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Introduction: This paper presents a novel Ear Canal Pressure Sensor (ECPS) for
objective detection of food intake, chew counting, and food image capture in both
controlled and free-living conditions. The contribution of this study is threefold: 1)
Development and validation of a novel wearable sensor that uses changes in ear
canal pressure and the device’s acceleration as an indicator of food intake, 2) A
method to identify chewing segments and count the number of chews in each
eating episode, and 3) Facilitation of egocentric image capture only during eating
by triggering camera from sensor detection thus reducing power consumption,
privacy concerns, as well as storage and computational cost.

Methods: To validate the device, data were collected from 10 volunteers in a
controlled environment and three volunteers in a free-living environment. During
the controlled activities, each participant wore the device for approximately 1 h,
and during the free living for approximately 12 h. The food intake of the
participants was not restricted in any way in both part of the experiment.
Subject-independent Support Vector Machine classifiers were trained to
identify periods of food intake from the features of both the pressure sensor
and accelerometer, and features only from the pressure sensor.

Results: Results from leave-one-out cross-validation showed an average 5 sec-
epoch classification F-score of 87.6% using only pressure sensor features and
88.6% using features from both pressure sensor and accelerometer in the
controlled environment. For the free-living environment, both classifiers
accurately detected all eating episodes. The wearable sensor achieves 95.5%
accuracy in counting the number of chews with respect to manual annotation
from the videos of the eating episodes using a pressure sensor classifier in the
controlled environment.

Discussion: The manual review of the images found that only 3.7% of captured
images belonged to the detected eating episodes, suggesting that sensor-
triggered camera capture may facilitate reducing the number of captured
images and power consumption of the sensor.
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1 Introduction

The primary source of energy and nutrients necessary to
maintain human life is food intake. Monitoring of daily food
intake and ingestive behavior is an emerging research area that
has direct implications on human health, as inadequate or excessive
food intake may lead to the development of medical conditions such
as malnutrition and underweight, or overweight and obesity,
respectively (Hales et al., 2020). Monitoring ingestive behavior
and understanding an individual’s diet is also key in the
diagnosis and treatment of eating disorders such as anorexia,
bulimia, and binge eating (Wilfley et al., 2000). To monitor food
intake and identify the dietary restrictions that should be followed
for a healthy life, technology-driven wearable food intake
monitoring tools are gaining popularity.

Food intake monitoring tools can be divided into two major
categories: a) traditional and b) automatic monitoring tools (Day
et al., 2001). Traditional food intake monitoring tools include
methods such as frequency questionnaires of food items
(Schoeller et al., 1990), food recall of 24 h (Jonnalagadda et al.,
2020), and food records (Day et al., 2001), which largely depend on
the self-report of the individual. Though these traditional methods
are simple and low cost, they can be tedious, as lots of input is
required to fill, compliance rates are poor, and produce inaccurate
data due to misreporting by the individual. With the advancement in
technology, over the past decade, researchers are developing
automatic food intake monitoring systems mainly using different
physical sensors to alleviate the inaccuracy of self-reporting
methods. Thus providing easy-to-use, reduction in the burden of
the individual, more accurate, and real-time assessment. But up to
this day, there is no commercially available automatic food intake
monitoring device, which is a research field that remains for
exploration (Bi et al., 2018), (Heydarian et al., 2019). The
modern automatic approach to food intake monitoring can be
divided into several categories, such as food intake detection,
food type classification, food mass estimation, and others. Food
intake detection can be considered the first and one of the important
stages of the development of the ingestive monitoring device. Several
sensor modalities have been explored using different physiological
characteristics of eating, such as hand movement during eating,
chewing sound, temporalis muscle contraction, head movement,
and swallowing sound (Hossain et al., 2020a). Using the pattern of
hand movement during eating several hand/wrist-worn wearable
devices have been introduced including accelerometers, gyroscopes,
and smartwatches (Dong et al., 2012; Dong et al., 2014a; Kalantarian
and Sarrafzadeh, 2015). Food intake can also be detected using the
chewing sound of solid and semi-solid food (Rahman et al., 2012; Jia
et al., 2014; Päßler and Fischer, 2014). The temporalis muscle
movement using eyeglasses during chewing was also explored to
detect food intake (Fontana et al., 2014a), (Farooq and Sazonov,
2015). To monitor food intake using swallowing, sound researchers
implemented microphones in the ear or surface electromyography
on the throat (Sazonov et al., 2008; Makeyev et al., 2012; Fontana
and Sazonov, 2013). A three-axis accelerometer is also being
extensively used by researchers in food intake studies (Dong
et al., 2014b), (Farooq and Sazonov, 2018a).

The eating behavior of an individual is characterized using meal
microstructure such as chew count, chewing rate, bite-size, eating

episode duration, etc. Studies of meal microstructure may provide
new insights and findings in the treatment of obesity. In (Scisco
et al., 2011), the authors claimed that a reduction in chewing rate
results in the individual’s lower energy intake. Other studies have
shown that there is a clear relationship between chewing rate and
energy intake (Zandian et al., 2009; Lepley et al., 2010; Raynor et al.,
2015; Jie et al., 2020). In (Jie et al., 2020), the authors suggested that
to fight against obesity, interventions to improve chewing activity
could be a necessary tool. In (Zandian et al., 2009), the authors
claimed that eating rate feedback can be helpful to aid in
intervention in eating disorder treatment. Health researchers are
applying the number of chews and the rate of chewing as variables in
their models for the estimation of ingested mass and energy intake.
Counts of chews and swallows were used to develop the energy
intake estimationmodel (Farooq and Sazonov, 2017). In (Amft et al.,
2009) authors concluded that for solid food, recordings of chewing
sounds can be used to predict bite weight. Several modalities of
wearable sensors and physiological phenomena are being explored
by researchers to detect and count the number of chews. Temporalis
muscle movement during chewing using a strain sensor is being
explored in (Fontana et al., 2014a), (Sazonov and Fontana, 2012),
(Bedri et al., 2015). Chewing was also detected using chewing sound
(Amft, 2010; Shuzo et al., 2010; Thomaz et al., 2015; Natarajan et al.,
2016), EMG and force sensors (Kohyama et al., 2004; Bousdras et al.,
2006; Fueki et al., 2008).

Chewing of solid and semi-solid food causes the ear canal to
contract by the opening of the jaw. If the ear canal is closed, for
example, by an earbud, the contraction will cause the ear canal
pressure to change which can be used as an indicator of food intake.
In this study, we use an Ear Canal Pressure Sensor (ECPS) to detect
food intake in both controlled and free-living environments. This
sensor can be implemented as a part of other devices, which use
earbuds such as headphones, hearing aid, etc. The capability of
recording the scenes in front of the wearer continuously and
automatically by an egocentric wearable camera has also been
explored for its potential implementation in objective eating
behavior monitoring (Gemming et al., 2015; Beltran et al., 2016;
Bruno et al., 2017; Vu et al., 2017). Development in the field of
computer vision and image processing allowed these egocentric
wearable cameras to introduce in food intake monitoring
applications. Generally, the image-based monitoring method
requires images of food intake episodes. These images can be
supplied in two ways: 1. Using a smartphone by the individual
called active capture, 2. Using a wearable camera that captures
images continuously or at a predetermined interval is called passive
capture. Most of the modern image-based methods deploy passive
capture to make the process less burdensome and fully automatic.
Different wearable egocentric camera systems such as SenseCam (Jia
et al., 2019), AIM (Automatic Ingestion Monitor) (Fontana et al.,
2014b), and the eButton (Sun et al., 2014) have been developed using
passive capture mode, which results in a bulk amount of images
when worn in free-living and a longer period. These studies
demonstrated that the egocentric wearable camera may be used
to study the eating environment and behavior. However, these
devices continuously capture images throughout the day,
potentially capturing unwanted pictures of the wearer and the
people in front of the wearer, which can raise privacy and ethical
concerns (Kelly et al., 2013). As most of the image-based methods of
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eating behavior monitoring rely on manual review or annotation,
privacy becomes a concern when the images of the wearer are
observed by another person (Doherty et al., 2013), (Safavi and
Shukur, 2014). As another consideration, continuous capture of
images throughout the day requires a larger battery which may affect
the weight and comfort of the device. The food intake detection by
an ECPS system may be exploited to trigger the camera to start
capturing images and to stop at the end of the eating episode. Thus
capturing and storing images that are only needed, provides more
privacy to the individual, reducing power consumption, storage, and
computational cost.

In this study we propose a novel wearable ECPS system that can
be implemented in earbuds as part of other devices such as
headphones to monitor food intake in the free-living
environment. It accurately detects chewing segments and counts
the number of chews in the eating episodes. This device can
potentially be explored to control the egocentric camera to
capture images only during food intake thus reducing power
consumption, privacy concern, storage, and computational cost.

2 Materials and methods

2.1 Proposed ECPS (ear canal pressure
sensor)

Figure 1A represents the working principle of the proposed ECP
sensor. The ear canal is positioned between the Mandible Condyle (the
upper tip of the mandible) and the Mastoid (the back part of the
temporal bone) which extends into the Mastoid. Chewing is associated
with the opening and closing of the mouth by moving the lower jaw,
which causes the ear canal to expand as the Mandible Condyle slides
forward and backward. The movement of the lower jaw creates a void
that will be filled by the tissue surrounding the ear. This deformation of
the ear canal associated with chewing during solid food intake produces
a change in pressure which can be used to monitor ingestive behavior.
The ear canal pressure changes during chewing were recorded by a
pressure sensor through an air tube connected to an earbud. As a
different person has a different size of the ear, an off-the-self-earbud
may not feel comfortable for a long time use and can cause poor signal

strength. Custom molded earbud for each participant was made using
commercially available Sharkfin Self-Molding Earbud silicon rubber.
Figure 1B represents the assembly of the proposed wearable sensor
systems. Figure 1C shows the designed prototype of ECPS worn by an
individual. It is important to note that the system can be manufactured
in smaller sizes and more convenient but as the aim of this study was
limited to the validation of ECPS for food intakemonitoring, the system
was developed considering time, effort, and cost.

The ECPS device used in this study consisted of a digital air
pressure sensor (SM9541, from Silicon Microstructures), a low-power
3D accelerometer (ADXL332 from Analog Devices, Norwood, MA,
USA), and a miniature wide-angle lens camera (OV5640, Omnivision
Inc.). The sensors and the camera were interfaced with a Cortex-M4
ARM processor (STM32L476RG, ST Microelectronics, Geneva,
Switzerland, 80MHz CPU, 39 μA/MHz). The camera used its
DVP interface to output a JPEG compressed image. An FPGA
(Actel, Microsemi)-based framebuffer was employed to receive 8-
bit image data from the camera, store in a 1 Mb externalmemory chip,
and transfer to the MCU via a serial (SPI) interface. Data from the
pressure sensor was sampled at 14-bit/128 Hz using the I2C interface.
Accelerometer data were sampled at 16-bit/128 Hz via the SPI
interface. The device was designed to capture food images in front
of the wearer with a gaze-aligned wide-angle lens at a rate of one image
per 10 s. The components along with communication and storage
units of ECPSwere installed on an 8.0 × 1.9 × 1.5 cmPCB covered by a
plastic enclosure with a total weight of 15 g. The enclosed device was
attached to the right side of a commercially available off-the-shelf
behind-neck headset (Sony MDR-G45LP–Black). A commercially
available acoustic air tube was used to convey the ear pressure
onto the sensor. The enclosure of the ECPS has an opening to
connect an air tube with the pressure sensor. The other side of the
air tube goes into the custom-molded earbud to convey ear canal
pressure.

For user comfort, the earbuds from the headset were removed. A
Li-Ion cylindrical battery of 1000mAh capacity, 22 g weight, and 50 ×
34 × 6 mm size were used in this system as the external power source.
The device can record sensor data and images for around 20.5 h. The
egocentric camera was used in this device to record images in front of
the wearer. The manual review of the recorded images was used for
validation of the developed food intake detection models. Also, the

FIGURE 1
A portable wearable device formonitoring food intake. Themodule is affixed to the right side of a behind-neck headset. The data acquisitionmodule
also has an accelerometer and pressure sensor. (A) Represents the ear canal deformation during chewing (B) represents the wearable sensor system (C)
the individual wearing the ECPS prototype.
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recorded images were analyzed to compute the percentage of images
related to food intake in a daily setting. The captured images related to
food intake can provide more information (food type, nutrition,
portion size, etc.) which will be used in future work. Figure 2
represents the subsystems of the proposed ECPS.

2.2 Study protocol

The experiment was divided into two parts: 1. Laboratory
controlled environment, and 2. Free-living environment. 1.
Laboratory controlled environment: In this phase, the experiment
was conducted in a controlled environment, such as a laboratory,
where the conditions could be controlled andmanipulated. During this
phase, the data was collected and used to develop the classification
models. 2. Free-living environment: In this phase, the experiment was
conducted in a real-world setting, such as the participants’ natural
habitat. This environment is typically more complex and less
controlled than a laboratory environment. The data collected during
this phase was used to test the classification models developed in the
first phase to evaluate their performance in a more realistic scenario.

In the laboratory-controlled experiment, the participants were
requested to come to the laboratory in the morning without having
breakfast. Upon arrival, participants were given the wearable sensor

system. The participants were then accompanied to get the meal from
the school cafeteria. The food choice was not restricted in any way.
After purchasing the meal participants were accompanied back to the
laboratory to perform the activities listed in Table 1. The participant
was encouraged to talk with research assistant while eating to simulate
real life environment. The order of the activities was randomized
among participants. There was no restriction on the time required to
finish the meal. The duration of the controlled experiment for each
participant was approximately 1 h. For the free-living experiment,
participants were requested to come to the human participant
laboratory in the morning without taking any meals. Upon arrival,
the participants were provided the ECPS to wear and then instructed
to continue day-to-day life throughout the day. The participants were
instructed to perform daily activities with virtually no restriction
except: during the activities that have a chance of contact of water with
the device and during sleeping/taking naps. The duration of the free-
living experiment for each participant was approximately 12 h.

2.3 Data collection and annotation

A total of 10 volunteers were recruited for the controlled
environment experiment of this study (6 males and four females,
average age 29.03 ± 12.20 years, range 19–41 years, average bodymass

FIGURE 2
The electronics of ECPS. (A) ECPS subsystems: Pressure Sensor, USB, MCU, Framebuffer, Camera; (B) Overview of the system with subsystems
interconnections.

TABLE 1 Laboratory protocol.

Activity Description Duration (approximately)

Laboratory Part Sit silently: sit in a comfortable position 5 min

Sit while talking: read a document aloud 5 min

Eat a meal: eat a meal (eating episode -1) 20–40 min

Walking while silent: walk on a treadmill at a self-selected comfortable speed 5 min

Walking while talking: walk on a treadmill at a self-selected comfortable speed and talk with the research assistant 5 min

Sit silently: sit in a comfortable position 5 min

Activities of daily living: shelving/stacking items 5 min

Free-living Part Carry out usual daily activities and eat a usual diet Full day
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index (BMI) 27.87 ± 5.51 kg/m2, range 20.5–41.7). For the free-living
environment experiment of this study, data were collected from three
volunteers (2males and 1 female, average age 25.33 ± 3.05 years, range
22–28 years, average body mass index (BMI) 22.8 ± 1.4 kg/m2, range
20–24). The study was approved by The University of Alabama’s
Institutional Review Board. Participants did not report any medical
conditions which would impact their natural chewing or eating.
During the controlled experiment, participants used a foot pedal to
mark chewing sequences while consuming the food items to record
the ground truth of chewing sequences (Doulah et al., 2021). To
provide the chew count of the meal the eating episodes were video
recorded using an SJCAM SJ4000 Action camera. The camera was
positioned such that it records 1080p video at 30fps in profile view, to
make the manual annotation of chew count from jaw movement
accurate. More elaboration on the annotation of chew count can be
found here (Hossain et al., 2020b). During free living, participants
were asked to report major activities such as sleeping, sedentary, and
physically active including eating episodes activity through
aTimeLogger mobile application (Imtiaz et al., 2020).

2.4 Food intake detection

2.4.1 Sensor signal processing and feature
extraction

The sensor data from both the accelerometer and pressure
sensor were processed to develop a pattern recognition
algorithm. To remove the DC component of the accelerometer

signal, a high-pass filter with a cutoff frequency of 0.1 Hz was
applied. The pressure sensor signal was filtered by applying a
low-pass filter with a cut-off frequency of 3 Hz to remove
unwanted signals as typical chewing is associated with a
frequency in the range of 0.94–2.17 Hz (Po et al., 2011). Both
sensor signals were z-normalized using the following equation to
adjust inter-subject variability.

z � x − �x/S (1)
Where, �x =mean of the sample S = standard deviation of the sample.

Next, the signals were divided into different non-overlapping
fixed time segments called ‘epoch’ (1, 2 , 3 , 5 , 10 , 15 , and 30 s).
Figure 3 shows the accelerometer signals, pressure sensor signals, and
corresponding foot pedal signals (self-annotation) during eating

FIGURE 3
The first row demonstrates the pressure sensor signal. Signals from the 3-axes of the accelerometer are shown on the second row. The foot pedal
signal marked by the participants is shown on the third row. Here “1” indicates food intake and ‘0’ indicates no food intake.

TABLE 2 Feature sets computed from both accelerometer sensor and pressure
sensor epochs.

Domain Features

Time 1. Mean absolute value 2. RMS value 3. Maximum absolute value 4.
Median value 5. Mean to RMS ratio 6. Maximum to RMS ratio 7.
Mean to Maximum ratio 8. Median to RMS ratio 9. Number of zero
crossing 10. Mean time between zero crossing 11. Waveform length

Frequency 12. Spectrum energy 13. Chewing energy 14. Chewing energy to
spectrum energy ratio 15. Walking energy 16. Walking energy to
spectrum energy ratio 17. Talking energy 18. Talking energy to

spectrum energy ratio 19. Peak frequency of chewing spectrum 20.
Peak frequency of walking spectrum
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episodes. The foot pedal signal is ‘pressed or 1’ during food intake and
‘released or 0’ during no food intake. To detect food intake, a set of
20 time and frequency domain features reported in our previous
studies (Doulah et al., 2021), (Ghosh et al., 2020) was utilized in this
work (Table 2). Because the spectrum of chewing frequencies is
mostly contained in the range of 0.94–2.17 Hz, physical activity in the
range of 2.5–10 Hz, and speech in the range of 10–300 Hz, band
filters were applied to the signals to extract activity-specific features
(Farooq and Sazonov, 2018b). For each of the three axes of the
accelerometer, and pressure sensor signal, these 20 features were
computed on different epoch lengths (1, 2, 3, 5, 10, 15, and 30 s).
Aggregating all features from both the pressure sensor (20) and
accelerometer (60), a total number of 80 features were obtained from
each epoch of different lengths. The list of the feature set is given
below.

Time domain:

I) Mean absolute value: Absolute value of the signal in the epoch
II) RMS value: RMS (Root Mean Square) value of the signal in

the epoch
III) Maximum absolute value: Maximum absolute value of the

signal in the epoch
IV) Median value: Median of the absolute value of the signal in the

epoch.
V) Mean to RMS ratio: The ratio between mean absolute value

and RMS value of the signal in the epoch.
VI) Maximum to RMS ratio: The ratio between Maximum

absolute value and RMS value of the signal in the epoch.
VII) Mean to Maximum ratio: The ratio between Mean absolute

value and Maximum absolute value of the signal in the epoch.
VIII) Median to RMS ratio: The ratio between Median and RMS

value of the signal in the epoch.
IX) Number of zero crossings: The number of zero-crossings in a

signal is the number of times the signal crosses the horizontal
axis (zero) during a given time period. We used circular shift
to find the number of zero crossing. The circular shift
operation shifts the elements of a vector cyclically by a
specified number of positions. By multiplying the vector
with a circularly shifted version of itself (i.e., the same
vector shifted by one position), the zero-crossing points of
the vector can be identified.

X) Mean time between zero crossings: Average time difference
between the zero crossings in the epoch

XI) Waveform length: Waveform length is a feature used to
describe the shape or morphology of a signal. It measures
the total length of the waveform over a given time period, and
is computed by summing the absolute differences between
adjacent samples of the signal.

WL x( ) � ∑
n−1

i�1
x i + 1( ) − x i( )| |

Frequency domain:

I) Spectrum energy: Spectrum energy is a feature used to
describe the energy distribution of a signal across
different frequency components. It measures the total
amount of energy contained in the signal’s frequency

spectrum and can be calculated using the formula SE(x) �
∑i�n

i�1 |X(i)|2.
II) Chewing energy: Chewing energy is computed by first

computing the frequency spectrum of the signal using Fast
Fourier Transform (FFT) for the chewing frequency range
(1.25–2.5 Hz). The chewing energy is then computed for this
frequency range, which is the sum of the squared magnitudes
of the frequency components within the range. This feature
can be useful for detecting chewing activity in signals, as
chewing typically produces a characteristic pattern of energy
in the frequency domain.

III) Chewing energy to spectrum energy ratio: The ratio between
the spectrum energy and chewing energy.

IV) Walking energy: Walking energy is computed by first
computing the frequency spectrum of the signal using Fast
Fourier Transform (FFT) for the walking frequency range
(2.5–10 Hz). The walking energy is then computed for this
frequency range, which is the sum of the squared magnitudes
of the frequency components within the range.

V) Walking energy to spectrum energy ratio: The ratio between
spectrum energy and walking energy

VI) Talking energy: Talking energy is computed by first
computing the frequency spectrum of the signal using Fast
Fourier Transform (FFT) for the talking frequency range
(100–300 Hz). The talking energy is then computed for
this frequency range, which is the sum of the squared
magnitudes of the frequency components within the range.

VII) Talking energy to spectrum energy ratio: The ratio between
spectrum energy and talking energy.

VIII) Peak frequency of chewing spectrum: Maximum frequency
value of the chewing spectrum.

IX) Peak frequency of walking spectrum: Maximum frequency
value of the walking spectrum.

2.4.2 Feature selection and classification
To classify each epoch as food intake and no food intake Linear

Support Vector Machine (SVM) models were chosen due to their

TABLE 3 Description of selected features for CLP+ACC

Feature number Feature name Sensor

1 Mean Time Between Zero Crossing Pressure

2 Maximum Absolute Value AccZ

3 Chewing Energy to Spectrum Energy Ratio AccY

4 Chewing Energy AccY

5 Mean absolute value Pressure

6 Maximum Chewing Spectrum Pressure

7 Median absolute value AccY

8 Mean to RMS ratio Pressure

9 Spectrum Energy AccZ

10 Walking Energy to Spectrum Energy Ratio AccZ

11 Chewing Energy to Spectrum Energy Ratio AccZ

12 Maximum Chewing Spectrum AccY
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speed and generalization ability (Cortes and Vapnik, 1995). Two
separate SVM models were trained using the controlled
experiment data for comparison: 1. CLP+ACC: Classifier using all
80 features from both pressure sensor and accelerometer, 2. CLP:
Classifier using 20 features from only a pressure sensor. To reduce
the computational burden and redundancy in the computed
features, the feature selection procedure was used before
training. The feature selection using minimum Redundancy and
Maximum Relevance (mRMR) was applied to the computed
features (Peng et al., 2005) to select the top-ranked 12 features
for the CLP+ACC. mRMR is a feature selection algorithm that seeks
to identify the most relevant features for a given task while
reducing the redundancy among them. The selected top-ranked
12 features are listed in Table 3.

The top-ranked eight features out of 20 were selected for the
CLP. Training of the models was performed using the
Classification Learner tool in MATLAB 2019b (from
Mathworks Inc.). The foot pedal signals were used to assign
labels to each epoch during training. If more than 50% of an
epoch belonged to food intake, the epoch i was assigned a label
Epi = ‘1’ (food intake), otherwise the label Epi = ‘0’ (no food
intake). The SVM models were trained using a leave-one-out
cross-validation procedure where the classifier was trained with
data from nine participants, and data from the remaining
participant was used for testing the trained SVM model. This
procedure was repeated 10 times such that each participant was
used for testing once. The free-living data collected from the
participants were never used in the training of the classifiers.
F1 score was computed for each iteration as:

F1 � 2pPrecisionpRecall
Precision + Recall

(2)

Precision � TP

TP + FP
(3)

Recall � TP

TP + FN
(4)

where TP, FP, and FN denote true positives, false positives, and false
negatives, respectively.

2.5 Chew Count estimation

The three stages in the proposed method are depicted in
Figure 4. In the classification stage, if an epoch is classified as
food intake it is labeled as 1, and 0 otherwise. Here the epoch has a
fixed length such as 1, 3, 5 s, etc. But the chewing period of humans
has a variable length. As chewing sequences are of various lengths
of time, the use of fixed-length epochs may result in partial chewing
or non-chewing at all. Therefore, to detect the boundaries of
chewing segments of variable length, segmentation of the signal
using short-time energy may be used. However, these high-energy
segments can also be produced by physical activities such as
talking, walking, etc.; therefore, the classification labels were
used to differentiate chewing segments from other activities.
The number of chews was calculated by detecting the pressure
signal peaks in the chewing segments. In the segmentation stage,
first, the pressure sensor signal was filtered by a low-pass filter with
a cutoff of 3 Hz to remove unwanted noise. Second, the energy

envelope of the signal was computed using a sliding window
(Hanning) to identify the boundaries of the signal segments
with high energy (potential chewing events). The Hanning
window is a type of tapering function that smoothly transitions
from zero at the beginning and end of the segment to one in the
middle. This smooth transition reduces the amount of spectral
leakage, which occurs when energy from the signal leaks into
adjacent frequency bins in the frequency domain. The Hanning
window also has relatively low side lobes, which helps to reduce the
amount of energy that is spread out from the main spectral peak. As
the chewing frequency is located in the frequency band of
0.94–2.17 Hz, to capture the energy of chewing a window size of
1 s with an overlap of 0.5 s was used to compute the short-time
energy. The value of each window was then stored in a vector and a
threshold value of short-time energy T) was dynamically calculated
using the formula T � W.M1+M2

W+1 where M1 and M2 are the positions
of the first and second local maxima respectively, and W is a user-
defined parameter. Larger values of W lead threshold values closer
to the first local maxima, M1. The ideal value of W (w = 1) was
empirically found from the grid search experiment. Successive
windows for which the computed energies were higher than T,
were combined to form high-energy segments that were considered
candidate chewing segments labeled as 1 and successive windows
with lower energies compared to T were combined to form low-
energy segments and labeled as 0. To remove high energy segments
produced by physical activities such as talking, walking, logical
AND operation was performed between labels from the food intake
classification prediction stage and labels from the segmentation
stage. The identified chewing segments were then finally labeled as
1 for chewing segments and 0 for non-chewing segments. The
stages of the proposed algorithm are depicted in Figure 4. The chew
counts for all identified chewing segments were computed by
finding peaks and counting them. A peak was defined as the
highest point around which there are points lower by X
(threshold = 0.5, found from empirical results) on both sides.
The number of peaks in the chewing segment represents the
number of chews. Consequently, adding chews of all chewing
segments of an eating episode provide the total count of
chewing during the meal. Figure 5, represents the candidate
chewing sequence identification process. The second top figure
represents the segmentation labels. It can be seen that physical
activities such as talking, and walking produce false candidate
chewing sequences which are removed using the food intake
classification labels represented in the second from the bottom
graph.

2.6 Meal detection

To detect meals from food intake detection in free-living,
the predictions were kernel smoothed with a width of 50 s and
applied a threshold value of 0.2. The value of the threshold was
empirically selected from the controlled environment food
intake detection results. The width and the threshold value
of kernel smoothing were carefully selected as described above
to detect meals and remove false positives but not to remove
short eating episodes (approximately 1-min duration). Figure 6
represents the prediction of the classifier for a free-living
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dataset and finding the boundaries of the eating episodes using
CLP+ACC.

2.7 Image capture

The long-term goal of the proposed ECPS system is to
automatically, without any active intervention from the
wearer, capture and store images only during eating. The
sensor detection of food intake may facilitate the capacity of

capturing and storing images only during food intake by
triggering the camera. In this study for validation, the images
were captured continuously every 10 throughout the day. The
recorded images were reviewed manually to identify the true
eating episodes including the start and end time of the meal in the
free-living environment to match with the self-reported events.
Subjects were allowed to review and delete any picture before
being reviewed by a research assistant. When no images of food
items were detected within a sensor-detected eating episode then
it is counted as a false eating episode. The review of captured

FIGURE 4
Three stages of the proposed algorithm to count the number of chews.

FIGURE 5
Chewing segment detection using classification labels and segmentation. The top figure represents the filtered pressure sensor signal. The second
from the top figure represents the label from segmentation. The third from the top figure represents the label from food intake classification. The bottom
figure represents the detected chewing sequence.
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images also provides information about the number of images
captured only during food intake and the number of images
captured throughout the day. This information provides an idea

of how much power, storage, and computational cost can
be avoided by triggering the camera from the food intake
detection.

FIGURE 6
This figure represents food intake detection in free-living using both pressure sensor signal and accelerometer features for a 5-s epoch size. The top
figure represents the raw prediction. The epoch is labeled as “1” if it is predicted as a food intake epoch. Otherwise, the epoch is labeled as “-1”. Kernel
smoothing was performed to remove false positives by applying a fixed threshold. The middle and bottom figure represents the final prediction and self-
reported start and ends-time of the eating episode respectively. The epoch value is set as 1 if the epoch is classified as food intake. Otherwise, the
epoch value is set as -1.

TABLE 4 Precision, Recall (Sensitivity), and F1-Score for different epochs of Laboratory Experiments by classifier CLP+ACC.

Epoch (sec) Precision Sensitivity Specificity Accuracy Fscore

1 0.855 0.954 0.954 0.858 0.846

2 0.873 0.957 0.957 0.876 0.865

3 0.888 0.960 0.960 0.885 0.875

5 0.893 0.959 0.959 0.899 0.887

10 0.881 0.952 0.952 0.889 0.876

15 0.909 0.960 0.960 0.918 0.908

30 0.931 0.964 0.964 0.938 0.928

Mean 0.890 0.958 0.958 0.895 0.884

Std 0.023 0.004 0.004 0.024 0.025
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3 Results

Results of the leave-one-out cross-validation procedure for the
described two classifiers are shown in Tables 3–5. Table 4 represents
the performance matrices of the trained CLP+ACC for the different
epochs. For a 5-s epoch length, the CLP+ACC achieved amean F1-score
of 88.7%. Table 5 represents the performance matrices of the trained
CLP for different epoch sizes. For an epoch size of 5 s, the classifier CLP

achieved a mean F1-score of 87.6%. Table 6 represents the
performance of the chew counting algorithm using CLP in
controlled experiments. The chew counting algorithm achieved an
accuracy of 95.5%. Table 7 indicates the food intake episodes detection
by using both types of classifiers in the free-living environment.
Table 8, represents the analysis of manual image review in the
free-living experiment. Only 3.7% of the captured images are
relevant to food intake episodes in the free-living environment.

TABLE 5 Precision, Recall (Sensitivity), and F1-Score for different epochs of Laboratory Experiments by classifier CLP.

Epoch (sec) Precision Sensitivity Specificity Accuracy Fscore

1 0.869 0.959 0.959 0.846 0.834

2 0.865 0.960 0.960 0.834 0.820

3 0.899 0.967 0.967 0.862 0.851

5 0.896 0.964 0.964 0.886 0.876

10 0.861 0.953 0.953 0.871 0.863

15 0.891 0.961 0.961 0.902 0.897

30 0.906 0.958 0.958 0.914 0.910

Mean 0.884 0.960 0.960 0.873 0.865

Std 0.018 0.004 0.004 0.029 0.033

TABLE 6 Chew count of each subject using CLP classifier.

Subject Manual chew count Automatic chew count Accuracy %

1 673 709 94.7

2 1,002 1,064 93.8

3 522 557 93.8

4 545 576 93.3

5 384 364 94.3

6 985 1,042 94.8

7 874 883 94.2

8 454 445 98.97

9 200 206 97

10 761 773 98.423

Mean 660.67 ± 273.6 686 ± 291.4 95.5 ± 2.09

TABLE 7 Eating episode detection of free-living data by both classifiers.

Image
review

Self-report (atime-
logger)

Using CLP Using CLP+ACC

Sub Duration
(Hour)

No. Of meal No. Of meal No. Of (only
pressure)

Missed
Meal

False
detection

No. Of
Meal

Missed
Meal

False
Detection

sub1 10.7 2 2 2 0 0 2 0 0

sub2 11.8 2 2 2 0 0 3 0 1

sub3 8.8 2 2 2 0 0 2 0 0
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4 Discussion

The necessity of the development of an accurate, easy-to-use,
ingestive behavior monitoring device has remained an area of
research to improve as the number of diseases caused by obesity,
overweight, and eating disorders is increasing day by day. In this
study, the developed ECPS food intake monitoring device was
validated in both controlled and free-living environments.
Features from both pressure sensor and accelerometer were
collected and two separate classifier models were trained. Feature
selection based on mutual information using mRMR was performed
before training for both classifiers to reduce computation burden,
redundancy, and overfitting. During training leave, one cross-
validation approach was adopted which enables data from test
participants to never be seen during training. The classifier
CLP+ACC uses both pressure sensor and accelerometer features,
achieving the largest F-score of 0.92 with a 30-s epoch size and
the smallest F-score of 0.846 with a 1-s epoch size. As during free-
living our primary goal is to record all eating episodes successfully, a
5-s epoch size was selected to use in free-living considering
precision, sensitivity, and F-score. Table 7 represents the classifier
CLP+ACC performance in free living. The classifier CLP trained with
only pressure sensor achieve the highest F1-score of 0.91 with a 30-s
epoch size and the lowest F1-score of 0.82 for a 2-s epoch size. A 5-s

epoch size was selected to use in free-living considering precision,
sensitivity, and F-score. The classifier CLP accurately detected all six
eating episodes from three free-living days of data.

Using the food intake labels from the classifier and labels from the
segmentation stage, chewing segments were detected and the number of
chews was counted. Table 5 represents the performance of the chew
counting algorithm using the classifier CLP with an epoch size of 5 s.
The proposed chew counting algorithm achieved an accuracy of 95.5%
using only the pressure sensor signal. Figure 7 represents the cumulative
chew count for both the proposed automatic chew counting algorithm
and manual annotation of one controlled environment meal.

The manual image review of the captured images of free-living
shows that a total of 11,268 images were captured during free-living:
among them only 417 images were captured during food intake
which is a mere 3.7%.

The designed ECPS system has some limitations such as both of the
sensor signals depend on chewingwhich detects food intake only during
solid and semi-solid food consumption. Also, if the camera captures
images continuously, the wearer and the people surrounding the wearer
become somewhat concerned about their privacy. There could be some
sources of interferences such as speaking, facial movement, head
movement, air tube movement, touching the earbud etc. To remove
these interferences, the pressure sensor signal was filtered by applying a
low-pass filter with a cut-off frequency of 3 Hz as typical chewing is
associated with a frequency in the range of 0.94–2.17 Hz. Moreover,
these interferences are random and have different characteristics than
chewing. The design of the air tube minimizes motion artifacts by
maintaining the circular cross-section of the tube under moderate
tension, compression and bending of the tube due to head motion.
The cross-section diameter of the acoustic tube (2 mm) nearly perfectly
matched the cross-section of the pressure sensor (2 mm), that together
with virtually zero flow in the tube allows to avoid pressure variations
across the tube due to Bernoulli’s principle.

As the goal of this study was to develop a novel Ear Canal Pressure
sensor and to validate the sensor system for objective detection of food
intake, the study was limited to only 10 volunteers. Using the data, we
were able to show that the noble Ear Canal Pressure Sensor can detect
food intake events with high precision and count the number of chews
in the meal with high accuracy. A relatively small number of
participants is a limitation of this study; however, the sensor was
validated in unrestricted free-living conditions, thus supporting the
rigor of the proposed sensor. A study with larger sample size to further
validate the device after further miniaturization of the sensor should
be done in future.

LOSO-CV is a cross-validation technique that is particularly
useful in human subjects research, where data is often correlated
within individuals. It evaluates model performance on a test set that

TABLE 8 Manual review of captured images (Free-Living).

Participant Data collected (hours) Total number of images Food images % Of food images

1 10.7 3,852 134 3.48

2 11.8 4,248 158 3.72

3 8.8 3,168 125 3.95

Total 31.3 11,268 417 3.7

FIGURE 7
Cumulative chew count of a meal. The blue line indicates the
result of the proposed chew counting algorithm and the red line
represents the result of the manual annotation.
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includes data from a single subject, while training on data from all
other subjects. This allows for a more accurate estimate of model
generalization performance and is more sensitive to individual
differences in the data. However, LOSO-CV can be
computationally expensive and performance estimates can have
high variance. The choice of validation technique depends on the
specific needs of the research question and the nature of the data.

In this study, all the processing was done offline in MATLAB
2019b (from Mathworks Inc.) installed on a Windows 10 computer
equipped with an Intel Core i7 ninth Generation CPU with 16 GB
DDR4 RAM, and an NVIDIA GeForce GTX 1070 GPU with 8 GB
memory. The trained SVM classifier CLP+ACC contains 77 support
vectors. The ClassifierCLP+ACC takes 12 time and frequency features
to predict. The average execution time to calculate 12 features and
make inference in a 5 s epoch is 0.0022 s. Calculating these features
and providing prediction from the micro-controller in real-time will
introduce delay as the wearable device has limited computational
resources. Another way of providing real-time feedback can be done
from the server. Date from the ECPS may be sent to the server via
Bluetooth which will be then processed by the server where the
trained models will be stored and implemented. As, the aim of this
study was to validate the novel ECPS for food intake monitoring and
chew counting, real-time application was not considered in this
study. Future work should be done to implement the ECPS for food
intake monitoring and providing feedback in real-time.

As the goal of this study to validate the developed ECPS (Ear Canal
Pressure Sensor) for food intake monitoring and chew counting, the
food choice of was not restricted in any way. But in order to develop
future models such as caloric energy estimation using regression, the
food items including the consumed weight was recorded.

Future work should implement image-based detection and
combine it with sensor-based food intake detection to provide more
reliable and accurate ingestive behavior monitor including liquid
consumption. Meal microstructure such as chewing rate, bite count,
bite rate, etc. Should be calculated to perform an estimation of caloric
consumption. The sensor detection may be useful in triggering the
camera to capture images when food intake is detected by the sensor
thus increasing the battery, storage, and computation capability.

The developed novel wearable sensor system can be implemented
in other devices such as headphones and shows promising results in
food intake detection in both controlled and wild environments.
Further, the proposed wearable sensor system can be used to
trigger the camera to start capturing images when food intake is
detected and stop capturing after an eating episode. Thus providing a
significantly less number of captured images which reduces: the sensor
system power consumption, privacy concern of the wearer and
surrounding people, storage cost, and computational cost.

5 Conclusion

In this paper, we propose a novel wearable sensor system that can
be implemented in other devices with an earbud that detects all eating
episodes using features from only the ear canal pressure sensor, and
using both pressure sensor and accelerometer features. In Leave One
Subject Out (LOSO) cross-validation experiments, an average of 88.4%
F-score in food intake detection using both pressure sensor and
accelerometer was achieved for 5 s epoch size in a controlled

environment and detected all six eating episodes in free-living with
only one false eating episode. The SVM classifier trained using features
from only pressure sensors achieved an average of 86.5% F-score in a
controlled environment and detected all six eating episodes in free-
living. The proposed chew counting algorithm achieved an accuracy of
95.5% in a controlled environment using only a pressure sensor signal.
A manual review of the continuously captured egocentric images
showed that a mere 3.7% of the captured images were related to
food intake. These results show that the proposed wearable sensor
system can effectively detect food intake episodes and count the number
of chews in both controlled and free-living conditions, which needs
further exploration to be used as an ingestive monitoring tool and
sensor-based triggered passive image capture tool.
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