
Hardware acceleration of DNA
pattern matching using analog
resistive CAMs

Jinane Bazzi1, Jana Sweidan1, Mohammed E. Fouda2*,
Rouwaida Kanj3,4 and Ahmed M. Eltawil1

1King Abdullah University of Science and Technology, Thuwal, Saudi Arabia, 2Rain Neuromorphics Inc.,
San Francisco, CA, United States, 3ECE Department, American University of Beirut, Beirut, Lebanon,
4Synopsys Inc., Austin, TX, United States

DNA pattern matching is essential for many widely used bioinformatics
applications. Disease diagnosis is one of these applications since analyzing
changes in DNA sequences can increase our understanding of possible
genetic diseases. The remarkable growth in the size of DNA datasets has
resulted in challenges in discovering DNA patterns efficiently in terms of run
time and power consumption. In this paper, we propose an efficient pipelined
hardware accelerator that determines the chance of the occurrence of repeat-
expansion diseases using DNA pattern matching. The proposed design
parallelizes the DNA pattern matching task using associative memory realized
with analog content-addressable memory and implements an algorithm that
returns the maximum number of consecutive occurrences of a specific pattern
within a DNA sequence. We fully implement all the required hardware circuits
with PTM 45-nm technology, and we evaluate the proposed architecture on a
practical humanDNA dataset. The results show that our design is energy-efficient
and accelerates the DNA pattern matching task by more than 100× compared to
the approaches described in the literature.

KEYWORDS

DNA sequencing, disease diagnosis, pattern matching, associative memory, analog
CAM (aCAM)

1 Introduction

Deoxyribonucleic acid (DNA) pattern matching is the workhorse for several
bioinformatics applications. Disease diagnosis is the most popular among them (Mane
and Pangu, 2016). Scientists rely heavily on DNA pattern matching to explore and detect
possible diseases that can arise due to changes in DNA sequences.

A DNAmolecule contains the information needed for the development and functioning
of organisms. DNA has four basic nucleotide characters: adenine (A), cytosine (C), guanine
(G), and thymine (T). A combination of these characters forms a DNA sequence that is
unique to each organism. Genes are subsequences of DNA that carry information about an
organism’s physical traits. It is important to understand and analyze gene sequences since
changes in these sequences, referred to as mutations, may have harmful effects on the
organism in which they occur, for example, by causing a genetic disorder. One of the major
changes is nucleotide repeats, in which a specific DNA pattern repeat is expanded
abnormally within a region of DNA. More than 40 repeat-expansion diseases are
known, most of which primarily affect the nervous system. Expanded trinucleotide-
repeat disorders, which are caused by the unstable expansion of three nucleotides

OPEN ACCESS

EDITED BY

Angela Slavova,
Bulgarian Academy of Sciences (BAS), Bulgaria

REVIEWED BY

Esteban Garzón,
University of Calabria, Italy
Angela Slavova,
Bulgarian Academy of Sciences (BAS), Bulgaria

*CORRESPONDENCE

Mohammed E. Fouda,
foudam@uci.edu

RECEIVED 23 November 2023
ACCEPTED 21 December 2023
PUBLISHED 12 February 2024

CITATION

Bazzi J, Sweidan J, Fouda ME, Kanj R and
Eltawil AM (2024), Hardware acceleration of
DNA pattern matching using analog
resistive CAMs.
Front. Electron. 4:1343612.
doi: 10.3389/felec.2023.1343612

COPYRIGHT

© 2024 Bazzi, Sweidan, Fouda, Kanj and Eltawil.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Electronics frontiersin.org01

TYPE Original Research
PUBLISHED 12 February 2024
DOI 10.3389/felec.2023.1343612

https://www.frontiersin.org/articles/10.3389/felec.2023.1343612/full
https://www.frontiersin.org/articles/10.3389/felec.2023.1343612/full
https://www.frontiersin.org/articles/10.3389/felec.2023.1343612/full
https://crossmark.crossref.org/dialog/?doi=10.3389/felec.2023.1343612&domain=pdf&date_stamp=2024-02-12
mailto:foudam@uci.edu
mailto:foudam@uci.edu
https://doi.org/10.3389/felec.2023.1343612
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org/journals/electronics#editorial-board
https://www.frontiersin.org/journals/electronics#editorial-board
https://doi.org/10.3389/felec.2023.1343612

consecutively repeated, were the first to be discovered, and they
remain the most frequent. Recently, the list of repeat-expansion
diseases has increased to include tetra-, penta-, hexa-, and even
dodeca-nucleotide repeat expansions (Paulson, 2018). Table 1 shows
some examples of diseases and their corresponding genes and
pattern counts. DNA pattern matching can be used to detect
these diseases by identifying the number of consecutive
occurrences of the corresponding pattern.

Datasets of DNA sequences require a huge amount of storage.
For instance, the human genome has around 3.1647 billion DNA
base pairs (Adjeroh et al., 2002). This significant volume of DNA
data imposes a challenge in performing DNA pattern matching
efficiently. Accordingly, many works have been proposed in the
literature to accelerate DNA pattern matching, such as acceleration
systems using parallel computing platforms, for instance, GPUs
(Adey, 2013). To accelerate search operations with large DNA
sequences, in (Raju et al., 2018), the authors proposed three
DNA pattern matching algorithms running on CPU: Linear
Array, Butterfly, and Divide and Conquer algorithms. Although
these algorithms showed an improvement in terms of time cost
compared to existing algorithms (Brute Force (Cormen et al., 2022),
KMP (Knuth et al., 1977), and Boyer–Moore (Boyer and Moore,
1977)), they remain computationally intensive and need to be
further accelerated by hardware. Therefore, various works have
explored the utilization of hardware accelerators to implement
DNA pattern matching aiming to further reduce its execution
time. For instance, in (Lei et al., 2016), the authors proposed
SCADIS, an FPGA-based short read mapping accelerator
utilizing the KMP algorithm. Implemented on a Xilinx Zynq
development board, SCADIS achieved a 2× speedup compared to
an ARM Cortex-A9 processor with acceptable cost and higher
energy efficiency. Kim et al., 2020 introduced GenieHD, a novel
pattern matching algorithm employing hyperdimensional
computing. GenieHD outperformed the approach in (Lei et al.,
2016), implemented on the same board.

Pattern matching can be categorized into various types
(Mahmud et al., 2023). In terms of accuracy, the two primary
types are exact and approximate pattern matching (Hakak et al.,
2019; Markić et al., 2020). In approximate pattern matching (Kaplan
et al., 2018; Kim et al., 2018; Laguna et al., 2020; Khatamifard et al.,

2021), the goal is to identify patterns that are similar rather than
identical. This means that mismatching characters may exist
between the query pattern and the stored data entry.
Consequently, a certain level of error is acceptable, and such a
stored pattern should still be considered a match. This is important
for cases with DNA sequencing errors. In contrast, our focus in this
paper is on the exact pattern matching problem, which involves
identifying all precise occurrences of a pattern in a DNA sequence.
Our objective is to develop a domain-specific hardware accelerator
to accelerate the exact DNA pattern matching task, as opposed to
relying on general-purpose designs that are slower and more
energy-consuming.

Associative memory (AM) is a powerful tool for in-memory
computing. It is a form of storage device that can be searched in a
parallel manner (Arsovski et al., 2003). The address of any content
that matches an input data word is returned. The fast parallel search
offered by AMmeans that this type of memory is used in a variety of
applications with big data workloads, for instance, genomic analysis,
for which the amount of data has experienced exponential growth in
recent years (Garzón et al., 2022). Content-addressable memory
(CAMs) is one way to implement AMs. CAMs can be realized with
different technologies, for instance, digital CAMs are implemented
using standard CMOS and flip-flops (Kokosiński and Sikora, 2002).
However, these types of architecture have high power consumption
and low density. Accordingly, various emerging resistive device
technologies have been used to implement some recently
proposed CAMs, benefiting from their non-volatility and high
packing density (Fouda et al., 2022). Examples of resistive devices
include ReRAM, phase change memory, magnetic tunneling
junctions, and ferroelectric devices (Yin et al., 2020). Resistive-
based CAMs have an order of magnitude improvement in power
consumption and area. Moreover, they can store wide intervals,
thereby enabling continuous search ranges for analog applications.
In this work, we study memristor-based analog CAM (aCAM),
which has a higher memory density and lower power intake. aCAM
could accelerate existing applications and may enable potential new
uses (Li et al., 2020).

In this paper, we propose a hardware architecture that can
perform DNA pattern matching efficiently with low cost in terms of
latency and power consumption. The proposed hardware

TABLE 1 Examples of nucleotide-repeat disorders. Based on data from (Usdin, 2008; Lalonde et al., 2020).

Disease Gene Pattern Normal range Disease range

Ataxia syndrome FMR1 CGG 6–54 55–200

Friedreich’s ataxia FXN GAA 5–33 66–1,300

Huntington’s disease HTT CAG ≤26 > 40

Fragile XE syndrome AFF2 CCG 6–25 > 200

Myotonic dystrophy 2 DMPK CCTG 11–26 75–11 000

Spinocerebellar ataxia 1 ATXN1 CAG 6–35 ≥39

Huntington’s disease-like 2 JPH3 CTG 6–28 4–60

Spinal and bulbar muscular atrophy AR CAG 11–24 40–62

Dentatorubral-pallidoluysian atrophy ATN1 CAG 7–25 49–88

Oculopharyngeal muscular dystrophy PABPN1 GCG ≤10 12–17

Frontiers in Electronics frontiersin.org02

Bazzi et al. 10.3389/felec.2023.1343612

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2023.1343612

accelerator uses ReRAM-based AM and implements a hardware-
friendly algorithm, in which input words are compared to the entire
pattern simultaneously using AM. Our objective is to detect the
presence of possible repeat-expansion diseases. The contributions of
this paper are summarized in the following points:

• We propose a hardware-friendly pipelined algorithm for DNA
pattern matching.

• We propose the full architecture for a parallel-processing
hardware accelerator. It uses AM to enable fast parallel
searches and matching. We design all the circuits needed to
implement the proposed algorithm.

• We evaluate the performance of the proposed design in terms of
overall energy and latency by testing it on humanDNA sequences
to detect the presence of possible trinucleotide repeat-expansion
diseases. The results show the remarkable energy efficiency of our
design, along with a significant improvement in the speed of the
DNA pattern matching task, outperforming existing works in the
literature by more than 100×.

The remainder of the paper is organized as follows. Section 2
discusses DNA pattern matching and our proposed hardware-
friendly matching algorithm. Section 3 describes the proposed
hardware architecture and its implementation. Section 4 presents
the experimental setup. Section 5 reports the evaluation results in
terms of latency, energy, and area. Finally, Section 6
concludes the work.

2 DNA pattern search

Pattern matching is the process of finding all occurrences of a
pattern in a text. In DNA pattern matching, a DNA sequence is
scanned to detect the instances of a pattern of nucleotides within it.

2.1 Proposed hardware-friendly
matching algorithm

In our work, we propose a hardware accelerator that uses AM to
analyze DNA data more efficiently in parallel. We propose a

hardware-friendly algorithm to be implemented by the
accelerator design. Our algorithm returns the maximum
number of consecutive pattern repeats instead of the total
number of occurrences, because our objective is to detect
possible repeat-expansion diseases where a specific pattern is
abnormally expanded.

Figure 1 illustrates the proposed high-level design, which consists of
an associative memory (AM), binary memory, and a pattern detector.
The DNA data is stored in an M × N AM array. Since AM allows
parallel searches, p cells are activated in each row during each cycle,
enabling the simultaneous parallel comparison of a pattern of length p
to these activated cells across allM rows. To track pattern occurrences, a
binary memory is used. This memory stores ‘1’ at locations
corresponding to the indices of pattern occurrences in the AM
array. In each cycle, for the found pattern instances in the M rows,
a ‘1’ is stored in the respective binary memory cells. Subsequently,
we shift one character (1 cell) in each cycle and repeat the
comparison process. As the pattern may be split between two
rows, we use (p − 1) additional cells at the end of each row to store
the first (p − 1) characters from the row below, as shown in
Figure 1. For the last row, these additional cells store a dummy
character that will be explained later. Finally, a pattern detector
design reads and processes the values stored in the binary memory
to determine the maximum number of consecutive pattern
instances in the stored DNA data. The steps of this procedure
are shown in Algorithm 1, and the details of the pattern detector
algorithm are provided in Section 3.4.3.

Input: DNA data (1/t) and pattern P (1/p)

Output: Memory array mem (M, N − (p − 1))

1 AM = zeros (M, N)

2 mem = zeros (M, N − (p − 1))

/* Loading data except last row */

3 c = 1

4 for i ← 1 to M − 1 do

5 AM(i, 1: N − p + 1) = data (c: c + N − p)

6 c = c + N − (p − 1)

/* Last row */

/* Remaining characters */

7 r = t − (M − 1) × (N − p + 1)

8 AM(M, 1: r) = data (t − r + 1: t)

/* Replication of characters */

9 AM(1: M − 1, N − p + 2: N) = AM(2: M, 1: p − 1)

/* Dummy characters */

10 AM(M, r + 1: N) = dummy

/* N-(p-1) cycles */

11 for i ← 1 to N − (p − 1) do

12 mem (1: M, i) = (AM(1: M, i: i + p − 1) = = P)

/* Run pattern detector */

13 PatternDetector(mem)

Algorithm 1. Matching phase

3 Hardware architecture

To perform binary and ternary search operations more
efficiently, researchers have recently suggested replacing the

FIGURE 1
Proposed high-level design for comparing a pattern of
length p =3.

Frontiers in Electronics frontiersin.org03

Bazzi et al. 10.3389/felec.2023.1343612

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2023.1343612

CMOS devices in AM with memristors. More recently, the authors
in (Li et al., 2020) proposed a form of memristor-based aCAM that
can store a range of values, which can be matched or not to an analog
input. In addition to its ability to store wide continuous intervals, an
aCAM can store multiple narrow ranges as discrete levels, allowing
the storage of at least 3 bits per cell. aCAM can replace digital CAM
while improving both storage density and power consumption. As
such, aCAM is a strong candidate for DNA pattern matching since
its ability to store discrete multi-bit ranges enables the search for
DNA characters.

3.1 aCAM cell

A recent study (Wang et al., 2020) compared different types of
switching devices including memristors, phase change,
magnetoresistors, and FeFET devices. Memristor devices have key
properties, such as a high number of distinguishable states, fast
switching speed, and good endurance and retention, thereby
qualifying them as good candidates for aCAM applications.
Several types of memristor-based aCAM have been proposed in
the literature. In (Bazzi et al., 2022), the authors analyzed and
compared different memristor-based aCAM cells. They found

that the 8T2M cell was the most energy-efficient and offered low
latency, low failure probability, and small area compared to other
types of aCAMs. Thus, the 8T2M design is a suitable candidate for
DNA pattern matching.

An 8T2M aCAM cell is shown in Figure 2A. The circuit is
mainly divided into two voltage divider subcircuits that determine
the lower and upper bounds of the stored interval, respectively,
depending on the programmed resistance value in each of them. The
lower-bound subcircuit consists of a transistor connected in series to
a variable resistance RLB, followed by an inverter that controls the
voltage VG1 at the gate of a PMOS transistor T1. The lower-bound
match threshold of the aCAM cell (LB) is determined by tuning the
resistance RLB. Similarly, the upper-bound match threshold (UB) is
configured with an independent voltage divider using a variable
resistance RUB and an inverter to generate the voltage VG2 at the gate
of the pull-down NMOS transistor T2. We modified the aCAM cell
such that the input for the lower-bound subcircuit VLDL is different
from that of the upper-bound subcircuit VUDL, for reasons that we
explain later.

An aCAM search operation consists of two phases: pre-charge
and evaluate. First, the matchline (ML) is pre-charged to a high logic
level through a pull-up PMOS transistor by setting its gate voltage
nPC to low, as illustrated in Figure 2B. Then, the evaluation phase

FIGURE 2
8T2M analog CAM. (A) Schematic of the 8T2M aCAM cell. (B) Plot of the transient behavior of an 8T2M aCAM cell with match interval [0.35 V, 0.45 V]
at three different LDL = UDL inputs: matching, lower-bound mismatching, and upper-bound mismatching.

Frontiers in Electronics frontiersin.org04

Bazzi et al. 10.3389/felec.2023.1343612

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2023.1343612

starts by setting the VSLHI signal to high and VNS to 0. The arrival of
the low NS signal is delayed to give time for G1 to evaluate and
prevent it from falsely discharging the ML.

If VLDL is less than the lower bound, a low voltage, smaller than
VPC − |Vtp|, builds on G1, where VPC is the ML pre-charge voltage.
This yields a mismatch because T1 will turn on and discharge the ML.
On the other hand, if VUDL is greater than the upper bound, a high
voltage, greater than the threshold voltage Vtn, builds on G2, turning
T2 on, and the ML is discharged to a low level through T2. Thus, the
ML stays high only when the search input belongs to the interval
stored in the cell (match), set by the resistance values of RLB and RUB.

Figure 3 illustrates the voltage transfer characteristics for VG

versus VDL. Based on these curves, for a given pair of RLB and RUB

resistances, the corresponding lower and upper bounds of the stored
interval can be determined based on the VDL values, which results in
VG1 = VPC − |Vtp| and VG2 = Vtn.

3.2 DNA pattern encoding

As discussed previously, DNA sequences are combinations of four
nucleotides: A, C, G, and T. Thus, if one aCAM cell stores one DNA
character, four discrete levels are needed to represent the DNA
characters. Using the aCAM design shown in Figure 2A, four
intervals are obtained for the resistance configurations shown in
Table 2. Such an encoding guarantees zero failure. Squeezing more
than one character per interval would lead to some failure, especially if
there was variability (Bazzi et al., 2022). A study on the performance of
the aCAM cell under process variation considerations is discussed in
Section 5.3. Each DNA character can be mapped into one interval
defined by a lower and an upper bound, corresponding to resistancesRLB
and RUB, respectively (explained in Section 3.1). Figure 4 shows the
transientML voltagemeasured at 1 ns vs.VDL for the four intervals. Note
that we added a buffer of two inverters after which we read VML, as will
be discussed later. The intervals are no longer symmetric because of the
gain after the inverters.

3.3 Row matching

To search for a specific character in an aCAM cell, we apply to its
inputs a voltage equal to the average of the lower and upper bounds
of the corresponding interval defined in Table 2. The cell matches
only if its stored character is equal to the one searched for.

An aCAM cell can be deactivated to give a match, regardless of its
stored character, by applying to its lower-bound subcircuit a voltage
VLDL=VDD and to its upper-bound subcircuit a voltageVUDL= 0. Based
on Figure 3A, if the input VLDL is equal to VDD, for any resistance value
in the range, the resulting VG1 is high, greater than VPC − |Vtp|, thus
T1 will remain off and the lower-bound subcircuit matches. Similarly,
Figure 3B shows that for an inputVUDL= 0, the obtainedVG2 is less than
Vtn for all resistance values. Hence, T2 remains off and the upper-bound
subcircuit matches. Table 3 shows the different combinations of

FIGURE 3
Voltage transfer characteristics VG vs. VDL for R ∈[5 kΩ, 2.5 MΩ].

TABLE 2 Nucleotide character encoding.

Stored Programmed
resistances

Stored interval

character RLB (kΩ) RUB (kΩ) [LB, UB] (V)

A 2,500 186.32 [0.19, 0.31]

C 163.3 27.6 [0.32, 0.44]

G 24.9 9.69 [0.46, 0.59]

T 8.9 5.06 [0.63, 0.79]

FIGURE 4
VML measured at 1 ns vs. VDL for the four DNA character intervals
defined in Table 2.

Frontiers in Electronics frontiersin.org05

Bazzi et al. 10.3389/felec.2023.1343612

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2023.1343612

searched and stored data that result in either amatch ormismatch state.
A full match occurs when all the aCAM cells match within the same
row, otherwise, a mismatch is recorded, as illustrated in Figure 5. An
additional interval, MM, is needed to give a mismatch for any input.
This interval is stored in the extra aCAM cells of the last row of the
array, as discussed earlier. We set its RLB to RUB of the last interval and
its RUB to RLB of the first interval.

3.4 Proposed architecture

Figure 6 is an overview of the proposed architecture. The
architecture consists of three main building blocks, as discussed
earlier: (1) AM, which stores the DNA sequence, (2) match-index
memory, which stores the index of the pattern matches, and (3) the
pattern detector, which finds the maximum number of consecutive
pattern repeats. The details of the full implementation of each block
are described in this section.

3.4.1 Associative memory
The designed AM consists mainly of three blocks: aCAM array,

block selector, and tag registers.

3.4.1.1 aCAM array
The DNA data are stored in anM × N aCAM array. Since we are

looking for the occurrences of a specific pattern of length equal to p,
then, in our search, we activate a window of only p cells to check if this
pattern exists. As the comparison can be done in parallel across the
rows, p cells are activated per row in each cycle, and these are
compared to the pattern. The input to the activated cells is set
corresponding to the pattern characters, as defined in Table 3,
whereas the aCAM cells of the deactivated columns will have VLDL

set to VDD and VUDL set to 0, so that they result in a match, regardless
of the characters they are storing, as discussed earlier. The window of p
activated cells is shifted by 1 cell in each cycle till the end of the row,
where there are special cases, since the pattern may be split between
two rows. To handle these cases, we replicate (p − 1) characters. Thus,

TABLE 3 Different combinations of searched and stored data that result in either a match or mismatch state. ‘X’ means don’t care.

Search data Stored character Output state

Mask Search character {VLDL,VUDL} (V)

0 – {VDD, 0} X Match

1

A {0.25, 0.25}
A Match

C/G/T Mismatch

C {0.38, 0.38}
C Match

A/G/T Mismatch

G {0.53, 0.53}
G Match

A/C/T Mismatch

T {0.71, 0.71}
T Match

A/C/G Mismatch

FIGURE 5
aCAM search operation example. Blue cells are matched, red cells are mismatched, and black cells are deactivated.

Frontiers in Electronics frontiersin.org06

Bazzi et al. 10.3389/felec.2023.1343612

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2023.1343612

at the end of each row, we replicate and add the first (p − 1) aCAM
cells from the row below it. If the DNA data are not a multiple of the
row lengthN, the extra cells store the interval MM so that they always
result in a mismatch.

3.4.1.2 Block selector
In nucleotide-repeat diseases, the location of the pattern

repeats is important. In fact, for each disease, the repeats must
be in a specific gene. For example, for Huntington’s disease, the

FIGURE 6
Full hardware architecture for the proposed design.

FIGURE 7
Full memory architecture for a 128×128 match-index array.

Frontiers in Electronics frontiersin.org07

Bazzi et al. 10.3389/felec.2023.1343612

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2023.1343612

CAG repeats must be in the HTT gene, which is a portion of the
entire DNA sequence. To allow the detection of different diseases,
we store multiple critical genes in the aCAM array. We divide the
array into eight blocks, so that for each disorder, we activate the
blocks containing the corresponding gene. To select or activate
specific blocks, we designed a block selector. Its implementation is
explained in Supplementary Note S1. The block selector activates
the desired blocks by connecting its output to the aCAM cells as
follows. Figure 2B shows the signaling for the 8T2M aCAM design.
In the evaluate phase, VNS is set to 0. An aCAM cell can, therefore,
be deactivated by keeping its VNS high during this cycle. As such,
the aCAM cells of an activated block should have VNS = 0 during
the evaluation, whereas those included in a deactivated block
should always have VNS high. Therefore, the block selector
output should be inverted before it is connected to the NS of
an aCAM cell.

3.4.1.3 Drivers
The output of each block selector is connected to several chains

of three inverters with an increasing width size, and their output is
connected to the NS of the aCAM cells.

3.4.1.4 Tag registers
In each cycle, the ML result of each row is stored in the tag,

which is written to memory. The tag consists of a buffer (two
inverters) connected to a flip-flop that stores the ML value.

3.4.2 Match-index memory
In each cycle, after we have the values ready at the tag, we write

them to a 1T1R memory array, so that we can later read the memory
and input the values to the pattern detector to detect the patterns.
The role of each 1T1R cell is to store either a low-resistive state (LRS)
or a high-resistive state (HRS) corresponding to whether the pattern
in the aCAM array is a match or mismatch. This is done during the
memory write operation. After the array is populated, the next step
is to read the array. The pattern detector counts how many
consecutive patterns there are and determines the length of the
sequence. After these operations are complete, we reset the memory
array to HRS so that it is for the next use. The control unit generates
the read, write, and reset signals to organize the sequential functions
of the memory.

Each 1T1R cell consists of a memristor and an NMOS transistor,
connected as shown in Figure 7. The values of the signals at each
node (SL, X, and Y) vary depending on the write, read, or reset mode
of the memory, as summarized in Supplementary Table S4.

3.4.2.1 Memory write
During the memory write operation, the rows of the 1T1R

memory array are filled in parallel based on the values received
from the tag in each cycle. Each tag output is connected to a
corresponding row (X), which is determined by the signal C, as
illustrated in Figure 7. This is then followed by drivers with four
inverters, which drive the current. As all rows are written in parallel,
a column selector circuit is needed to write the columns (Y) of the
memory array sequentially.

As shown in Supplementary Table S4, to write a column, the
corresponding Y node must be 0 and all the others 1 to avoid
creating a current path between Y and SL (since SL = Vset) and

thus, to avoid writing them as well. To achieve this functionality,
we need a counter followed by a decoder and transmission gates. In
this way, the transmission gate outputs a 0 only for the targeted
column that is to be written. All the other columns are high. The
transmission gates are controlled by the signal A (Figure 7), which
passes the ground value for the specific column chosen by the
decoder (z = 1). Note that while writing the memory, the read
circuitry is disconnected using the transmission gates controlled by
the read signal.

For an n-column memory, the column selector circuit has a
log2n-bit counter, then a log2n to n-bit decoder, followed by n
transmission gates to get the desired Y value. This architecture is
illustrated for a 128 × 128 memory in Figure 7.

3.4.2.2 Memory read
When all the write cycles are complete, then the 1T1R

memory array is fully written. We need to read the values and
input them, one by one, to the pattern detector circuit, which
counts and detects the maximum sequence length. Reading the
whole memory requires a row selector to traverse the rows and a
multiplexer to connect the columns to a current sense amplifier
sequentially to sense the stored values.

FIGURE 8
Proposed pattern detector design for length-3 patterns. (A)
Three pointers traversing the sequence of memory bits. (B) Block
diagram of the pattern detector. (C) State diagram of the finite
state machine.

Frontiers in Electronics frontiersin.org08

Bazzi et al. 10.3389/felec.2023.1343612

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2023.1343612

To avoid traversing the whole memory cell by cell and thus,
increasing the delay, we will read every eight consecutive cells in
parallel and save them in an 8-bit parallel-in serial-out (PISO)
register, which will output them serially, one by one, to the
pattern detector circuit. To do so, we need eight n/8-bit
multiplexers, which are a chain of transmission gates whose
function is to select the eight columns and connect them to the
corresponding current sense amplifier. Thus, we need eight current
sense amplifiers for the eight columns selected. Their output will be
passed to the 8-bit PISO register, as shown in Figure 7. The selectors
of the multiplexers are determined by a log2n/8-bit counter. The
outputs of this counter are AND’ed and connected as the clock to the
row selector circuit counter, which ensures that we read the next row
only when all the current columns are read. Note that during the
read operation, the column selector circuit is disconnected.

For anm × nmemory array, the row selector circuit consists of a
log2m-bit counter, which is followed by a log2m-to m-bit decoder,
then drivers to drive the current andm transmission gates to get the
desired X node value.

3.4.2.3 Memory reset
Finally, as shown in Figure 7, to reset the memory after each

memory read, the columns (Y) must be connected to Vreset, SL to the
ground, and the rows (X) to the reset signal to turn on the NMOS
transistors and allow the current to flow from Y to SL, thus resetting
the 1T1R cell to a HRS. During this mode, the column and row
selectors and the read circuits are all disconnected.

3.4.3 Pattern detector
The output of the PISO register is input, bit by bit, into the

pattern detector, which finds the maximum number of consecutive
instances of a specific pattern. A bit equal to 1 indicates that an
occurrence of the pattern was found. Thus, for patterns consisting of
different characters, for example, CAG, every 1 should be followed
by (p − 1) zeros. As such, whenever a 1 is received, the pattern
detector can skip (p − 1) bits and check again. If the input is 1, the
number of repeats is incremented. If it is a 0, the maximum is
updated, and the count restarts from 0 and the sequence of inputs is
traversed, bit by bit, until a new 1 is found, after which we can skip
(p − 1) bits and check again. Note that for DNA pattern detection,
the maximum length of a pattern consisting of different characters is
4, as there are only four nucleotides.

To generalize the pattern matching procedure to any DNA
pattern, more than one pointer must traverse the sequence,
because a 1 is not necessarily followed by (p − 1) zeros. Without
loss of generality, for length-3 patterns, three pointers are needed to
scan the inputs received from the PISO register. The first one checks
the inputs having an index modulo 3 = 1. The second pointer scans
the inputs with index modulo 3 = 2, and finally, the third pointer
traverses the inputs with index modulo 3 = 0, as illustrated in
Figure 8A. Pointer 1 starts from the first input, then it skips 2 bits to
check the fourth input, and so on, and similarly for pointers 2 and 3.
Each pointer has its own counter and maximum register, which
saves the number of consecutive repeats.

Input: Memory array mem (m, n)

Output: GlobalMax: maximum number of consecutive

pattern occurrences

1 ctr = zeros (1, p)

2 max = zeros (1, p)

3 for i ← 1 to m do

4 for j ← 1 to n do

5 idx = (i − 1) × n + j

6 x = (idx mod p)

7 if mem(i, j) == 1 then

8 ctr(x) + +

9 else

/* Update the maximum */

10 if ctr(x) > max(x) then

11 max(x) = ctr(x)

/* Reset the counter */

12 ctr(x) = 0

13 GlobalMax = maximum (max)

Algorithm 2. Pattern detection phase

Algorithm 2 shows at a high level the pattern detection
procedure for a length-p pattern. Figure 8B is a block diagram of
the full pattern detector. In addition to the input X from the PISO
register, another input, D, is needed so that the pattern detector can
determine the end of the sequence. The pattern detector consists of a
finite state machine, three pointer blocks, a comparator, and a global
maximum register. The finite state machine, which takes inputs X
and D, outputs the signals C and R needed for each pointer block. A
clear output (CLR) is also used to reset the counters of the pointer
blocks in the initial and exit states, as will be explained later.
Figure 8C is a state diagram of the finite state machine. Each
pointer has a block consisting of a counter, a comparator, and a
maximum register. The counters are initially reset. Whenever a 1 is
received from the PISO, the counter of the corresponding pointer is
incremented by 1 (C = 1), whereas if the input is 0, the
corresponding maximum register is compared to the counter
value and updated if needed, and the counter is then reset

TABLE 4 Pattern detector actions based on the example input sequence.

Current state; input Next
state

Action in next state

Initial; 10 S2 Increment ctr1 (C1 = 1): ctr1 = 1

S2; 00 S3
Update max2: max2:=0

Reset ctr2 (R2 = 1): ctr2 = 0

S3; 10 S6 Increment ctr3 (C3 = 1): ctr3 = 1

S6; 10 S2 Increment ctr1 (C1 = 1): ctr1 = 2

S2; 10 S4 Increment ctr2 (C2 = 1): ctr2 = 1

S4; 00 S5
Update max3: max3:=0

Reset ctr3 (R3 = 1): ctr3 = 0

S5; 00 S1
Update max1: max1:=2

Reset ctr1 (R1 = 0): ctr1 = 0

S1; 00 S3
Update max2: max2:=0

Reset ctr2 (R2 = 0): ctr2 = 0

S3; 01 Exit Global max = 2

Frontiers in Electronics frontiersin.org09

Bazzi et al. 10.3389/felec.2023.1343612

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2023.1343612

(R = 1). When the sequence ends, indicated by the D input, all the
counters are reset and the maximum of the three maximum registers
is found and stored in the global maximum register.

As an example, let us assume that the input sequences for X and
D are “1 0 1 1 1 0 0 0 0” and “0 0 0 0 0 0 0 0 1”, respectively. Table 4
shows the current state starting from the initial state and each
subsequent state depending on the input xD, along with the required
action in that state. The last state is the exit state, which returns the
global maximum.

3.4.4 Control unit
The role of the control unit is to generate the control signals

required by each block of the full architecture to organize the
phases and ensure the correct sequential flow of the data. For
example, it generates the read, write, and reset signals in the
match-index memory depending on the different memory modes
to ensure the operations are correct. The control unit can be
realized on software running on a coprocessor. Hence, we have
not discussed its circuit implementation.

3.5 Timing considerations

When an input equal to 0 is received from the PISO register,
two actions need to be done: (1) comparing and updating the
maximum register and (2) resetting the counter of the
corresponding pointer. It is important to separate the
comparison and reset steps in time to ensure that the
comparison happens before the counter is reset. Since every
pointer is activated every three cycles, we delayed the
comparison by one clock cycle and the reset by two clock
cycles, so that both are completed before the same pointer hits
another input. When the sequence of bits is finished, the pattern
detector should read four extra zeros to ensure that all the
maximum registers are updated. An additional 0 is needed to
move it to the exit state, when all the counters are reset and the

three maximum registers are compared to determine the
maximum among them. Hence, we delayed the end of the
sequence signal by four clock cycles. Since the reset is delayed
by two clock cycles, we used the CLR signal, which we set to 1 in
the initial and exit states so that the counters are reset in
those states.

Two clocks are needed for the pattern matching task. The first
clock, operating with a period T, is utilized for the (M × N) AM
pattern search and (m × n) memory write. On the other hand, the
faster clock, with a period T/8, is used for memory read and
pattern detection. For loading the DNA data into AM, the aCAM
cells can be programmed row by row. Consequently, cells storing
the same character within the same row can be programmed
simultaneously. As there are four DNA characters and two
memristors in each aCAM cell, the time required to load each
row is 8Tw, where Tw is the memristor write time. Therefore,
loading data into M rows takes t1 = 8MTw. Note that loading the
data is done only once. For each block in the aCAM array,
memory write can occur in parallel with the pattern search
phase, starting after one clock cycle. To enhance speed and
efficiency, a pipelined architecture is employed. Two match-
index memories are used, allowing the reading of one memory
while writing the results of new pattern search operations into the
other memory. This process begins from the second AM block,
where reading the memory of the previous block can occur
simultaneously with the pattern search of the next block. The
pattern detection starts one clock cycle after reading from
memory, and its operation is continuous across all processing
blocks. Finally, resetting each memory is done in one clock cycle.
Hence, for the first block only, the time needed is the time for
pattern search plus one cycle, which is equal to T (N − (p − 1) + 1),
whereas for the following blocks, it is dominated by the memory
read, which is equal to T

8 (mn). In the end, an additional delay D is
needed by the pattern detector to complete its operation. This
functionality is illustrated in Figure 9 and can be expressed by the
following set of definitions:

FIGURE 9
Timing diagram for the proposed design.

Frontiers in Electronics frontiersin.org10

Bazzi et al. 10.3389/felec.2023.1343612

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2023.1343612

t1 � 8MTw (1a)
Δt12 � T N − p − 1() + 1() (1b)

Δt23 � T

8
mn() (1c)

ts,k � t1 + Δt12 +KΔt23 +D (1d)
where T represents the period of CLK1, D is the additional

delay needed by the pattern detector to finalize its operation,
which is equal to 6 (T/8) in the case of 3-length pattern, and ts,k
denotes the total time needed to return the maximum number of
consecutive pattern repeats in K blocks. It should be noted that
during the last block cycle, a pattern search operation is
not performed.

4 Experimental setup

We built a simulation framework with MATLAB and HSPICE
for both circuit and system simulations. In the circuit simulations,
we relied on predictive technology models for 45-nm high-k/metal
gate CMOS devices (Cao, 2018) to study the design metrics. We set
VDD = 0.8 V. We considered the HTT gene as a case study for
evaluating the proposed design.

The AM has a block selector, drivers, aCAM array, and tag. We
implemented the block selector using CMOS gates, as explained in
Supplementary Note S1. The output of each block selector is connected
to 64 drivers with three inverters each, which are connected to the rows
of the aCAMarray.We used a 512 × 130 aCAMarray to store the DNA
data, whichwe divided into eight blocks, each consisting of 64 rows. The
ML of each row is connected to a driver with two inverters, followed by
a flip-flop that stores the ML result.

In our memory simulations, we adopted a linear memristor
model, parameterized with the data reported in (Li et al., 2020;
Pedretti et al., 2021). We studied a 64 × 128 memory array.
Accordingly, the memory components were as follows. For a
write operation to a 64 × 128 memory array, the column selector
circuit has a 7-bit counter, then a 7 to 128-bit decoder followed by
128 inverters and 128 transmission gates. To read the memory, the
row selector circuit consists of a 6-bit counter, followed by a 6 to 64-
bit decoder, then 64 transmission gates. To read every eight
consecutive cells in parallel, we used eight 16-bit multiplexers
connected to eight current sense amplifiers, whose outputs are
passed to an 8-bit PISO register. The circuit connections are as
shown in Figure 7. For the column and row selector circuits, we used
synchronous master–slave JK-flip-flop up counters to minimize the
delays and avoid glitches. For the current sense amplifier, we used
the circuit presented in (Sun et al., 2018). We modified the Ron, Roff,
and Rref parameters to meet the specifications of our circuit: Ron =
5 kΩ, Roff = 2.5 MΩ, and Rref = 14 kΩ. For the pattern detector, first,
for the finite state machine, we used dynamic flip-flops to represent
the states, which enhanced performance and speeded up the
latching. Then, for each pointer block, we used an 8-bit D-flip-
flop counter, an 8-bit comparator, and an 8-bit maximum register,
as shown in Supplementary Figure S2 in Supplementary Note S2.
The comparison logic, which returns the maximum value among all
the maximum registers, was implemented using two 8-bit
comparators, two multiplexers, and an 8-bit global maximum
register, which stores the global maximum, as illustrated in
Supplementary Figure S3 in Supplementary Note S2.

5 Results and discussion

In this section, we evaluate the performance of our circuit in
terms of key metrics, namely, latency, energy, and area.

First, for the delay, we set the clock cycle T to 1 ns based on the
circuit simulations. By applying the time equations in the timing
considerations under Section 3.5 and based on Figure 9, assuming
Tw = 1 cycle, the amount of overhead needed to load the data into the
aCAM array is t1 = 8MT = 4.096 μs. The time needed to process the
first block is Δt12 = 129 ns. Whereas for the other blocks, it is equal to
Δt23 = 1,024 ns. As such, in total, ignoring the time overhead to load

FIGURE 10
Energy breakdown for the proposed hardware accelerator
storing/searching 512×128 DNA characters.

FIGURE 11
Improvement of the proposed design in terms of DNA pattern
matching execution time with respect to prior works, for different
sequence lengths.

Frontiers in Electronics frontiersin.org11

Bazzi et al. 10.3389/felec.2023.1343612

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2023.1343612

the data and applying Eq. 1d, the patternmatching task for one aCAM
array storing 512 × 128 DNA characters takes around 8.322 μs.

Energy values were obtained from simulations, except for writing
the memory, since we adopted a linear resistor model, so we assumed
that the memristor SET energy is 1 pJ. We also assumed that the reset
energy is the same as the write energy since all the SET cells need to be
reset. In total, the pattern matching task for an aCAM array consisting
of eight blocks consumes 41.79 nJ. Note that we did not include the
data storage energy since the write operation is usually done once and
the search is performedmany times. Figure 10 shows the distributions
of the energy among the different operations.

The active area was estimated based on the transistors count and size
as follows. Initially, we computed the transistor area using the
conventional NMOS transistor layout (Saman, 2017), resulting in an
individual transistor area of 4λ × 10λ = 40λ2. To account for the spacing
between transistors, we added 2λ to each side, which results in an
estimated area equal to 112λ2. In our simulations, we used 45 nm
technology with a transistor length of 45 nm (2λ = 45 nm), and we
sized the NMOS and PMOS transistors differently. Subsequently, we
calculated the estimated area for each proposed block design based on the
number ofNMOSandPMOS transistors and their respectivewidths. The
resulting estimated active area values are based on the following equation:

EstimatedArea � 14λ × W + n × 4λ() (2)
Where W represents the sum of the widths of all transistors in

the circuit, and n is the number of transistors. Consequently, the
calculated areas for each block, including its peripherals, are as
follows: the AM area is 0.0463 mm2, the match-index memory area
is 3,053.18 μm2, and the pattern detector area is 622.54 μm2. Hence,
the total area of the proposed design is 0.05 mm2.

5.1 Performance comparison to relatedwork

To assess the efficiency of the proposed design, we compared its
performance against existing works in the literature that utilize
general-purpose accelerators (Raju et al., 2018). We evaluated the
execution time required for the DNA pattern matching task across
different DNA sequence lengths: 10, 50, and 100 Mb. The results
show a significant improvement achieved by our design, as
illustrated in Figure 11. Unlike general-purpose accelerators, our
design incorporates a domain-specific ReRAM-based hardware
accelerator specifically for implementing a hardware-friendly
pipelined algorithm for DNA pattern matching. This results in
remarkable performance improvements. In comparison to
existing methods, our design exhibited a significant enhancement,
with execution time improvements of 104×, 155×, and 140× for
DNA sequence lengths of 10, 50, and 100 Mb, respectively. These
results prove the significant acceleration that our proposed
accelerator design brings to the DNA pattern matching technique.

5.2 Effect of pattern length

To determine the effect of increasing the pattern length on run
time and energy, we consider the example of a DNA sequence of
1 million characters. For a pattern of length 3, there are two
replicated cells in each row, so 16 (512 × 130) aCAM arrays are

needed to store the DNA data, each consisting of 8 blocks. In this
case, ignoring the time overhead in Eq. 1d, the total run time for the
pattern matching task is 131.2 μs. On the other hand, for a pattern of
length p = 5, we still need 16 aCAM arrays, however, in this case,
there are four replicated cells in each row, hence 126 search cycles
are needed instead of 128. The total run time is 129.15 μs.

Moreover, we estimated the energy per cycle for each component
in our design based on our simulations. For each pattern length, we
multiplied the energy values per cycle by the corresponding number of
cycles needed to perform the pattern matching task on the aCAM
blocks storing 1 million DNA characters. Accordingly, for p = 3, the
total energy is 668.6 nJ, whereas for p = 5, it is 661.2 nJ.

5.3 Impact of process variations

We studied the impact of process variation on the performance of
the proposed design by introducing process variations to the threshold
voltages of the transistors. Specifically, NMOS devices were subject to a
3σvt of ~50 mV variation, while PMOS devices were subject to a 3σvt of
~30 mV variation. Additionally, we considered variability in memristor
resistances where we set 3σ/μ to up to 10%. To assess the effect of
variability on the design, we used the failure probability in the match
operation as a characterization metric. We performed 1,000 Monte
Carlo SPICE simulations for a row of 130 cells, with 3 cells activated to
search for a pattern of length 3, and measured VML for both full match
and 1mismatch cases in each simulation run.We identified the optimal
reference voltage value, Vref, that maximizes the separation between
match andmismatch scenarios in the presence of variability. The failure
probability is defined based on the number of match and mismatch
failures, corresponding to simulations with amatch value belowVref and
simulations with a mismatch value above Vref, respectively. The results
show that the 8T2M cell is robust against variability, achieving zero
failure for the studied variations.

6 Conclusion

In this paper, we present a hardware accelerator design for exact
DNA pattern matching. The proposed architecture utilizes
associative memory to store DNA characters and implements a
highly parallelized hardware-friendly algorithm for acceleration.
The algorithm counts the maximum number of consecutive
repeats of a specific pattern, which can be used to detect the
presence of possible trinucleotide repeat-expansion genetic
disorders. Our proposed design is energy-efficient, and it showed
more than 100× improvement in terms of time cost compared to
existing software implementations of DNA pattern matching. It is
noteworthy that, in the presence of DNA sequencing errors, we can
explore techniques such as approximate matching as an alternative
to exact matching, which is a subject for future work.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding author.

Frontiers in Electronics frontiersin.org12

Bazzi et al. 10.3389/felec.2023.1343612

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2023.1343612

Author contributions

MF: Conceptualization, Formal Analysis, Investigation,
Methodology, Project administration, Supervision, Writing–review
and editing. JB: Conceptualization, Data curation, Investigation,
Methodology, Software, Validation, Writing–original draft. JS:
Investigation, Validation, Writing–original draft. RK: Methodology,
Project administration, Supervision, Writing–review and editing. AE:
Supervision, Writing–review and editing.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Conflict of interest

Author MF was employed by Rain Neuromorphics Inc. Author
RK was employed by Synopsys Inc.

The remaining authors declare that the research was
conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict
of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article,
or claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/felec.2023.1343612/
full#supplementary-material

References

Adey, S. P. (2013). Gpu accelerated pattern matching algorithm for dna sequences to
detect cancer using cuda dissertation. Coll. Eng. Pune.

Adjeroh, D., Zhang, Y., Mukherjee, A., Powell, M., and Bell, T. (2002). “Dna sequence
compression using the burrows-wheeler transform,” in Proceedings. IEEE computer
society bioinformatics conference (IEEE), 303–313.

Arsovski, I., Chandler, T., and Sheikholeslami, A. (2003). A ternary content-
addressable memory (tcam) based on 4t static storage and including a current-race
sensing scheme. IEEE J. Solid-State Circuits 38, 155–158. doi:10.1109/jssc.2002.806264

Bazzi, J., Sweidan, J., Fouda, M. E., Kanj, R., and Eltawil, A. M. (2022). Efficient analog
cam design. arXiv preprint arXiv:2203.02500.

Boyer, R. S., and Moore, J. S. (1977). A fast string searching algorithm. Commun.
ACM 20, 762–772. doi:10.1145/359842.359859

Cao, Y. (2018). Ptm. Available at: http://ptm.asu.edu/.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2022). Introduction to
algorithms. MIT press.

Fouda, M. E., Yantır, H. E., Eltawil, A. M., and Kurdahi, F. (2022). “In-memory
associative processors: tutorial, potential, and challenges,” in IEEE transactions on
circuits and systems II: express briefs.

Garzón, E., Golman, R., Jahshan, Z., Hanhan, R., Vinshtok-Melnik, N., Lanuzza, M.,
et al. (2022). Hamming distance tolerant content-addressable memory (hd-cam) for dna
classification. IEEE Access 10, 28080–28093. doi:10.1109/access.2022.3158305

Hakak, S. I., Kamsin, A., Shivakumara, P., Gilkar, G. A., Khan, W. Z., Imran, M., et al.
(2019). Exact string matching algorithms: survey, issues, and future research directions.
IEEE Access 7, 69614–69637.

Kaplan, R., Yavits, L., and Ginosar, R. (2018). Rassa: resistive prealignment accelerator
for approximate dna long read mapping. IEEE Micro 39, 44–54. doi:10.1109/mm.2018.
2890253

Khatamifard, S. K., Chowdhury, Z., Pande, N., Razaviyayn, M., Kim, C. H., and
Karpuzcu, U. R. (2021). Genvom: read mapping near non-volatile memory. IEEE/
ACM Trans. Comput. Biol. Bioinforma. 19, 3482–3496. doi:10.1109/tcbb.2021.
3118018

Kim, J. S., Senol Cali, D., Xin, H., Lee, D., Ghose, S., Alser, M., et al. (2018). Grim-filter:
fast seed location filtering in dna read mapping using processing-in-memory
technologies. BMC genomics 19, 89–40. doi:10.1186/s12864-018-4460-0

Kim, Y., Imani, M., Moshiri, N., and Rosing, T. (2020). Geniehd: Efficient dna pattern
matching accelerator using hyperdimensional computing, in 2020 Design, Automation
& Test in Europe Conference & Exhibition (DATE) (IEEE), 115–120.

Knuth, D. E., Morris, J. H., Jr, and Pratt, V. R. (1977). Fast pattern matching in strings.
SIAM J. Comput. 6, 323–350. doi:10.1137/0206024

Kokosiński, Z., and Sikora, W. (2002). “An fpga implementation of a multi-
comparand multi-search associative processor,” in International conference on field
programmable logic and applications (Springer), 826–835.

Laguna, A. F., Gamaarachchi, H., Yin, X., Niemier, M., Parameswaran, S., and
Hu, X. S. (2020). “Seed-and-vote based in-memory accelerator for dna read
mapping,” in 2020 IEEE/ACM international conference on computer aided
design (ICCAD) (IEEE), 1–9.

Lalonde, E., Rentas, S., Lin, F., Dulik, M. C., Skraban, C. M., and Spinner, N. B. (2020).
Genomic diagnosis for pediatric disorders: revolution and evolution. Front. Pediatr. 8,
373. doi:10.3389/fped.2020.00373

Lei, S., Wang, C., Fang, H., Li, X., and Zhou, X. (2016). Scadis: a scalable accelerator
for data-intensive string set matching on fpgas, in 2016 IEEE Trustcom/BigDataSE/ISPA
(IEEE), 1190–1197.

Li, C., Graves, C. E., Sheng, X., Miller, D., Foltin, M., Pedretti, G., et al. (2020). Analog
content-addressable memories with memristors. Nat. Commun. 11, 1638–8. doi:10.
1038/s41467-020-15254-4

Mahmud, P., Rahman, A., Hasan Talukder, K., et al. (2023). An improved hashing
approach for biological sequence to solve exact pattern matching problems.Appl. Comput.
Intell. Soft Comput.

Markić, I., Štula, M., Zorić, M., and Stipaničev, D. (2020). Entropy-based approach in
selection exact string-matching algorithms. Entropy 23, 31.

Mane, S. U., and Pangu, K. H. (2016). “Disease diagnosis using pattern matching
algorithm from dna sequencing: a sequential and gpgpu based approach,” in Proceedings
of the international conference on Informatics and analytics, 1–5.

Paulson, H. (2018). Repeat expansion diseases. Handb. Clin. neurology 147, 105–123.
doi:10.1016/B978-0-444-63233-3.00009-9

Pedretti, G., Graves, C. E., Serebryakov, S., Mao, R., Sheng, X., Foltin, M., et al. (2021).
Tree-based machine learning performed in-memory with memristive analog CAM. Nat
Commun. 12 (1), 5806. doi:10.1038/s41467-021-25873-0

Raju, S. V., Reddy,K., andRao,C. S. (2018). Parallel stringmatchingwith linear array, butterfly
and divide and conquer models. Ann. Data Sci. 5, 181–207. doi:10.1007/s40745-017-0124-1

Saman, B. (2017). Modeling of multi-state spatial wavefunction switched (sws) fets for
logic gates and memories.

Sun, X., Yin, S., Peng, X., Liu, R., Seo, J.-s., and Yu, S. (2018). “Xnor-rram: a scalable and
parallel resistive synaptic architecture for binary neural networks,” in 2018 design, automation
test in europe conference exhibition (DATE), 1423–1428. doi:10.23919/DATE.2018.8342235

Usdin, K. (2008). The biological effects of simple tandem repeats: lessons from the repeat
expansion diseases: Table 1. Genome Res. 18, 1011–1019. doi:10.1101/gr.070409.107

Wang, Z., Wu, H., Burr, G. W., Hwang, C. S., Wang, K. L., Xia, Q., et al. (2020).
Resistive switching materials for information processing. Nat. Rev. Mater 5, 173–195.
doi:10.1038/s41578-019-0159-3

Yin, X., Li, C., Huang, Q., Zhang, L., Niemier, M., Hu, X. S., et al. (2020). Fecam: a
universal compact digital and analog content addressable memory using
ferroelectric. IEEE Trans. Electron Devices 67, 2785–2792. doi:10.1109/ted.
2020.2994896

Frontiers in Electronics frontiersin.org13

Bazzi et al. 10.3389/felec.2023.1343612

https://www.frontiersin.org/articles/10.3389/felec.2023.1343612/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/felec.2023.1343612/full#supplementary-material
https://doi.org/10.1109/jssc.2002.806264
https://doi.org/10.1145/359842.359859
http://ptm.asu.edu/
https://doi.org/10.1109/access.2022.3158305
https://doi.org/10.1109/mm.2018.2890253
https://doi.org/10.1109/mm.2018.2890253
https://doi.org/10.1109/tcbb.2021.3118018
https://doi.org/10.1109/tcbb.2021.3118018
https://doi.org/10.1186/s12864-018-4460-0
https://doi.org/10.1137/0206024
https://doi.org/10.3389/fped.2020.00373
https://doi.org/10.1038/s41467-020-15254-4
https://doi.org/10.1038/s41467-020-15254-4
https://doi.org/10.1016/B978-0-444-63233-3.00009-9
https://doi.org/10.1038/s41467-021-25873-0
https://doi.org/10.1007/s40745-017-0124-1
https://doi.org/10.23919/DATE.2018.8342235
https://doi.org/10.1101/gr.070409.107
https://doi.org/10.1038/s41578-019-0159-3
https://doi.org/10.1109/ted.2020.2994896
https://doi.org/10.1109/ted.2020.2994896
https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2023.1343612

	Hardware acceleration of DNA pattern matching using analog resistive CAMs
	1 Introduction
	2 DNA pattern search
	2.1 Proposed hardware-friendly matching algorithm

	3 Hardware architecture
	3.1 aCAM cell
	3.2 DNA pattern encoding
	3.3 Row matching
	3.4 Proposed architecture
	3.4.1.1 aCAM array
	3.4.1.2 Block selector
	3.4.1.3 Drivers
	3.4.1.4 Tag registers
	3.4.2 Match-index memory
	3.4.2.1 Memory write
	3.4.2.2 Memory read
	3.4.2.3 Memory reset
	3.4.3 Pattern detector
	3.4.4 Control unit

	3.5 Timing considerations

	4 Experimental setup
	5 Results and discussion
	5.1 Performance comparison to related work
	5.2 Effect of pattern length
	5.3 Impact of process variations

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

