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Analogmemory presents a promising solution in the face of the growing demand
for energy-efficient artificial intelligence (AI) at the edge. In this study, we
demonstrate efficient deep neural network transfer learning utilizing hardware
and algorithm co-optimization in an analog resistive random-access memory
(ReRAM) array. For the first time, we illustrate that in open-loop deep neural
network (DNN) transfer learning for image classification tasks, convergence rates
can be accelerated by approximately 3.5 times through the utilization of co-
optimized analog ReRAM hardware and the hardware-aware Tiki-Taka v2 (TTv2)
algorithm. A simulation based on statistical 14 nm CMOS ReRAM array data
provides insights into the performance of transfer learning on larger network
workloads, exhibiting notable improvement over conventional training with
random initialization. This study shows that analog DNN transfer learning
using an optimized ReRAM array can achieve faster convergence with a
smaller dataset compared to training from scratch, thus augmenting AI
capability at the edge.
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1 Introduction

In recent years, Artificial Intelligence (AI) has surged to the
forefront of the digital era. Its transformative potential has enabled it
to permeate into an extensive array of applications, spanning various
sectors and industries. AI’s breadth of influence encompasses
everything from executing complex predictive analyses in critical
sectors such as finance (Gogas and Papadimitriou, 2021; Goodell
et al., 2021) and healthcare (Yu et al., 2018; Chen et al., 2019; Zhang
et al., 2022) to autonomous driving systems (Arnold et al., 2019;
Caesar et al., 2020). Among its myriad applications, one of AI’s most
reliable usages resides in the sphere of pattern recognition. Here, it
has exhibited an ability to decipher and illuminate the hidden
structures that lie encrypted within vast and often convoluted
landscapes of data.

Nevertheless, this rapid acceleration in the advancement and
adoption of AI, particularly that of Deep Neural Networks (DNNs),
has revealed a critical limitation of current computing architecture
known as the von Neumann bottleneck. The von Neumann
architecture that underpins most contemporary computing
systems is hindered by a considerable limitation arising from its
foundational structure—the physical segregation of its
computational and memory units. This division necessitates
continuous data transfers between the units, culminating in
significantly increased power consumption and extended
processing times, particularly as the data requirements for DNNs
keep rising. This escalating energy demand presents a formidable
challenge within the confines of our current technological
capabilities and becomes ever more pressing as we consider the
near future. With AI’s insatiable appetite for larger, more
sophisticated DNNs (Liang et al., 2022) in a world that is
becoming increasingly mindful of the importance of energy
conservation and environmental sustainability, the need to devise
an effective solution has never been more urgent (Schwartz et al.,
2020; Wu et al., 2022).

Recently, there has been growing interest in the emerging field of
analog AI, which poses a potential solution to this challenge. Analog
AI, a novel concept in computing, is characterized by the integration
of computation and memory units (Amirsoleimani et al., 2020;
Ielmini and Pedretti, 2020; Frenkel et al., 2023). This integration
aims to circumvent the von Neumann bottleneck and optimize the
efficiency of computational processes. By merging these two
fundamental units, analog AI presents an opportunity to
revolutionize the existing computing paradigm, promising to
significantly reduce the power requirements of data processing in
contemporary AI applications (Burr et al., 2021; Jain et al., 2022; Seo
et al., 2022). In this study, we explore transfer learning–a subset of
deep learning–and its application in analog AI. We demonstrate
how transfer learning can be effectively applied on analog AI
hardware to accelerate computing efficiently at the edge. Our
simulations further indicate that this approach can be scaled to
accommodate larger networks and datasets.

1.1 Transfer learning in analog AI

Building on the discussion of analog AI, we explore the potential
of transfer learning. Transfer learning aims to improve AI system

efficiency by applying insights from one task to a related one, as
described by Pan and Yang (2010). The core idea is to leverage
already gained insights to accelerate the learning process for a new,
yet related, task without starting from scratch. Historically,
traditional transfer learning processes have been dominated by
digital implementations, often referred to as digital transfer
learning (Pan and Yang, 2010; Mormont et al., 2018). While this
approach has its benefits, its inherent energy intensity calls for
exploring more energy-efficient alternatives. The standard digital
transfer learning procedure, depicted in Figure 1A, begins with
digital pre-training. This initial stage is followed by weight transfer
to adapt the model for a new task, which culminates in digital fine-
tuning for optimal adjustment to this task. Another option is a
hybrid system, illustrated in Figure 1B. This model retains the digital
platform for the pre-training stage but shifts to a combined digital-
analog environment for the crucial fine-tuning phase. It is
noteworthy that the integration of analog phase-change non-
volatile memory (NVM) for weight updates, coupled with digital
3T1C for gradient accumulation, can deliver accuracy equivalent
to software.

Implementations for image classification tasks (Ambrogio et al.,
2018). Nonetheless, edge computing applications pose unique
challenges for digital computation due to the strict power
constraints locally and the accompanying security and privacy
risks related to cloud data transfer (Rafique et al., 2020). Given
these constraints, an analog system, specifically implemented using
NVMs, offers an attractive solution for edge computing.

In this work, we introduce a novel approach that integrates analog
devices with in-memory fine-tuning methods and an optimized in-
memory training algorithm to augment the efficiency of transfer
learning processes in analog AI hardware platforms. Our approach
harnesses the capabilities of analog resistive random-access memory
(ReRAM) hardware and aligns them with an appropriate algorithm
for efficient deep learning focusing on analog transfer learning, shown
in Figure 1C. As highlighted in the figure, analog transfer learning can
be initiated with either digital or analog pre-training. For digital pre-
training, we utilize hardware-aware pre-training in software to
enhance noise robustness prior to the transfer and fine-tuning
stage. For analog pre-training, pre-training is performed in the
analog hardware thus, weights would already reside in the analog
devices. Consequently, the fine-tuning process would occur on the
same devices, eliminating the need for the additional programming/
transfer step required for digital pre-training. Both gradient
accumulation and the Multiply-Accumulate (MAC)
operation–each an integral component of the learning process–are
executed on the analog hardware during the fine-tuning stage for both
digital and analog pre-training, ensuring the energy efficiency benefits
associated with analog AI. To substantiate our proposed model and
demonstrate that it scales to more complex tasks, we carried out a
series of simulations on the statistical ReRAM array data (2k devices)
built on a 14 nm CMOS. We executed these simulations using an
adapted version of the AIHWKIT simulator (Rasch et al., 2021),
aimed at emulating a larger network capable of handling MNIST
(LeCun et al., 2010) and CIFAR-100 (Krizhevsky and Hinton, 2009)
image recognition tasks. These simulation-based experiments
establish a solid foundation for realizing the potential of our
proposed analog transfer learning system in practical resource-
limited edge computing scenarios.
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2 Device structure and fabrication

The foundation of our approach is built on an optimized
HfOx-based ReRAM stack. This technology is integrated with
14 nm Complementary Metal-Oxide-Semiconductor (CMOS)
technology, providing a robust hardware platform conducive to
our analog transfer learning methodology. ReRAM was chosen
and paired with CMOS technology because of its many attractive
characteristics such as non-volatility, energy efficiency, high density,
and ability to scale. These attributes make it a perfect fit for analog AI
applications. A more detailed insight into the device structure and its
fabrication process can be found in our prior work (Gong et al., 2022).

3 Hardware implementation with
analog and digital pre-training

The goal of the hardware demonstration is to carry out a reduced
MNIST digit classification task on analog AI hardware using
transferred weights (Gong et al., 2022; Athena et al., 2023). To fit
the experimental setup, only images of 0 and 1 from the MNIST
dataset were utilized. These images were converted from 784 input
dimensions down to 16 using random projection (Dasgupta, 2000;
Bingham and Mannila, 2001), and the first 8 dimensions from the
16 were selected. The resulting dataset was used for pre-training. The
TTv2 training algorithm (Gokmen and Haensch, 2020; Gokmen,
2021b; Lee et al., 2021; Kim et al., 2022) used for fine-tuning, uses
two matrices: A for gradient accumulation and C for weight storage.

Matrix A calculates the gradient by working around a symmetry
point, while Matrix C updates based on the accumulated gradients
from Matrix A (Gokmen and Haensch, 2020; Gokmen, 2021b).
During training, Matrix A is updated using identical pulses, which
are determined by the errors found usingMatrix C and each training
image. Matrix C only gets updated after Matrix A has been updated
using 10 images since C’s last update. Details of this implementation
are available in Gong et al. (2022); Athena et al. (2023).

3.1 Transfer learning with digital pre-training

Pre-training, the first step in transfer learning, can be performed
digitally using either hardware-aware (HWA) algorithms or non-
HWA algorithms. For HWA pre-training, there are approaches like
the SoftBounds model soft-bounds model (Fusi and Abbott, 2007;
Frascaroli et al., 2018; Rasch et al., 2023) or noise injection to the
weights. In our study, we used the SoftBounds soft-bounds device
model to simulate ReRAM devices during pre-training. On the other
hand, non-HWAuses regular floating point weights. After digital pre-
training, these digital weights are transferred to an analog hardware
array and this transfer can cause programming errors. To reduce the
effects of these errors and make the subsequent learning process more
efficient, we utilized the TTv2 algorithm (Gokmen, 2021a; Kim et al.,
2022) during the fine-tuning phase, as shown in Figure 2. An 8 × 4
array is used to store the two matrices A and C used by the hardware-
aware algorithm TikiTaka V2. Matrix C holds the weight of the neural
network. Each of these matrices is 8 × 2.

FIGURE 1
(A) A fully digital system involves stages of digital pre-training, weight transfer for a new task, and digital fine-tuning on that task (Pan et al., 2008;
Long et al., 2017; Wang et al., 2019; Wan et al., 2021). (B) A hybrid system includes digital pre-training, followed by fine-tuning in a combined digital-
analog environment (Ambrogio et al., 2018; Sun et al., 2018; Yoon et al., 2019; Luo and Yu, 2021). (C) Analog transfer learning can utilize either digital or
analog pre-training, but the weights are ultimately transferred to analog hardware for training. Key functions such as gradient accumulation and
MAC operation are performed on analog NVM.
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We found that transferring weights originating from non-HWA
training, also known as floating-point training, is not advantageous, as
shown in Figure 3. The training set contained 10,000 images and the

test set consisted of 1,000 images. In our experimental setup, we
calculated the accuracy of the test set after training on 500 images.
Each training epoch corresponds to the entire training set of
10,000 images. In this scenario, the convergence rate of floating-
point transfer learning is similar to training a model initialized with
random weights. However, utilizing HWA pre-trained weights
improves the model’s learning significantly. The convergence speed
increases about threefold compared to training from scratch with
randomly initialized weights, as shown in Figure 4. This highlights the
importance of appropriate weight initializations for faster learning,
thus reinforcing the effectiveness of our transfer learning approach.

3.2 Transfer learning with analog
pre-training

In our pursuit of implementing fully analog transfer learning, we
shifted to in-memory pre-training (Figure 5). The first phase of this
method involved pre-training on the same analog hardware that was
later used for fine-tuning. This pre-training phase was dedicated to a
specific task, referred to as Task 1. Once this pre-training was
completed, we transitioned into the fine-tuning stage that was
aimed at a distinct, second task–Task 2. This methodology mirrors
typical digital transfer learning, where insights from one task
benefit another.

FIGURE 2
Digital pre-training is done in either HWA or non-HWA approach. Pre-trainedweights are thenmapped on ReRAM hardware. Aftermapping the pre-
trained weights on the hardware, TTv2 (Gokmen, 2021a; Kim et al., 2022) algorithm is used to perform the fine-tuning. Matrix A is used for gradient
accumulation, Matrix C stores the weights, and H is an integrator used to aggregate the effects of Matrix A before passing it onto Matrix C in the form of a
single pulse.

FIGURE 3
Digital pre-training using the non-HWA algorithm followed by
fine-tuning on analog hardware (FP-Trfr lrng) does not show any
benefit compared to training from scratch (Trng).

FIGURE 4
Digital pre-training using the HWA algorithm followed by fine-
tuning on analog hardware shows~ 3× faster convergence over the
training from scratch (Trng). Here, light-green and light-purple traces
correspond to several experiments on training and transfer
learning, respectively.

FIGURE 5
Flow diagram for transfer learning with in-memory pre-training
where Task 1 is different from Task 2.
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As mentioned earlier, we used images from the reduced MNIST
dataset, compressed to 16 elements. Half of these elements, precisely 8,
were used in the pre-training phase, allowing the model to focus on
specific features and characteristics during Task 1. After the pre-training
stage, we proceeded to the fine-tuning phase, but instead of using the
same elements, we employed a different part of the image for Task 2.

The variability introduced by selecting a different segment is
represented by N, indicating the degree of randomness—specifically,
the number of image elements in Task 2 that differ from Task 1. Our
aim in altering elements during the fine-tuning phase was to emulate
the shifts in datasets and tasks typically observed in transfer learning.
Figure 6 provides a visual distinction between the image portions
used during the pre-training and fine-tuning phases. As the degree
of randomness (N) increases, there is a discernible reduction in
knowledge transfer. This leads to an initial decrease in test accuracy
before fine-tuning. The inverse relationship between test accuracy
and the degree of randomness highlights our model’s sensitivity to
alterations in input, especially when compared to the initial training
data, as shown in Figure 7.

To delve deeper into the effects of transfer learning, we conducted
a hardware demonstration with the degree of randomness, N, fixed

at 3. In the pre-training phase for Task 1, the model achieved an
accuracy of approximately 94%, as depicted in Figure 8A. However,
when transitioning to Task 2, which incorporated a change of
3 elements, the model’s accuracy dropped to approximately 70%
before fine-tuning, as shown in Figure 8B.

Next, we proceeded to train the network on Task 2, following its
pre-training on Task 1. This resulted in a significant improvement in
the speed of convergence. Specifically, the model achieved a 94%
accuracy. Furthermore, it converged ~ 3.5 times faster compared to
training the model from scratch with random weight initialization.
Moreover, with further training, the accuracy score reached a peak
of 98%, as depicted in Figure 9. Our hardware-based experiment
illustrates the efficacy of HWA pre-training, coupled with fine-
tuning via the TTv2 algorithm. Together, these processes contribute
to a significant improvement in.

The convergence speed as well as the final accuracy. Despite the
inherent challenges posed by variations imposed by a hardware
implementation, the fully analog transfer learning framework
emerges as a potent tool. Thus, it presents a promising pathway
toward more efficient training of neural networks.

4 Simulation results

Building on the effective hardware demonstration of transfer
learning, it is vital to determine if the method can be scaled to
accommodate larger neural networks and datasets. We conducted a
simulation study using a three-layer fully connected neural network
on the full MNIST dataset. To mimic the hardware-based transfer
learning framework, we modified the dataset by interchanging pixels
in specified rows, so that it retains its overarching characteristics.
The details of our simulation framework are provided in Table 1.

The pre-trained weights used to initialize the transfer learning
model are the weights obtained by training the equivalent digital
model using the original MNIST dataset. In all the Figures, training
starts at epoch 3 and ends at epoch 42, hence no training is
performed for epoch numbers 0, 1, and 2. Epoch number
0 represents the value of the test error of the digital model
initialized with the pre-trained weights when tested using the test

FIGURE 6
Dimensionality Reduction to reduce images to 16 dimensions. Pre-training on analog hardware on Task 1 using 8 elements. Fine tuning on task
2 with N different elements from Task 1.

FIGURE 7
Initial test accuracy decreases with the increase of the degree of
randomness (N value). µ represents the mean and σ represents the
standard deviation.
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set of the modifiedMNIST dataset. Epoch 1 is the test error when the
digital model has been converted to the analog model using the same
dataset. This explains why all the graphs in each figure have the same
value at epochs 0 and 1 as the pre-trained weights are the same at

both epochs, particularly for the transfer learning models. Epoch 2 is
the performance of the analog model on the same dataset after the
effect of the programming noise on the analog model weights has
been accounted for.

The starting point of the transfer learning simulation was
based on the weights derived from training the digital model on
the unmodified MNIST dataset. For the subsequent fine-tuning
stage, we utilized only 1st of the dataset. The difficulty of the
overall transfer learning simulation was varied by changing the
number of swapped rows. The simulation results, illustrated in
Figure 10A with one swapped row and Figure 10B with two,
exhibit a consistently higher test error for the reference model in
contrast to the transfer learning model, regardless of the
complexity of the task. Moreover, the transfer learning model
converges much faster after fine-tuning using only 781 images,
thus highlighting the benefits of transfer learning in resource- or
data-constrained scenarios.

Moreover, in Figures 10A, B, it is observed that the test error
for the model trained from scratch is even higher than the test
error of the transfer learning model with noise injection. As an
example, for the experiments in Figure 10A, the test error is
13.57% for the model trained from scratch and 10.61% for the
transfer learning model with 10% programming noise. Similarly,

FIGURE 8
(A) Analog pre-training showing ~ 94% test accuracy on task 1. (B) Statistical distribution of accuracy across all permutations for N = 3. Average
accuracy in the initial test drops by ~ 24% for N = 3. µ represents the mean and σ represents the standard deviation.

FIGURE 9
Transfer learning (Trfr lrng, purple traces) with analog pre-
training reaching an accuracy of 98% shows 3.5 × faster convergence
compared to training from scratch (Ref, green traces).

TABLE 1 Simulation specifications.

Model trained for Figures 10A, B Trained model for Figures 10C

Model Architecture 3-Layered DNN (Inp-FC-FC-FC) 4 Layer CNN (Conv2D- > Conv2D- > Conv2D- > FC)

# of Frozen Layer 0 2

Device Specification Extracted from 2000 Devices (Gong et al., 2022) Extracted from 2000 Devices (Gong et al., 2022)

Dataset Modified MNIST Dataset Subsets of CIFAR100 dataset

# of Classes 10 Classes 2 and 5 new Classes

Input Size 28*28*1 32*32*3

Programming Noise (Added once) 1%–10% Gaussian Additive Noise 5% Gaussian Additive Noise

ReRAM Weight Update Stochasticity Applied based on Gong et al. (2022) Applied based on (Gong et al., 2022)

Pixel Swapping Yes (1–2 Rows) None
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in Figure 10B, the test error of the model trained from scratch is
12.32% and 8.82% for the transfer learning model with 10%
programming noise. It is also observed that the size of
programming noise affects the performance of the transfer
learning model. This is because the test error increases as the
programming noise is increased from 0% to 10% and this is true
irrespective of the complexity of the task (degree of swapping).

Subsequently, we extended the transfer learning framework to
a Convolutional Neural Network (CNN) with two frozen layers,
trained on the CIFAR100 dataset (Figure 10C) (Krizhevsky and
Hinton, 2009), to demonstrate robustness across different neural
network architectures, larger datasets and different number
of output classes. The network was pre-trained on the
CIFAR10 dataset and fine-tuning was performed on new classes
derived from the CIFAR100 dataset. These results reaffirmed the
effectiveness of transfer learning, showing superior performance
on the 2-class and 5-class classification tasks than reference
training using randomly initialized weights. This suggests that
the transfer learning of CNN can accelerate learning and
demonstrate generalization between tasks, even as the number
of target classes increases. Thus, our simulations underscore the

advantages of using transfer learning in analog AI hardware
for both fully connected and convolutional neural network
architectures.

5 Conclusion

In this study, we explored the potential of DNN transfer learning
using ReRAM. We experimentally demonstrated that the
integration of 14 nm technology ReRAM and co-optimization of
hardware and algorithms lead to a 3.5× faster convergence
compared to conventional training methods. Simulation results,
drawing from statistical data of 2,000 ReRAMs, further support the
scalability and adaptability of this transfer learning approach,
indicating its suitability for handling larger computational tasks.
Our findings suggest that DNN transfer learning in ReRAM arrays
can achieve improved convergence rates even with limited datasets.
This is particularly significant for edge computing applications such
as wearables for real-time patient monitoring and autonomous
systems like self-driving cars, where energy efficiency and
accelerated learning are vital.

FIGURE 10
Performance of fully connected DNN models trained on a modified MNIST by swapping (A) 1 row, (B) 2 rows. Swapping 1 row with 2.5% noise
generates a test error of 12.3% and 4.5% for training from scratch and transfer learning, respectively. Epoch 0 is the test error of the digital model. Epoch
1 is the test error when the digital model is converted to the analogmodel. Epoch 2 is the test error of the analogmodel with the programming noise. (C) A
CNNmodel trained on various subsets of CIFAR100 (5-class: beaver, cockroach, leopard, orange, woman; similar 2-class: beaver and otter; diverse
2-class: beaver and dolphin) for training from scratch and transfer learning.
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