sensors that are
already present in modern systems to identify variations in
power or temperature readings brought on by HT activation. In
(Huang et al., 2016), a novel side-channel-aware test generation
approach based on the Multiple Excitation of Rare Switching
(MERS) concept is presented, which increases the HT detection
sensitivity. In paper (Bao et al., 2014), the authors propose an
innovative approach to use reverse engineering to identify the
HT-free ICs. Adoption of one-class support vector machine, a
machine learning method, helped the authors to prove a new
technique to identify the HT. Finally, in (Kolhe et al., 2022), the
authors propose Symmetrical MRAM-LUT (SyM-LUT) by using the
LOCK&ROLL approach to eliminate the reverse-engineering and
side-channel attack using a defense-in-depth mechanism, making it
challenging for adversaries to insert HTs effectively.

4.4.2 Detection and mitigation of fault
injection attacks

In (Tung et al., 2023), the authors present a dynamic task
remapping more specifically a built-in self-test (BIST) based
technique fault detection method to determine the fault density
of crossbars to guide the dynamic remapping technique.
Rearranging tasks with lower fault tolerance from crossbars with
high fault density to ones with lower fault for training VGGs,
ResNets, and SqueezeNet from scratch, ReRAM crossbar is
utilized. This contributes to an average accuracy drop of only
0.85%. Another approach to detect and mitigate the FIA is being
presented in paper (Muttaki et al., 2022). The authors developed a
Fault-to-Time Converter (FTC), which requires a minimal
overhead. To be precise, the effect of faults injected by an FI
attack method is transformed into quantifiable “time” by use of
the FTC sensor. After then, additional analysis of the “time”
difference can be performed to determine the success of the
attack. Using this FTC sensor in the FPGA platforms have
shown that this design is quite effective in differentiating the
various FI attack scenarios with its encoded output. In paper
(Gubbi et al., 2023), the authors introduced a methodology to
strengthen the timing model at design-time to account for
voltage noise while training an NN, which is used as a process
tracking watchdog, at test time to model the process drift while

accounting for process variations. One or more of these techniques
may be investigated as means towards viable mitigation approaches
while incurring an overhead cost and/or increased complexity of
start-up initialization procedures.

4.4.3 Variation-aware dynamic mapping mitigation
strategies

ML accelerators are muchmore vulnerable to themanufacturing
process, as process variation might alter the entire output. This
variation can disrupt the reliability and consistency of these systems.
To address this, one of our mitigation processes introduces the
dynamic mapping technique. This technique will be used to identify
and minimize vulnerabilities in ML accelerators. Our strategy acts as
a compass, guiding the system to use algorithms that counteract this
variation during operation. As a result, our ML systems remain
robust and effective, reinforcing their reliability amidst the
intricacies of their creation. The work in (Salehi et al., 2020)
discusses a methodology for modeling and analyzing the impact
of process variations (PV) on semiconductor memory architectures,
specifically focusing on CMOS and MTJ layers used in caches and
memory cells. By employing the VARIUS tool (Sarangi et al., 2008),
the study simulates PV effects across the chip and evaluates their
influence on memory read stability. This investigation leads to a
deeper understanding of PV’s role in the reliability of hybrid SRAM
and STT-MRAM last level cache memory systems. The mapping
process begins with VARIUS, which generates a large pool of system
maps. Static analysis tools, including R and geoR packages, are then
employed to extract subtle PV parameters. These parameters play a
crucial role in modeling and mapping the MTJ architecture within
the crossbar array, serving as a detailed blueprint for comprehending
and addressing PV-related challenges.

The mapping methodology is characterized by the generation of
a PV matrix, which aids in visualizing the PV within each crossbar
array. Depending on the standard deviation considered for the PV
analysis of the system and the degree of variation from the VARIUS
analysis, we can develop a Variation Impact Score (VIS) metric to
evaluate those crossbar arrays, as well as the individual rows and
columns within those arrays. These VIS are meticulously calculated
using a Power-On Self-Test (POST) (Salehi et al., 2020) data and a
suite of analytical tools, offering a comprehensive assessment of the
impact of PV on each block. In Figure 8, a visual representation of
PV mapping in the ML accelerator is illustrated using the VIS at the
module-level as well as crossbar arrays. A VIS-based color region has
been introduced in this figure. The VIS metric can be in a range of
1–10. In particular, scores from 1 to 3 are marked as low PV impact,
4 to 6 are marked as moderate PV impact, and anything above 6 is
marked as high PV region. The architecture with low VIS is marked
green, moderate is marked yellow, and high VIS is marked red.

For addressing the PV impacts, a mitigation approach proposed
in the literature is to employ the deactivation theory of memory rows
in MRAM memories (Tung et al., 2023). This approach optimizes
system operations even when parts of the hardware are
compromised. Such strategies involve dynamically remapping the
affected areas, utilizing state-of-the-art algorithms to bypass faulty
memory rows. We can use row- or column-based dynamic
reconfiguration algorithms to assign ML parameters based on the
PV map to result in accuracy degradation while ensuring reliability
and security. Moreover, the adaptive response will preserve the
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robustness and integrity of the ML accelerator’s outcome. During
operation, we can optimize our circuit by either bypassing the entire
crossbar array or bypassing specific rows/columns based on the
requirements of the matrix vector multiplication operations. This
approach can assist in mitigating vulnerabilities in ML accelerators
and enhance the overall system security and efficiency.

4.4.4 Discussion of limitations and future
directions

To acknowledge the limitations of our study, we focus on the scope
of our simulations, the assumptionsmade regarding process variations,
and the need for experimental validation. Firstly, our simulations are
based on a set of predefined parameters and assumptions, which may
not fully capture the complexities and variabilities present in real-world
manufacturing processes. Secondly, our work is focused on assessing
TMR values only up to 100%. However, recent progress has indicated
the existence of greater TMR values, which may have the capacity to
modify the observed impacts of process variations. In addition, our
threat model assumes an insider attacker with certain capabilities,
which may not cover all potential attack scenarios. Moreover, our
analysis was performed only on the MNIST dataset, and we will
expand our results to include other datasets such as CIFAR10, Fashion-
MNIST, KMNIST, GTSRB to provide a better understanding of such
vulnerabilities. Future research should involve a more detailed and
comprehensive threat model as well as the actual production of SOT-
MRAM devices with deliberate process modifications to validate the
simulation results and establish more effective methods for reducing
potential issues. In future work, we intend to investigate the effects of
greater TMR values on ML models’ robustness to PV. Specifically, we

will increase the TMR value from 100% to 250% and run a series of
experiments to assess the impact on device performance and ML
model accuracy. With higher TMR values, it is expected to have a clear
distinction between the RP and RAP resistance states, which potentially
enhances the robustness of ML models against PV-induced errors. In
the presence of extreme PV, increased error rates could still be
observed. In order to fully understand the effects of increased TMR
on the resilience of MLmodels to PV, it is necessary for future study to
investigate these dynamics.

5 Conclusion

The recent trend of implementing SOT-MRAMs in ML
accelerators obviates increasing need for awareness and
eventually reasonable mitigation of security threats associated
with the manufacturing process the underlying devices. It is seen
that a maliciously modified SOT-MRAM can change the behavior of
AI hardware performing critical decision-making tasks. In this
paper, we demonstrate how global changes to a single
manufacturing aspect of a SOT-MRAM device, such as Tox, can
reveal bitflip vulnerability of memristive values. The simulation
results illustrate a change in the oxide layers can cause unwanted
switching of the operational state of the MTJ device.Beyond the
simulation results showed in this paper, the fabricated MTJ device
may demonstrate more vulnerabilities than the current simulation
results. So, the future goal is to physically fabricate a maliciously
modified MTJ device to differentially-execute operations and with
the findings, the aim will be to secure the future semiconductor

FIGURE 8
Visual Representation of Process Variation mapping in ML Accelerators Variation Impact Score (VIS) of crossbar arrays in the system.

Frontiers in Electronics frontiersin.org11

Chowdhury et al. 10.3389/felec.2024.1409548

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2024.1409548


industry from such manufacturing threats to the sensitivity of
critical device parameters.
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