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The objective of this paper is to develop an optimized system to detect Atrial Fibrillation
(AF) in compressively sensed electrocardiogram (ECG) for long-term remote patient
monitoring. A three-stage system was developed to 1) reject ECG of poor signal quality,
2) detect AF in compressively sensed ECG, and 3) detect AF in selectively
reconstructed ECG. The Long-Term AF Database (LTAFDB), sampled at 128 Hz
using a 12-bit ADC with a range of 20 mV, was used to validate the system. The
LTAFDB had 83,315 normal and 82,435 AF rhythm 30 s ECG segments. Clean ECG
from the LTAFDB was artificially contaminated with motion artifact to achieve −12 to
12 dB Signal-to-Noise Ratio (SNR) in steps of 3 dB. The contaminated ECG was
compressively sensed at 50% and 75% compression ratio (CR). The system was
evaluated using average precision (AP), the area under the curve (AUC) of the receiver
operator characteristic curve, and the F1 score. The system was optimized to maximize
the AP and minimize ECG rejection and reconstruction ratios. The optimized system for
50% CR had 0.72 AP, 0.63 AUC, and 0.58 F1 score, 0.38 rejection ratio, and 0.38
reconstruction ratio. The optimized system for 75% CR had 0.72 AP, 0.63 AUC, and
0.59 F1 score, 0.40 rejection ratio, and 0.35 reconstruction ratio. Challenges for long-
term AF monitoring are the short battery life of monitors and the high false alarm rate
due to artifacts. The proposed system improves the short battery life through
compressive sensing while reducing false alarms (high AP) and ECG reconstruction
(low reconstruction ratio).

Keywords: signal quality assessment, remote healthcare, compressive sensing, electrocardiogram, machine
learning, atrial fibrillation

1 INTRODUCTION

Atrial Fibrillation (AF) is a cardiovascular disease that arises from the uncoordinated activation of
the atria (January et al., 2014). AF can lead to severe complications, including a 2-, 3-, and 5-fold
increase in risk in mortality and dementia, heart failure, and stroke, respectively (Ott et al., 1997;
Kannel et al., 1998; Stewart et al., 2002; Alonso et al., 2009). Additionally, patients with AF are twice
as likely to be hospitalized and three times more likely to be readmitted to a hospital than patients
without AF (January et al., 2014). AF patients may not exhibit symptoms (silent AF) and can
experience short (< 7 days), long (> 7 days), and persistent (> 12 months) AF episodes (Go et al.,
2014; January et al., 2014).
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Cardiac activity can be monitored for AF using
photoplethysmography (PPG), video-based contactless
monitors, and electrocardiogram (ECG) (Couderc et al., 2015;
Han et al., 2020; Lazaro et al., 2020; Pereira et al., 2020; Bashar
et al., 2021). PPG is typically collected using optical-based
wearable devices, such as commercially available smart
watches, which provides an accessible approach to monitoring
AF. Couderc et al. (2015) suggested using machine learning based
approach to detect AF from PPG achieving sensitivity, specificity,
positive predicted value, negative predicted value, and accuracy of
92%, 96%, 85%, 98%, and 95%, respectively. Han et al. (2020)
wrote a review of the techniques to detect AF using PPG with the
referenced techniques achieving accuracy, sensitivity, and
specificity of 99.9, 99.9, and 99.8%, responsively. Additionally,
Han et al. (2020) have identified that one of the challenges of
using PPG for AF detection is its susceptibility to motion artifact,
where a PPG corrupted with motion artifact resembles AF such
that monitoring for AF during ambulation may not feasible.
Another optical-based approach is using a contactless video
monitor; variation in the skin color due to changes in blood
flow can be used to monitor the heartbeat (Couderc et al., 2015).
These techniques require the participant to be in the camera’s
field of view limiting their application to stationary patients. ECG
recordings are typically used to detect and diagnose AF and are
considered the clinical gold standard (Kumar Sahoo et al., 2011).
ECG is typically recoded using electrodes placed on the patient’s
torso, however armband electrodes have been recently suggested
(Lazaro et al., 2020). ECG is the focus of this paper since it is the
clinical gold standard for monitoring and detecting AF (Podd
et al., 2016). AF can have an irregular heart rate, an absent
P-wave, and/or an irregular atrial activity (January et al., 2014).
Since AF episodes can be silent, short, and occur sporadically,
long-term remote patient monitoring of ECG is beneficial. For
instance, a study showed that the AF detection rate increased
from 6.2% at the end of 30 days of monitoring to 40% at
30 months (Reiffel et al., 2017).

Remote mobile ECG monitoring is often employed to allow
individuals to move about during monitoring. A Holter monitor
is a commonly used wearable ECG monitor that will record the
ECG over a specific period (e.g., 24–72 h), and then a clinician
will download the ECG from the monitor and analyze it offline
for any abnormalities (Kusumoto Fred et al., 2019), but AF
detection may require months of ECG monitoring; therefore,
ECG will need to be regularly downloaded for frequent analysis.
However, regularly downloading the ECG could be inconvenient
for the patients as they may need to regularly visit a clinic or use
specialized devices (Medtronic, 2020). As such, a wireless ECG
wearable monitor and automated analysis of ECG can facilitate
long-term monitoring and detection of AF; however, the short
battery life of wearable ECG monitors is a challenge (Serhani
et al., 2020). Additionally, remote mobile monitoring has been
shown to introduce contaminants in the ECG, which increases
the rate of false alarms in AF detection and, in turn, can render
long-term ECG monitors unusable (Taji et al., 2018). Signal
quality analysis (SQA) during long-term mobile monitoring
can be used to identify ECG of acceptable quality for further
analysis while rejecting unacceptable ECG to reduce false alarms.

Compressive sensing (CS), introduced in 2006, is used to
compress signals at the sensing stage (Candès et al., 2006). CS
is a computationally simple technique that can achieve high
compression ratios (CRs) and reduce the battery consumption
of healthcare monitors by up to 15.4% (Al Disi et al., 2018). As
such, CS could be performed on the wearable remote mobile ECG
monitor to overcome the short battery life challenge. However,
reconstructing compressively sensed ECG is an ill-posed problem
and a computationally intensive operation (Poian et al., 2016).
Therefore, SQA and detection of AF in compressively sensed
ECG are warranted to avoid needless signal reconstruction.

The contribution of this paper is the development of a novel
system that assesses the signal quality and detects AF in
compressively sensed ECG, thereby minimizing the need to
reconstruct the compressed ECG. In this paper, the system’s
performance is assessed, the impact of contaminated ECG on AF
detection is explored, and optimization of the system tomaximize
performance, reduce computational complexity, and reduce false
alarms is presented. The remainder of this paper is divided into
six sections. Section 2 provides literature review on SQA and AF
detection. Section 3 provides an overview of the proposed system.
Section 4 describes the methodology, including the data, the
compression algorithm, and the training and testing procedure.
Sections 5, 6 describe and discuss the results, respectively. Finally,
Section 7 provides the conclusions and future work.

2 LITERATURE REVIEW

2.1 Atrial Fibrillation Detection
AF detection algorithms generally consist of two major steps: 1)
feature extraction and 2) classification. Deep learning algorithms can
combine the feature extraction and classification steps (Andersen
et al., 2019; Mousavi et al., 2019; Sun et al., 2020; Pokaprakarn et al.,
2021). Features for AF detection may reflect the changes in the
P-wave and R-R interval associated with AF (Rizwan et al., 2020).
F-wave analysis can also be performed for AF detection; however,
isolation of F-wave and extraction of its features are challenging due
to its low amplitude (Rizwan et al., 2020). Other features can
highlight AF but are extracted without identifying ECG fiducial
points (Asgari et al., 2015; Kora and Sri Rama Krishna, 2016; Lim
et al., 2016). These non-fidicual-based features include statistical-
and transform-based features (Hussein et al., 2018; Marinho et al.,
2019; Nascimento et al., 2020; Rizwan et al., 2020).

There have been few studies exploring the detection of AF in
compressively sensed ECG. Poian et al. (2018) proposed amodified
matched filter technique to detect heartbeats in compressively
sensed ECG. The technique successfully located the heartbeats;
however, the technique required a template of each patient’s
heartbeat, requiring regular updating. Poian et al. (2017) utilized
the matched filtering technique to detect AF in compressively
sensed ECG by locating the heartbeats, extracting RRI features, and
using a support vector machine to differentiate ECG with AF from
normal ECG. Cheng et al. (2020), Zhang et al. (2020) proposed
using deep learning to detect AF in compressively sensed ECG.

Detecting ECG fiducial points can be challenging for different
compression matrices and higher compression levels. The AF
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detection system proposed in this paper detects AF in
compressively sensed ECG using a non-fiducial-based features
approach, introduced in (Abdelazez et al., 2021).With clean ECG,
this approach achieved an average precision of 0.90, 0.91, and
0.91 at 50%, 75%, and 95% compression, respectively (Abdelazez
et al., 2021). Long-term AF monitoring may take place while the
patient is ambulating contaminating the ECG. SQA would
identify the quality of the ECG to reduce false AF detections.

2.2 Signal Quality Analysis
SQA can be broken into four categories (Fraser et al., 2014): 1)
detection, recognizing the presence of a contaminant in the ECG;
2) identification, determining the type of the contaminant; 3)
quantification, estimating the level of contamination or
equivalently assessing the quality of the ECG; and 4)
mitigation, removing/reducing the contaminant. For
quantification, the quality of ECG can be represented using a
Signal Quality Index (SQI), which can be on a continuous scale
[e.g., signal-to-noise ratio (SNR)] or a discrete scale (e.g.,
unacceptable, intermediate, or acceptable). Detection can be
considered an abstraction of quantification, where a threshold
of acceptability is applied to the SQI. Different applications will
have different thresholds of acceptability. For example, heart rate
(HR) detection, an application tolerant to high contamination
levels, would likely have a higher threshold of acceptability than
AF detection, a process that is adversely affected by even low
levels of contaminants.

Quality analysis of ECG consists of two steps: 1) features
extraction and 2) quality classification/regression. The features
can be fiducial-based or non-fiducial-based (Satija et al., 2018).
Fiducial-based features require identifying fiducial points in the
ECG (e.g., R-peak). Non-fiducial-based features are extracted
directly from the ECG or following a transformation (e.g.,
Wavelet transform). In addition, the cross-correlation between
ECG leads and ECG lead autocorrelation have also been used as
features (Satija et al., 2018). A review of SQA techniques can be
found in (Satija et al., 2018).

SQI for compressively sensed ECG has been scarcely explored.
Liu et al. (2021) proposed a discrete SQI that used non-fiducial-
based features (energy and wavelet entropy) to classify
compressively sensed ECG as either acceptable or
unacceptable, which should be considered SQA detection
rather than quantification. The SQI had a maximum accuracy
of 90.43% when tested on the Physionet/CinC Challenge 2011
Database, compressed at 50% using a Gaussian matrix.

The AF detection system proposed in this paper uses an SQI
for compressively sensed ECG that we introduced in (Abdelazez
et al., 2022). Our SQI estimates the SNR on a continuous scale.
Unlike (Liu et al., 2021), this allows different thresholds of
acceptability to be chosen for different applications.

3 PROPOSED ATRIAL FIBRILLATION
DETECTION SYSTEM

The proposed system is comprised of three stages (Figure 1).
Stage 1 uses an SQI to determine the quality of the compressively

sensed ECG. If the quality is unacceptable, the ECG is discarded
to avoid false alarms (i.e., false positives) caused by contaminants.
ECG of acceptable quality is processed by Stage 2, which detects
AF in the compressively sensed ECG and provides a confidence
score for each decision. If the Stage 2 confidence score of AF

FIGURE 1 | A diagram of the proposed system.
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detection is unacceptable, Stage 3 reconstructs the ECG, and AF
detection is conducted again but on the uncompressed ECG.
Stage 3 aims to improve the true alarm rate (i.e., true positives) of
the AF detection system while minimizing the computational
costs by selectively reconstructing the ECG.

3.1 Stage 1—Signal Quality Index
Contaminated ECG could lead to false alarms, and Stage 1 is
intended to reject low-quality ECG to reduce the alarms
(i.e., reduce false positives). We previously introduced the SQI
used by the proposed system in (Abdelazez et al., 2022). The SQI
uses a machine learning approach with feature extraction and
regression to estimate the SNR on a continuous scale. There are
two non-fiducial-based features: 1) the ratio of the standard
deviation (SD) of the amplitudes in an ECG segment (a
segment length of 30 s was used in this paper) and the
amplitudes of clean ECG, and 2) the Wasserstein distance
between the distributions of the amplitudes of an ECG
segment and the amplitudes of clean ECG. The distributions
are extracted by binning the values of the ECG amplitude in a
segment using Scott’s rule, defined in (Eq. 1) (Scott, 2011).

h � 3.49 p ^σ��
n3

√ (1)

where n is the number of samples in the ECG, σ̂ is SD of the ECG
amplitude, and h is the width of the bin. TheWasserstein distance
(also known as the Earth Mover’s Distance) is defined in (Eq. 2)
(Villani, 2009).

W(g, v): � min
(X,Y)

law(X)�g
law(Y)�v

E‖X − Y‖1 (2)

where g is the distribution of the ECG segment’s amplitudes, v is
the distribution of the clean ECG’s amplitudes, || ||1 is the L1
norm, and X and Y are random variables with the same
distributions as g and v, respectively, as indicated by the law
of large numbers (law).

Regression is performed using a random forest (RF), with the
hyperparameters (number of trees andminimum ratio of samples
in a leaf) optimized using Bayesian optimization (34). The
optimized number of trees were 79, 65, and 51 trees, and the
minimum optimized ratio of samples in a leaf were 0.00087,
0.00101, and 0.00100 for the uncompressed, 50% compressed,
and 75% compressed ECG, respectively.

3.2 Stage 2—Detection of Atrial Fibrillation
in Compressively Sensed
Electrocardiogram
We previously introduced the machine learning approach for AF
detection in compressively sensed ECG (Abdelazez et al., 2021).
The features are non-fiducial based: statistical features (median,
skewness, and range), EMD, Discrete Cosine Transform (DCT),
and Discrete Wavelet Transform (DWT). The third and fourth
Intrinsic Mode Functions (IMF) are extracted using EMD, as they

have been demonstrated to highlight AF features in the ECG
(Maji et al., 2013). Themean, skewness, and kurtosis are extracted
as features from each IMF. The DCT has been shown to capture
the energy levels of the components of the ECG. Energy levels of
the components of ECG with and without AF are different
(Martis et al., 2014). The median, skewness, kurtosis, and
entropy are extracted as features from the DCT coefficients.
DWT has been used extensively to analyze, denoise, and
compress ECG. The variable scaling of the DWT highlights
transient and non-stationary components of the ECG that can
identify the presence of AF. The ECG is decomposed to the fourth
level using “demy” as the mother wavelet. The mean, median,
skewness, and kurtosis are extracted as features from the
approximation and detail coefficients generated by the
decomposition operation. Feature selection and the final
elected features are described in (Abdelazez et al., 2021). 13,
15, and 17 features were selected for uncompressed, 50%
compressed, and 75% compressed ECG, respectively.

An RF is used to classify an ECG segment as normal or AF.
The RF hyperparameters were optimized using a grid search,
resulting in 50 trees, two minimum samples to split, one
minimum sample in a leaf, square root of the number of
features, and unlimited depth (Abdelazez et al., 2021). These
hyperparameters were common across all CRs and the
uncompressed ECG.

A confidence score is associated with the classification result,
which is the fraction of trees that classified the ECG segment as
AF. The confidence score ranges from 0 to 1. A confidence score
that approaches one indicates an ECG segment classified as AF
with high confidence. A confidence score that approaches 0
indicates an ECG segment classified as normal with high
confidence. Confidence scores around 0.5 indicate low
confidence in the classification result.

3.3 Stage 3—Detection of Atrial Fibrillation
in Electrocardiogram Following
Reconstruction
If Stage 2 generates a classification with low confidence, then the
ECG segment is reconstructed, and AF detection is performed
again on the reconstructed ECG segment. By reconstructing ECG
segments with low Stage 2 confidence, Stage 3 is intended to
improve the true alarms (i.e., true positives). We previously
introduced this approach of selective reconstruction in
(Abdelazez et al., 2020), which improved the precision by
3%–4% compared to only performing AF detection in the
compressed domain (i.e., Stage 2 without Stage 3). ECG
reconstruction is performed using the SL0 algorithm
previously used to reconstruct ECG successfully (Mohimani
et al., 2009; Mitra et al., 2020). In addition to the sensing
matrix, the SL0 requires a sparsifying matrix. A DCT
dictionary was provided as the sparsifying matrix, as ECG is
sparse in the DCT domain (Mitra et al., 2020).

The fiducial points, specifically the R-wave, can be readily
located in the reconstructed ECG; therefore, a fiducial-based AF
detection, using RRI features, is employed. An online
implementation of the Pan-Tompkins algorithm is used to
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locate the R waves (Pan and Tompkins, 1985; Sedghamiz, 2014).
First, RRIs are extracted in each ECG segment, and then the
following features are extracted: 1) minimum RRI; 2) max RRI; 3)
standard deviation of RRI; 4) median of RRI; 5) mean of RRI; 6)
the percentage of RRIs less than 50 ms; 7) power of RRIs in the
segment; and 8) SampEn of RRIs in segment (Qiao Li et al., 2016).
Finally, an RF with the same hyperparameters as stage 2 is used to
classify the ECG segment as normal or AF.

4 MATERIALS AND METHODS

4.1 Data
The Long-Term Atrial Fibrillation Database (LTAFDB), available
on Physionet, was used to evaluate the proposed system
(Goldberger et al., 2000; Petrutiu et al., 2007). There were 84
approximately 24-h records of two-channel ECG collected from
84 subjects in the LTAFDB. ECG was collected at 128 Hz using a
12-bit ADC with a range of 20 mV. The LTAFDB contained
annotations of the location of the R-waves and the rhythm type.
Only the first channel of ECG and normal rhythm (N) and AF
annotations were used in this paper.

To compare the proposed Stage 2 with the literature,
Physionet’s MIT-BIT Atrial Fibrillation Database (AFDB) was
used (Moody, 1983; Goldberger et al., 2000). The database had 21
records that were approximately 10 h sampled at 250 Hz using a
12-bit ADC with a range of 20 mV. Only the first channel of the
ECG with N and AF annotations was used.

Each record was preprocessed using a second-order zero-
phase Butterworth band-pass filter with a lower cut-off of
0.67 Hz (Kligfield et al., 2007) and an upper cut-off of 25 Hz.
The 25 Hz upper cut-off was chosen as the information of AF
contained in the F-wave, P-wave, and the R-wave is below 20 Hz
(Lin, 2008). Records were then segmented into 30 s non-
overlapping segments. Segments that had an SNR above 3 dB,
based on the SQI developed in (Quesnel et al., 2014; Abdelazez
et al., 2017), were chosen for further analysis. The 3 dB
threshold was based on previous studies showing that an AF
detector’s performance decreased below this threshold (Taji
et al., 2018). Additionally, segments with biologically
impossible heartrate (< 16 and > 220 beats per minute) were
excluded from further analysis. There were 83,315 N and 82,435
AF LTAFDB segments and 14,949 N and 7,905 AF AFDB
segments available for further processing.

4.2 Contaminating Electrocardiogram
ECG segments were artificially contaminated using simulated
motion artifacts generated using an autoregressive model (Farago
and Chan, 2020). Unfortunately, motion artifact overlaps with the
ECG in both time and frequency domain, making it challenging
to remove. However, other contaminants, such as baseline
wandering, muscle artifacts, and high-frequency noise can be
easily filtered out.

ECG segments were contaminated to achieve a preset SNR
from −12 to 24 dB, in steps of 6 dB. This SNR range was chosen
based on the range used in the MIT-BIH Noise Stress Test
Database (Moody et al., 1984). The Physionet’s Noise Stress

Test function SNR definition (Moody et al., 1984) was used
for the preset SNR. It should be noted; an 18 dB SNR as
defined by Physionet’s Noise Stress Test (NST) function is
approximately equal to a 3 dB SNR as defined by the SQI used
in Section 4.1 to select segments for further processing. The NST
function procedure to contaminate the ECG segments is
discussed in (Abdelazez et al., 2022). Following contamination,
916,465 N and 906,785 AF LTAFDB segments were available for
further processing.

4.3 Compressively Sensing
Electrocardiogram
Following contamination, each ECG segment was compressively
sensed. Compressive sensing (CS) utilizes the sparsity of the
ECG to compress it such that the ECG has K-sparse
representation in a basis Ψ if its transform, α, contains at
most K significant samples (Donoho, 2006). It has been
demonstrated that ECG is a sparse signal and that CS can be
applied to it successfully (Mitra et al., 2020). The compression
operation is described in (Eq. 3).

y � Φx (3)
where x is the ECG segment of size Z × 1, Φ is the sensing matrix
of sizeM × Z, and y is the compressively sensed ECG of sizeM ×
1. Previous work successfully demonstrated AF detection in
compressively sensed ECG using the deterministic binary
block diagonal (DBBD) sensing matrix (Abdelazez et al.,

FIGURE 2 | A sample 10 s segment of record five from LTAFDB that is
uncompressed (Top), 50% compressed (middle) and 75% compressed
(bottom).
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2021). The DBBD is used in this work, and a sample DBBD
matrix is shown in (Eq. 4).

ΦD �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
[1 . . . 1] 0 0 0

0 [1 . . . 1] 0 0
0 0 1 0
0 0 0 [1 . . . 1]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4)

The DBBD is a sparse matrix with each row having m = Z/M
ones. ECG segments were compressed to 50% and 75% CRs,
defined in (Eq. 5). CRs above 75% were not used as the
reconstructed ECG had no discernable fiducial points. The
uncompressed ECG segments will be considered compressed
at 0% CR for the remainder of the paper. Figure 2 shows an
example of uncompressed and compressively sensed 10 s ECG.
The amplification shown in the compressed ECG segments in
Figure 2 is due to the DBBD matrix and can be removed by
normalizing the matrix, which does not have an impact on the
proposed system nor the results presented.

C � (1 − M
Z
) * 100 (5)

4.4 Training and Testing
A 10-fold record-based cross-validation (90%—training and
10%—testing) was used to test the proposed system. Record-
based cross-validation is a cross-validation schema that isolates
entire records for testing, such that the system was never trained
and tested on ECG segments from the same record. The training
procedure was divided into three main steps that were performed
separately for each CR:

1) Train the SQI (Stage 1)
a) Compressively sense the clean ECG records in the training

set prior to corruption.
b) Calculate the SD of the amplitudes.
c) Extract the distribution of the amplitudes.
d) Segment the ECG in the training set and corrupt the 30 s

segments to the preset SNR range.
e) Compressively sense the 30 s corrupted ECG segments.
f) Calculate the ratios of the SDs of the amplitudes of the

compressively sensed ECG segments and the SD of the
clean ECG.

g) Calculate the Wasserstein distance between the
distributions of the amplitudes of the compressively
sensed ECG segment and the distribution of the
clean ECG.

h) Train the Stage 1 RF.
2) Train the AF Detection in Compressively sensed ECG

(Stage 2)
a) Extract the features from the compressively sensed 30 s

corrupted and clean ECG segments in the training set.
b) Train the Stage 2 RF.

3) Train the AF Detection in Reconstructed ECG (Stage 3)
a) Reconstruct the corrupted and clean compressively sensed

ECG segments from the training set.
b) Locate the R-waves and extract the RRIs.

c) Extract the RRI features.
d) Train the Stage 3 RF.

The testing procedure was also divided into three main steps
that were performed separately for each CR:

1) Determine the SQI (Stage 1)
a) Segment the ECG in the testing set and corrupt the 30 s

segments to the preset SNR range.
b) Compressively sense the 30 s corrupted ECG segments.
c) Calculate the ratios of the SDs of the amplitudes of the

uncompressed and compressively sensed ECG segments
and the SD of the clean ECG calculated in step 1 (b) of the
training procedure.

d) Calculate the Wasserstein distance between the
distributions of the amplitudes of the uncompressed
and compressively sensed ECG segment and the
distribution of the clean ECG extracted in step 1 (c) of
the training procedure.

e) Use the RF trained in step 1 (h) of the training procedure
to determine the SQI of the ECG segment.

2) Detect AF in Compressively sensed ECG (Stage 2)
a) Extract the features from the compressively sensed 30 s

corrupted and clean ECG segments in the test set.
b) Use the RF trained in step 2 (b) of the training procedure to

classify the ECG segments as either N or AF and record the
confidence score.

3) Detect AF in Reconstructed ECG (Stage 3)
a) Reconstruct the compressively sensed 30 s corrupted and

clean ECG segments in the test set.
b) Locate the R waves and extract the RRIs.
c) Extract the features.
d) Use the RF trained in step 3 (d) of the training procedure

to classify the ECG segments as either N or AF.

4.5 Evaluation
The performance of the system was evaluated using average
precision (AP) [defined in (Eq. 6)], the area under the curve
(AUC) of the receiver operator characteristic (ROC) curve, and F1-
score [defined in (Eq. 7)]. In addition to AP, AUC, and F1 score,
the system’s true positive rate (TRP), false positive rate (FPR), and
false discovery rate (FDR) were reported. The TPR is the rate of
segments classified as AF over all AF segments. The FPR is the rate
of segments misclassified as AF over all N segments. The FDR
represents the false alarm rate and is the rate of segments
misclassified as AF over all segments classified as AF.

AP � ∑K
n�1

(Rn − Rn−1)Pn (6)

where Pn is the precision at the nth confidence threshold, Rn is the
recall at the nth threshold, and K is the number of the thresholds.
The thresholds were between zero and one.

F1 � 2p
precisionprecall
precision + recall

(7)
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To compare with the literature the precision, recall, F1-score,
and accuracy were calculated using segment-based hold-out
method (90% training and 10% testing) on the AFDB, as this
validation approach was used by the literature. Segment-based
hold-out is a validation schema that divides the dataset into
training and testing sets regardless of the source records, such that
the training and testing segments may come from the same
record.

The proposed system was tuned using the threshold of
acceptability and the width of the unacceptable AF
detection confidence range. The threshold of acceptability
was placed on the SQI (Stage 1) to determine which ECG
segments should be rejected. Thresholds between −12 and
20 dB were tested. A threshold of −12 dB would essentially
accept all ECG segments. Thresholds above 20 dB rejected
most of the test set, such that the performance of the system
could not be evaluated. The system reported the rejection ratio
(ratio of test segments rejected to the total number of test
segments). During the evaluation of the system, rejecting a
segment was considered the equivalent of classifying the
segment as N.

The unacceptable AF detection confidence range was used to
determine which ECG segments should be processed by Stage 3.
The unacceptable AF detection confidence range was 0.1 wide,
centered on 0.5. The width of the range was increased in steps of
0.05. For example, the first range was 0.45–0.55, such that ECG
segments with Stage 2 AF detection confidence exclusively in that
threshold range were processed by Stage 3. Segments above that
range were classified as AF, and segments below were classified as
N and bypassed Stage 3. The reconstruction ratio (ratio of
reconstructed test segments to the total number of test
segments) was reported.

The threshold of acceptability and the unacceptable
confidence range were optimized using the Adaptive Geometry
Estimation based Multi-objective Evolutionary Algorithm (AGE-
MOE) (Panichella, 2019; Blank and Deb, 2020). The optimization

was set as a minimization problem with the objectives being
rejection ratio, reconstruction ratio, and 1-AP. The population
size was 100, and the maximum number of generations was 30.
The crossover and mutation were conducted using real simulated
binary crossover and real polynomial mutation (Deb et al., 2007).
The system was optimized for each CR, and the Pareto Fronts
were used to demonstrate the relationship between the three
objectives.

5 RESULTS

As a baseline, Stage 2 was tested on clean ECG segments. Figure 3
shows AP, AUC, and F1 of Stage 2 across the CRs. The average
AP, AUC, and F1 were 0.91, 0.92, and 0.84, respectively, across all
CRs. Table 1 summarizes the precision, recall, F1 score, and
accuracy of Stage 2 and the literature. The quoted results in
Table 1 are based on segment-based hold-out method using the
AFDB, since the literature used segment-based validation
techniques as opposed to the record-based technique. The
remainder of the results were generated using record-based
cross-validation on the LTAFDB.

FIGURE 3 | Average precision, AUC, and F1 of Stage 2 across all CRs.
The error bars are the SD of the results across the 10-fold record-based
cross-validation.

TABLE 1 | Comparison of stage 2 performance with the literature.

Technique CR (%) Precision Recall F1 score Accuracy

Stage 2 (Proposed) 50 1.00 0.92 0.96 0.97
75 1.00 0.90 0.94 0.97

Poian et al. (2017) 50 0.97 0.85 N/A 0.93
75 0.95 0.66 N/A 0.84

Cheng et al. (2020) 50 N/A 0.96 0.97 0.96
70 N/A 0.95 0.96 0.94

Zhang et al. (2020) 50 0.96 0.95 0.95 0.95
70 0.93 0.93 0.94 0.94

The bolded values are the maximum values in each column.

FIGURE 4 | AP, AUC, and F1, and rejection ratio of Stages 1 and 2
across all CRs using accepted segments only. The x-axis is the threshold of
acceptability.
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Stage 1 and Stage 2 were tested together to demonstrate the
impact of the threshold of acceptability. Figure 4 shows the
AP, AUC, F1, and rejection ratio of Stages 1 and 2. At a
threshold of acceptability of −12 dB, the rejection ratio is
0.00, and the system exhibits the lowest AP, AUC, and F1
(0.74, 0.73, and 0.71, respectively, averaged across all CRs).
As the acceptability threshold increases, the AP, AUC, and F1
of the accepted segments improve, while more segments are
rejected. At the highest threshold of acceptability (20 dB), the
AP, AUC, and F1 are 0.88, 0.88, and 0.83, respectively,
averaged across all CRs, and the average rejection ratio
was 0.84.

Stage 2 and Stage 3 were tested together using clean ECG
segments to demonstrate the impact of the unacceptable AF
detection confidence range. Figure 5 shows the AP, AUC, F1,
and reconstruction ratio of Stages 2 and 3. For example, with the
smallest unacceptable AF detection confidence range of
0.45–0.55, the reconstruction ratio is 0.05, and the system
exhibits the same AP and AUC, and a 0.02 improvement in
F1 (0.91, 0.92, and 0.86, respectively, averaged across all CRs)
compared to Stage 2. As the unacceptable AF detection
confidence range width increases, the AP, AUC, and F1
improve (at the range width of 0.50, reaching 0.98, 0.98, and
0.94, respectively, averaged across all CRs, where the average
reconstruction ratio was 1.00).

The two parameters (threshold of acceptability and
unacceptable AF detection confidence range) were optimized
using AGE-MOE to obtain the Pareto Front (best set of
results for a system). Figure 6 shows the Pareto Front of the
optimized system for the 50% CR. The Pareto Front of the 75%
CR was almost identical. The color gradient represents the worst
obtained AP (red) and the best AP (blue). The front is fairly linear
with higher rejection and reconstruction ratios, resulting in
higher AP.

Table 2 provides the average execution time for an ECG
segment at each stage, running on an Intel Gold 6,148
Skylake. Stage 3 took approximately 93 times and 55 times
longer to run than Stages 1 and 2 for 50% and 75% CRs,
respectively, indicating that Stage 3 is computationally intensive.

An operating point was chosen that maximized the AP and
minimized the reconstruction ratio. The chosen operating point
for 50% CR was a 4 dB acceptability threshold and 0.30–0.70
threshold range of acceptable AF detection confidence, which

FIGURE 5 | AP, AUC, and F1, and reconstruction ratio of Stages 2 and 3
across 50% and 75% CRs on uncontaminated segments. The x-axis is the
threshold of acceptable AF detection confidence.

FIGURE 6 | The Pareto Front of the system optimized for 50% CR using
accepted segments only. The color gradient represents the worst obtained AP
(red) and the best AP (blue).

TABLE 2 | Average execution time for each stage in the proposed system.

CR (%) Stage 1 (ms) Stage 2 (ms) Stage 3

0 0.39 10.68 N/A
50 0.39 7.86 735.53 ms
75 0.39 6.62 369.50 ms

FIGURE 7 | Precision Recall Curve of the optimized system and Stage 2
for 50% and 75% CRs using contaminated segments.
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resulted in 0.72 AP, 0.63 AUC, 0.58 F1, and 0.38 rejection and
0.38 reconstruction ratios. The chosen operating point for 75%
CR was a 5 dB acceptability threshold and 0.30–0.70 threshold
range of acceptable AF detection confidence, resulting in 0.72 AP,
0.63 AUC, 0.59 F1, and 0.40 rejection and 0.35 reconstruction
ratios. Figure 7 shows the precision-recall curve (PRC) of the
optimized system and Stage 2. The maximum precision
improvement of the optimized system over Stage 2 was 0.18
and 0.16 for 50% and 75% CRs, respectively, at recalls of 0.47 and
0.51, respectively. Table 3 shows the TPR, FPR, FDR of the
different combinations of the stages and the optimized system,
and Table 4 shows the TPR and FDR of the different
combinations of the stages and the optimized system at an
approximate FPR of 0.10.

6 DISCUSSION

The proposed system was tested using the LTAFDB to determine
the performance in detecting AF in the compressively sensed
ECG, the impact of rejecting corrupted ECG on the system’s
performance, and the impact of reconstructing the ECG to
confirm the AF detection. AF detection with compressively
sensed clean ECG (Stage 2) had an AP and AUC above 0.90,
and F1 was above 0.83 (Figure 3), which was comparable to the
results of the uncompressed case. The slight increase in the
performance at the 75% CR was previously studied, and it was
found that the filtering effects of the DBBD matrix aided in
highlighting the features of AF (Abdelazez et al., 2021).

Poian et al. (2017), Cheng et al. (2020), and Zhang et al. (2020)
developed an equivalent of Stage 2. At 50% and 75% CR, the
proposed Stage 2 precision and accuracy were better than the
literature (Table 1). On the other hand, the recall and F1 score of

Cheng’s technique were better than the proposed technique at
both CRs. These results indicate that the proposed Stage 2 was
comparable to the literature regardless of the compression ratio.
It should be noted that the segment-based hold-out method
approach reports inflated performance results. In a real-world
scenario, an AF detection system would be trained on a set of
patients and tested on another set with no mixing of segments
from a single patient in both training and testing sets. Table 1
reports the proposed system’s segment-based hold-out results,
since the literature reported results based on a similar validation
schema.

The presence of contaminated ECG decreases the
performance of the system. Generally, as the AP decreases, the
false positives (i.e., false alarms) increase. In the context of remote
monitoring, a high false alarm rate can render the system
unusable. Using SQA to gate contaminated ECG with a
threshold of acceptability can reduce the impact of
contaminants (Figure 4); however, this is achieved at the
expense of rejecting ECG segments, which may include
rejecting ECG segments with AF (false negative). In practice, it
would be reasonable not to raise an AF alarm when the ECG is
contaminated, at which AF detection is difficult. Also, in long-
term monitoring, the system can detect AF episodes in
subsequent ECG segments, so a higher specificity can be used
to justify a lower sensitivity. It is also noted that there were slight
performance differences for Stage 1 between the different CRs.

In addition to rejecting corrupted ECG segments, the system’s
performance could be improved by selectively reconstructing
ECG segments to detect AF (Figure 5); however, this is
achieved at the cost of increased computation associated with
reconstruction (Table 2). It should be noted that the values in
Table 2were reported on a server-grade CPUwith RAM available
on demand. The computational time of each stage would most

TABLE 3 | FPR, TPR, and FDR of different combinations of the stages and the optimized system.

CR (%) Metric Stage 2 Stage 3 Stage 1
+ stage

2

Stage 1
+ stage

3

Optimized system

50 TPR 0.79 0.44 0.46 0.42 0.45
FPR 0.48 0.08 0.20 0.06 0.11
FDR 0.36 0.14 0.28 0.12 0.19

75 TPR 0.81 0.51 0.46 0.44 0.47
FPR 0.50 0.14 0.18 0.08 0.13
FDR 0.36 0.20 0.27 0.14 0.20

TABLE 4 | TRP and FDR of different combinations of the stages and the optimized system at a FPR of 0.10.

CR (%) Metric Stage 2 Stage 3 Stage 1
+ stage

2

Stage 1
+ stage

3

Optimized system

50 TPR 0.33 0.45 0.34 0.45 0.43
FDR 0.22 0.16 0.21 0.16 0.17

75 TPR 0.28 0.47 0.32 0.45 0.42
FDR 0.25 0.16 0.20 0.16 0.17
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likely be longer on an embedded device with limited resources.
However, the ratio of the computational times of the different
stages would be similar in an embedded device, assuming the
embedded device has an architecture like that of server CPU
(x86). As such, Stage 3 would still be the most computationally
time-consuming stage on an embedded device. The relationships
between the AP, AUC, F1, reconstruction ratio, and the threshold
range width were pretty linear, except for the highest threshold
range widths. Above the threshold range 0.15–0.85, the
reconstruction ratio increased exponentially, while the AP,
AUC, and F1 began to plateau as they approached the
performance of AF detection in uncompressed ECG using the
RRI features. The performance of Stage 3 was similar across the
different CRs. It should be noted that the chosen unacceptable
confidence range was symmetrical around 0.5 to improve both
precision (i.e., reduce false alarms) and recall (i.e., reduce missed
alarms). However, if the goal is only to reduce false alarms, a non-
symmetrical range could have been used. For example, the lower
end of the threshold range could have been fixed at 0.5, so
segments classified as N would be accepted as such, regardless
of the confidence in the classification. The advantage of using a
non-symmetrical unacceptable confidence range is the reduction
of the usage of the computationally intensive Stage 3.

The Pareto Front of the optimized system (Figure 6) shows
that the relationship between the AP and reconstruction and
rejection ratios is fairly linear. The PRC (Figure 7) of 50% and
75% CRs were similar, with the 75% CR having slightly better
precision than 50% CR at higher CRs due to the filtering effect of
the DBBD. Since the objective was to reduce false alarms, the
system was optimized to improve precision at the recall’s
expense. The PRC of the optimized system was better than
Stage 2 up to recall of 0.50 and 0.55 (50% and 75 CRs,
respectively), beyond which the PRC dropped below Stage 2.
The optimized system improved precision up to 0.18, which
resulted in low false alarms.

The optimized system reduced the FPR by 0.37 and FDR by
0.17 and 0.16 at 50% and 75% CRs, respectively (Table 3). Stage 2
had high TPR, FPR, and FDR, while Stage 3 had low TPR, FPR,
and FDR. When using Stage 1, to reject low-quality ECG
segments, with Stage 2, the FPR and FDR were reduced by
over 0.28 and 0.08, respectively, when compared to Stage 2
alone. On the other hand, rejecting low-quality ECG (Stage 1)
with Stage 3 hadminimal impact on the FPR and the FDR. Stage 3
had low FPR and FDR, indicating that the low-quality segments
were classified as N. As such, using Stage 1 to reject low-quality
ECG had minimal impact on the number of false positives hence
the minimal impact on FPR and FDR. The optimized system
leverages Stage 2 high TPR and Stage 3 low FPR and FDR. As a
result, the system had a TPR comparable to Stage 2 with Stage 1
high TPR while having slightly worse FPR and FDR than Stage 3
with Stage 1.

The probability of false alarms (i.e., FPR) could be set to a
specific rate that the users are tolerant to in a real-world
application. At a FPR of 0.10, the optimized system had a
TPR of 0.43 and 0.42 and an FDR of 0.17 for 50% and 75%
CRs, respectively (Table 4). The optimized system had TPR 0.10
and 0.14 more than the TPR of Stage 2 alone and FDR 0.05 and

0.08 less than the FDR of Stage 2 alone. The improvements in
the TPR and FDR were mainly due to Stage 3, where the TPR
was 0.45 and FDR was 0.16 for 50% and 75% CRs. Stage 1 had
minimal impact on the TPR and FDR since the FPR was
manually set to a certain level. Table 4 also showed that
reconstructing all the ECG only had a 0.02 and 0.03 TPR
improvement and 0.01 FDR improvement over the optimized
system, which only had a reconstruction ratio below 0.38.
Considering that 50% and 75% CRs had similar PRCs, a
difference of 0.01 in their TPRs and no difference in their
FDRs, a CR of 75% provided the best performance while
maximizing compression, which can reduce the power
consumption of a remote wearable ECG monitor.

The proposed system demonstrated that AF could be detected in
compressively sensed ECG while reducing false alarms and ECG
reconstruction. However, there are limitations and areas of
improvement in the system. The system was validated on a single
lead from a single database that had 89 subjects that were
contaminated with motion artifact only. The TPR of the optimized
systemwas 0.45 and 0.47 for 50% and 75%CRs, respectively, and even
though in long-term monitoring, a missed alarm could be identified
later, the TPR could be further improved. Another limitation of the
proposed system is the presence of other cardiovascular diseases that
may resemble AF as the training and testing did not consider these
diseases and only used a N and AF rhythms.

7 CONCLUSION

A system was proposed to detect AF in compressively sensed ECG
while minimizing false alarms due to contaminated ECG and ECG
reconstruction. The system detected AF in compressively sensed
ECGwithminimal performance degradation compared to detection
of AF in uncompressed ECG. Contaminated ECG decreased the
performance of the AF detection; however, the proposed gating
(Stage 1) and selective reconstruction (Stage 3) improved the
system’s performance in the presence of contaminated ECG.

Future work will explore the system’s adaptability to a
different Stage 2 (e.g., Poian’s technique), the detection of AF
in the presence of other cardiovascular diseases, and the impact of
contamination other than motion artifact on the system
performance. Additionally, a privacy-preserving sensing matrix
that highlights AF features will be explored.
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