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Artificial intelligence applications implemented with neural networks require

extensive arithmetic capabilities through multiply-accumulate (MAC) units.

Traditional designs based on voltage-mode circuits feature complex logic

chains for such purposes as carry processing. Additionally, as a separate

memory block is used (e.g., in a von Neumann architecture), data

movements incur on-chip communication bottlenecks. Furthermore,

conventional multipliers have both operands encoded in the same physical

quantity, which is either low cost to update or low cost to hold, but not both.

This may be significant for low-energy edge operations. In this paper, we

propose and present a mixed-signal multiply-accumulate unit design with

in-memory computing to improve both latency and energy. This design is

based on a single-bit multiplication cell consisting of a number of memristors

and a single transistor switch (1TxM), arranged in a crossbar structure

implementing the long-multiplication algorithm. The key innovation is that

one of the operands is encoded in easy to update voltage and the other is

encoded in non-volatile memristor conductance. This targets operations such

as machine learning which feature asymmetric requirements for operand

updates. Ohm’s Law and KCL take care of the multiplication in analog. When

implemented as part of a NN, the MAC unit incorporates a current to digital

stage to produce multi-bit voltage-mode output, in the same format as the

input. The computation latency consists of memory writing and result encoding

operations, with the Ohm’s Law and KCL operations contributing negligible

delay. When compared with other memristor-based multipliers, the proposed

work shows an order of magnitude of latency improvement in 4-bit

implementations partly because of the Ohm’s Law and KCL time savings and

partly because of the short writing operations for the frequently updated

operand represented by voltages. In addition, the energy consumption per

multiplication cycle of the proposed work is shown to improve by 74%–99% in

corner cases. To investigate the usefulness of this MAC design in machine

learning applications, its input/output relationships is characterized usingmulti-

layer perceptrons to classify the well-known hand-writing digit dataset MNIST.

This case study implements a quantization-aware training and includes the

non-ideal effect of our MAC unit to allow the NN to learn and preserve its high

accuracy. The simulation results show the NN using the proposed MAC unit

yields an accuracy of 93%, which is only 1% lower than its baseline.
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1 Introduction

Arithmetic operations are central to modern artificial

intelligence applications implementing neural networks (NNs)

(Park et al., 2018; Shafik et al., 2018). In these operations,

multiplication plays a crucial role with significant impact on

performance and energy efficiency, especially because traditional

multiplier circuits feature complex partial product generation

and carry propagation logic chains (Qiqieh et al., 2018). As such,

reducing the energy consumption of multipliers, when used in

NNs, is an ongoing design challenge.

For low-complexity multiplication, reducing precision is a

viable method. For this, pruning the carry chains to a minimum

proportion while also maintaining an acceptable precision has

been proposed by numerous approximate and speculative circuit

designs (Cilardo et al., 2014). However, these designs require

careful synergy of operating voltages and frequencies to balance

energy and performance trade-offs (Shafik et al., 2016).

Moreover, the accumulation of imprecision and errors in

cascaded workloads needs mitigation strategies which adds

more complexity to the logic chains (Yakovlev, 2015).

Consequently, the usability of voltage-mode proportional

carry pruning schemes is still limited. On the other hand,

using multipliers with very low precision may be a viable

solution for certain applications. For instance, multipliers with

4-bit precision have been shown to be useful for machine

learning applications (Chahal, 2019), including deep learning

with datasets of significant sizes and complexity (Sun et al., 2020)

and targeting datasets more relevant for mobile applications at

the edge (Trusov et al., 2021). In this paper we target the design

and implementation of low-precision MACs for low-energy edge

applications.

Another problem with using existing arithmetic methods is

related to the approach of running AI software on conventional

computers based on von Neumann or Harvard architectures

(Zheng and Mazumder, 2019). Machine learning using NNs and

other AI methods involves multiple iterations of arithmetic

operations with data flow between processing elements and

memory being a significant bottleneck for conventional

computers (Zheng and Mazumder, 2019; Fujiki et al., 2021).

In-memory computing, especially using non-volatile memory

technologies may provide ways of reducing the amounts of data

flow required for AI applications including NNs (Fujiki et al.,

2021; Hung et al., 2021). Additionally, the non-volatile property

of memories can reduce the number of data movements, even

when the computing system sustains power cuts or interruptions.

Recently mixed-signal multiplier designs based on non-

volatile memory (memristor cells) have been proposed (Yu

et al., 2021), where the operands are expressed in multiple

modes, e.g., voltage, conductance and current. Single-bit

multiplication for partial product terms is performed in

current mode, which naturally follows Ohm’s law. In this

mode, the voltage input and conductance represent the two

operands and the resulting current represents the output.

Multiple partial product terms can be accumulated using

Kirchhoff’s Current Law (KCL) by organizing the single-bit

cells in a crossbar structure. With KCL, addition and

subtraction are, respectively equivalent to joining multiple

current paths into a node and removing current paths from

a node.

This type of mixed-signal multiplier is digital-in/analog-out.

Because transistor switching happens when setting the

memristor values and connecting the input voltages, a delay is

associated with making the operands (multiplier and

multiplicand) ready. After that, the single-bit multiplication

operation itself only involves resistive Ohm’s Law which can

be regarded as instantaneous. This means that the partial

products are immediately obtained once the operands are

ready. The addition of partial products through KCL across

the crossbar requires current amplification and has a delay

associated solely with the amplifiers. These current amplifiers

can be implemented with current mirrors, in which case there is

transistor-related delays. However, they may also be

implemented with memristor cell topologies in a pure resistive

fashion, again achieving negligible delay. This compares to

regular digital schemes which have to go through multi-stage

addition and carry-handling operations with a substantial

number of transistor switchings once the bit products appear

(Yu et al., 2021). In this paper we use the second method to

drastically reduce multiplication delay, which results in

significant reductions in energy per operation.

Another advantage of such transistor-memristor crossbar

multipliers is that one of the operands is represented by

memristor conductance GM � 1
RM
, which is non-volatile with

very low holding cost but costly to update, whilst the other is

represented by voltage, which is fast-updating but volatile. This is

a good match for such applications as NNs and reference-based

arithmetic where one of the operands tends to be relatively stable

and requires only sporadic change (Zheng and Mazumder, 2019;

Fujiki et al., 2021; Hung et al., 2021), but the other requires a high

update rate. This matching is especially relevant for edge

applications where power may be unreliable and energy is

crucial. In comparison, conventional multiplication schemes,

where both operands are represented by the same physical

quantity (voltage, current, or resistance/conductance), do not

take advantage of operational asymmetry in operand updating.

On the other hand, for multi-stage operations such as NNs in

a non Von Neumann neuromorphic architecture (Zheng and
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Mazumder, 2019), a digital-in/digital-out MAC unit is required.

If this type of mixed-signal multiplier is to be used, additional

circuits are needed to generate the appropriate digital output

from the intermediate current which encodes the product.

Memristor-based digital multipliers exist in the literature

(Guckert and Swartzlander, 2017) and these will be comparatively

studied with our method in the paper (in e.g., Section 6.1).

This paper describes a novel MAC unit based on mixed-

signal multipliers using transistor-memristor cells on crossbar

intersections. In this design, one operand is encoded in voltages

for frequent value updates and the other is encoded in memristor

conductance values for infrequent value updates. The

intermediate products are represented by currents. By

representing binary values with high and low values of these

analog parameters and signals, the multipliers implement bit

multiplication through Ohm’s Law and the summation of partial

products through KCL, combining both steps into the long

multiplication algorithm. The intermediate current product is

then converted to voltage-encoded multi-bit digital format.

Targeting multi-MAC applications such as NNs, there is a

built-in bit-precision reduction which makes the output the

same bit resolution as the inputs, unlike typical digital

multipliers which have double the number of bits in their

products compared with the operands. These techniques

combine to reduce the latency per multiplication for our

method compared with existing memristor-based multipliers,

and the latency reduction in turn causes a reduction in the energy

consumption. Our main contributions are:

• Developing a high energy efficiency end-to-end

multiplication accumulation unit based on the

transistor-memristor crossbar multiplier with mode

transition for such applications as classification NNs.

• Developing optimization methods such as the elimination

of current mirrors by changing the topologies of memristor

cells and investigating different memristor technologies

resulting in an order of magnitude improvements in

accuracy, speed and energy.

• Demonstrating the advantages of our multipliers over

existing designs through extensive theoretical and

experimental investigations.

• Validating the MAC design by using it as a perception in a

non Von Nuemann neural network implementation with

quantization-aware training solving an example machine

learning problem of a size relevant for low-energy edge

applications (MNIST hand-writing classification).

The rest of the paper is organized as follows: Section 2

describes the research baseline and technological foundations,

and discusses existing related work. Section 3 presents the first of

our MAC unit designs, based on the memristor multiplication

cell. Section 4 describes component and circuit implementation

details, and explores different multiplication cell designs in an

extensive comparative study, validating the advantages of our

multiplier design method on all major fronts. Section 5 presents a

machine learning case study with the proposed MAC acting as

perceptrons in an MLA NN. Section 7 then concludes the paper.

2 Background

The memristor, proposed by Chua as the fourth element in

the charge and flux taxonomy (Chua, 1971), has a number of

promising characteristics. One of these is its potential in

replacing semiconductor components in processing circuits.

That is because, as a switchable device, a memristor can

perform similar ON-OFF operations to a transistor with

adjustable doped/undoped regions, which turn memristor to

ON/OFF states (See Figure 1). This became more significant

when practical memristor implementation examples appeared

(Strukov et al., 2008; Radwan et al., 2012). As a nonvolatile

component, the memristor has been used in memory device

design, which is now called “resistive memory” (Ho et al., 2009).

At the same time, the possibilities for performing arithmetic with

memristors have also been explored, with multiplication being

viewed as especially promising (Reid, 2009). Memristor cell

methods have also featured in complex logic calculations such

as “material implication” (IMP) (Borghetti et al., 2010).

Computation processing units based on memristors have been

designed for multiple applications, such as signal processing,

artificial intelligence training, hardware acceleration, and

encoding/decoding (Gupta et al., 2016; Krestinskaya et al.,

FIGURE 1
Memristor structure and component details. Memristor resistance depends on thewith of doped/undoped region, the region width changed by
the electrical potential difference on the component terminals, if over threshold, the higher potential terminal will extend respective region width.
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2020). All these have multiply-accumulate operation at the

centre, for which the memristor unit is well suited.

The crossbar structure has been used to implement, in a

straightforward manner, various types of multiplication including

matrix multiplication (Li et al., 2018) and Shift-and-Add

multiplication (Guckert and Swartzlander, 2017). The transistor-

memristor pair has shown high precision in controlling operations,

making it useful in large scale circuits, demonstrating high potential

in performance, efficiency, and latency (Chen et al., 2019). One

transistor one memristor (1T1M) was also favourably compared

with Wallace-tree methods and conventional CMOS approach for

the same metrics (Yu et al., 2020b). A crossbar multiplier approach

with one transistor multiple memristor (1TxM) cells additionally

demonstrated higher precision (Yu et al., 2020a). Space taken by the

1TxM cell may be reduced by merging memristors with higher

margin values (Yu et al., 2021).

In (Yu et al., 2021), on which this paper is partially based, a

memristor-cell crossbar structure implements both the single-bit

multiplication at each cell. This is followed by the addition part of

multi-bit multiplication algorithm across the crossbar with

significance-related current amplification for different bit positions

so that the total summed current corresponds to the correct final

product for output. A crossbar multiplier is potentially an area-saving

solution because the memristor crossbar can be built on top of the

transistor-related layers using a back-end-of-line process

(Constantoudis et al., 2019). Therefore, the area can be smaller

than that used by the traditional CMOS multiplier.

Several designs of memristor cells have been proposed in the

literature. Example cell structures include the single memristor (1M)

cell, the multiple memristor (xM) cell, the single transistor single

memristor (1T1M) cell, and single transistor multiple memristor

(1TxM) cell. These designs focus on generating different

combinations of memristor resistance (RM) for respective

memristor conductance (DM) to achieve target arithmetic

expressions. Usually, logic operation on a memristor is achieved

by adjusting the voltage across it. A crossbar based on 1M cells

cannot provide the correct currents for digits of different significance

without additional current multiplication, usually with current

mirrors. The xM-cell crossbar is able to generate the required

output current without additional circuits (Yu et al., 2020b).

Moreover, current amplification is necessary in a crossbar

mixed-signal multi-bit multiplier where current represents

product. With each cell producing a current representing the

value of Boolean 0 or 1, KCL can only work to produce a total

current representing the multi-bit product if the current value at any

bit position is amplified correctly according to the bit’s value

significance. In other words, any bit should be twice the value of

the bit to its right. This is conventionally implemented with a

current-mirror-based current amplifier at each bit on 1M cell

crossbar. By tuning the output transistor size in a current mirror,

a bit’s correct significance can be set. However, this scheme results in

extra area cost from potentially very large transistors. In addition,

power and latency requirements of large transistors in current

mirrors also limit system efficiency and performance (Yuan, 2006).

Taking advantage of memristor resistivity, the resistive xM cell

can perform amplification by adjusting cell RM for the target

operand. The most straightforward method is to keep single-

memristor resistances the same across the multiplier, but build

1TxM cells with different numbers (x values) of parallel

memristors corresponding to their bit significances. For instance,

we may use 1M for bit 0, 2M for bit 1, 4M for bit 2, 8M for bit 3, etc.

In this way, the cells perform the required current amplification,

removing the need for currentmirrors.When applied to the crossbar

architecture, both 1M and xM cells help reduce the energy cost and

latency. Meanwhile, the space cost of multipliers based on these cells

can also be lower (Li et al., 2018).

3 Multiply and accumulation unit

Our MAC unit consists of memristor-transistor crossbar

multiplier and mixed-signal Flash analog to digital converter

(ADC) Which is show in Figure 2. In this section, the main parts

of this MAC unit will be introduced.

FIGURE 2
MAC units structure.
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3.1 Transistor-memristor crossbar
multiplier

3.1.1 Memristor
Decades after the inception of the memristor, in addition

to the general mathematical model, analog behavioral models

(ABM) were also developed for deeper research on

memristor characteristics in circuits. The linear ion drift

model was first developed from the basic memristive

definition of memristor current-voltage relationship. This

model uses the current-control method to adjust doped

region width for changing memristor resistance (Strukov

et al., 2008). However, the ideal assumption that the

doped region width changes linearly is unrealistic,

especially, undesirable for logic circuits.

As a result, with assistance of window function to regulate

relation between physical device size and resistance variation, the

nonlinear ion drift model attempts to represent the complexity of

fabricated memristive device state drift (Lehtonen and Laiho,

2010). As early stage models, both the linear ion drift model and

the nonlinear ion drift model offer low accuracy for the building

of oxide region and doped oxide region like two series connected

resistors. Aiming at building a more realistic model, a more

accurate physical model is built by connecting an electron tunnel

barrier with a resistor in series.

This one is called the Simmons tunnel barrier model, it shows

a relatively high level of accuracy among TiO2 memristive device

at the same level of complexity (Berdan et al., 2014). To balance

accuracy and complexity, Kavatinsky makes a simplification

about the physical behavior and mathematical functions

complexity in the Simmons tunnel barrier model, then the

threshold adaptive memristor model (TEAM) is generated

with a reasonable balance between accuracy performance and

computational efficiency (Kvatinsky et al., 2013). Since the

existence of the threshold voltage is found from memristive

devices, Kavtinsky updated ABM TEAM to voltage threshold

adaptive memristor (VTEAM) (Kvatinsky et al., 2015). As a

threshold-based voltage-driven model, VTEAM combines the

advantage of the TEAM model with multiple freely chosen

current-voltage characteristics. This helps to precisely estimate

all reported physical device behaviours, such as linear ion drift

(Strukov et al., 2008), nonlinear ion drift (Lehtonen and Laiho,

2010) and the Simmons tunnel barrier (Berdan et al., 2014), yet it

exhibits superior computation efficiency especially for memory

and logic applications (Kvatinsky et al., 2015; Singh et al., 2016).

This paper makes use of the VTEAMmemristor model in design

and analysis.

3.1.2 Memristor-transistor multiplication cell
In Figure 3, the single-bit multiplication cell is represented.

The serial connection of multiple memristors (xM) and multiple

transistors (yT) generates the basic multiplication cell in the

proposed multiplier.

A memristor can be set in two interchangeable states: high

conductance state (HCS) and low conductance state (LCS). These

two states are used to represent the value on one of the two single-

bit operands (inputs). When providing/preparing the value of

this operand, the cell works in writing mode, with the input

voltage used to write either HCS or LCS into the memristor. After

this operand is set, the cell can work in reading mode, which is

the multiplication operation. In reading mode, the input voltage

takes the value of the other operand and is in either of the two

states: high voltage state (HVS) and low voltage state (LVS). The

cell current then forms the output (product) of the single-bit

multiplication according to Ohm’s law, and is also in Boolean

format with high and low states. The transistors additionally

serves the purpose of turning the cell off (not writing and not

reading, but holding the operand encoded in the memristor

conductance state). Representing both operands with

memristor parameters, however, reduces the usefulness of the

multiplier because of the writing cycle limitations of memristors

(Khan et al., 2021). Millions of writing cycles are appropriate for a

slow changing operand such as a control system coefficient or a

weight parameter in machine learning, but far from enough for

the fast changing values multiplied by them. A scheme with

asymmetric non-volatility is therefore needed.

Therefore, the operation of multiplication cell can be easily

used to encode Boolean logic: HCS and HVS represent logic 1,

LCS and LVS represent logic 0. Similarly, the output current also

has high and low states which can encode logic 1 and logic 0. In

this way, a memristor-transistor cell can perform single bit

multiplication (same as logic AND).

3.1.3 Crossbar multiplier
Single-bit multiplication cells are then composed into a

multi-bit multiplier using a crossbar structure, with KCL

taking charge of the partial product addition step. A 4-bit case

can be seen in Figure 4. In this figure, all single-bit multiplication

cells are included in the Ohm’s law zone (marked in brown

dashed lines). On the other hand, all wires and nodes through

which currents flow belong to the KCL zone, marked in purple

FIGURE 3
yTxM multiplication cell structure.

Frontiers in Electronics frontiersin.org05

Yu et al. 10.3389/felec.2022.877629

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2022.877629


dashed lines. In the KCL zone, nodes “Digit1” to “Digit7”

represent partial products while the current through the load

resistor Rout is the final product. Note that, unlike the common

long-multiplication algorithm, there is no attempt at finding

horizontal partial products and no attempt at passing carries

horizontally. All partial products are generated vertically. Carries

can be avoided because the vertical partial products and the final

product are encoded in currents with higher upper limits to their

values than that encodes a single logic 1. In other words, the

currents at the Digit1 to Digit7 nodes and Iout can take values that

are multiples of the high current state across a single memristor

which encodes logic 1 at the lowest level of detail. For instance

Digit2’s current may be up to four times this single-memristor

logic 1 and the maximum value of the partial product at Digit2 is

therefore 4 (because eachMC2 may generate twice the maximum

current compared withMC1), instead of 2 in the case of a typical

digital multiplier at this bit position.

Since the multiplication is performed by fixed voltage values

for 0 and 1 from the voltage operand, the output currents of cells

in each column corresponding to logic 1 at these cells need to be

set according to the column’s digit significance. Avoiding

current-mirror amplifiers, this can be implemented by using x

memristors in parallel with the appropriate x value. The relation

between x and the digit significance N follows Eq. 1:

x � 2N−1 (1)

Let us use the 4-bit multiplier in Figure 4 as an example,

assume cell transistors are ideal switches, VMH and VML as high

voltage and low voltage operand inputs, and RMH and RML as

high and low cell resistance (memristor resistance) operand

inputs. In each cell, the possible output current states can be

found in Figure 5 as I1, I2, I3, and I4. Since the logic 1 state is

defined by VMH and RML, I4 is the output current representing

logic 1, whilst the other three current states I1, I2 and I3 all

represent logic 0 because at least one of their input operands

encodes 0. Given the cell structure, none of I1, I2 and I3 can be

true 0A. This is because RMH cannot be true infinity and to

maintain the commutative property of multiplication, true 0 V

should not be used in the voltage input operand either. Because of

KCL, potentially a large number of relatively small I1, I2 and I3
values may be accumulated with the sum still required to

represent a product value of 0. In other words, a single I4
needs to be greater in value than the sum of a large number

of I1, I2 and I3 values to differentiate 0 and 1 at the final product.

The final result Iout matrix shown in Figure 5 illustrates this

issue in detail by enumerating all possible Iout values across all

possible combinations of input operand values. This current map

assumes that the operand encoded in voltage is called multiplier

and the other operand encoded in memristor resistance is called

multiplicand, without losing generality. Each operand is 4 bit

wide and takes values from 0 to 15.When the multiplier increases

from 0 to 15 we move from left to right along the i axis, 0 ≤ i ≤ 15,

FIGURE 4
4-bit crossbar multiplier structure. RL provides biasing for
memristor, GL provides biasing for transistor, CL provides the
current path for MC with different multiplier significance.

FIGURE 5
Mapping of all multiplication output current.
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and when the multiplicand increases from 0 to 15 we move from

top to bottom along the j axis, 0 ≤ j ≤ 15. At each position (i, j) in

the matrix, Ii,j encodes the product of multiplying (multiplier = i)

by (multiplicand = j). To simplify the presentation, we use four

coefficients a, b, c and d to differentiate all the output currents

and define Ii,j as Ii,j = aI1 + bI2 + cI3 + dI4. This means that moving

down in the matrix, a decreases and c increases, with b and d held

constant, and Move right in the matrix, b decreases and d

increases, with a and c held constant. Because 15 × 15 = 225,

a + b + c + d = 225. The four corner cases of the matrix are

therefore Iout = 225I1, Iout = 225I2, Iout = 225I3, indicating final

product values of 0 = 0 × 0 = 0 × 15 = 15 × 0, and Iout = 225I4
which indicates a final product value of 225 = 15 × 15.

For the 4-bit crossbar multiplier shown in Figure 5, the

coefficients a, b, c and d are related to the operand values i

and j according to Eqs 2–5

a � i p j − 24 − 1( )i − 24 − 1( )j + 24 − 1( )2 (2)
b � 24 − 1( )i − i p j (3)
c � 24 − 1( )j − i p j (4)

d � i p j (5)

For a general N × N-bit multiplier, the equations above are

replaced by Eqs 6–9, where 0 ≤ i ≤ (2N − 1) and 0 ≤ j ≤ (2N − 1).

a � i p j − 2N − 1( )i − 2N − 1( )j + 2N − 1( )2 (6)
b � 2N − 1( )i − i p j (7)
c � 2N − 1( )j − i p j (8)

d � i p j (9)
From these, the output current for position (i, j) in the result

current matrix can be found according to Eq. 10

Ii,j � i p j − 2N − 1( )i − 2N − 1( )j + 2N − 1( )2[ ]I1
+ 2N − 1( )i − i p j[ ]I2 + 2N − 1( )j − i p j[ ]I3 + i p j( )I4

(10)
Assuming a base voltage V0 ≠ 0 and base resistance R0 ≠ 0, we

can relate the high and low memristor voltages and resistances to

these vase values as in Eq. 11:

VMH � αV0 VML � βV0 RMH � γR0 RML

� λR0 α> β> 0, γ> λ> 0( ) (11)

Then, the base current I0 = V0/R0 can be substituted into

I1–I4, resulting in Eqs 12–15

I1 � VML

RMH
� β

γ
I0 (12)

I2 � VMH

RMH
� α

γ
I0 (13)

I3 � VML

RML
� β

λ
I0 (14)

I4 � VMH

RML
� α

λ
I0 (15)

Substituting Eq. 12–15 into Eq. 10 and simplifying the result,

we obtain Eq. 16

Ii,j � i p j α − β( ) γ − λ( )
γλ

I0 + 2N − 1( )
× 2N − 1( ) β

γ
+ α

γ
i + β

λ
j( ) − β

γ
i + j( )[ ]I0 (16)

It is evident that the multiplication is commutative iff α
β � γ

λ.

In practice, this is ensured by adjusting the parameters of cell

components to make the contributions of both operands

symmetrical and linear.

3.1.4 Precision analysis
This type of digital-in/analog-out multiplier does not

represent Boolean 0 in the operands with true 0 values of

physical parameters–the high resistance state (HRS) of a

memristor cannot have a conductance of true 0 and the low

resistance state (LHS) of a memristor cannot have a conductance

of infinity. This means that Ii,j cannot be 0 amps even when it

represents a Boolean value of 0. Consequently, when multiple

Boolean 0’s are added together to produce an overall product P of

0, the actual value of Iout representing p = 0 is not 0 amps.

The maximal precision of such a multiplier is therefore limited

by the ratio between RMH and RMH, which is technology-dependent.

This is because the value of Iout that represents p = 0 must be lower

than the value of Iout that represents p = 1. Conservatively, this is true

if Iout representing p = 0 is lower than the current Ii,j representing a

single bit value of 1. In other words, if the following inequality is true,

the multiplier precision is not violated at a specific word length.

RMH >PmaxN × RML, (17)

where PmaxN is the maximal value of the product for an N ×N-bit

multiplier. For instance, for a four-bit multiplier Pmax4 = 225 and

for a five-bit multiplier Pmax5 = 969.

TiO2 memristors have a memristance state ratio between

RMH and RML around 300 (Kvatinsky et al., 2014), which is

marginally satisfactory for a four-bit multiplier, and Cu:ZnO

memristors have a memristance state ratio around 1,000 (Suresh

et al., 2019), which is marginally satisfactory for a five-bit

multiplier. In this work, we select Cu:ZnO memristors for a

four-bit implementation for a better accuracy margin and

because the application itself does not demand high precision.

With future memristor and other resistive non-volatile memory

technologies, higher precision realizations may be possible.

Another important issue that may cause precision

degredations in this type of multipliers is the variability of the

crucial memristor characteristics RMH and RML. The effect of this

variability will be investigated at the stage of final neural network

application case studies (Section 6.3).

Frontiers in Electronics frontiersin.org07

Yu et al. 10.3389/felec.2022.877629

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2022.877629


Comprehensive comparative studies of the crossbar part of

the MAC including numerical correctness and non-functional

metrics such as energy and speed can be found in (Yu et al.,

2021).

3.2 Flash ADC

After the analog output Ii,j is generated, its value needs to be

represented as an 4-bit (orN-bit for the general case) digital value

either in memristor resistance or voltage encoding for the entire

MAC unit to function in a multi-MAC NN using copies of the

same MAC hardware. Since the memristor resistance values are

written in by digital voltage signals, we do not lose generality if a

4-bit MAC outputs a 4-bit voltage encoded product (4 Boolean

voltage signals).

We implement this functionality by using a flash ADC,

designed from components adapted from (Bui et al., 2010;

Vinayaka et al., 2019). The choice of using thermometer code

as an intermediate step comes from the desire to make this MAC

approximate in the sense of generating a 4-bit product from

input operands which themselves are also in 4 bit width. This

FIGURE 6
Structure of flash ADC. In (A), current comparator thermometer code generator (Vinayaka et al., 2019) is presented, in (B), ROM thermometer to
binary encoder (Bui et al., 2010; Vinayaka et al., 2019) is presented.
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ADC consists of a single-action multiple-current comparator,

buffer array and a ROM (read only memory) encoder. This

section describes this part of the system in detail.

3.2.1 Thermometer code generating current
comparator

In Figure 6A, the current comparator is represented. Given

that the digital output is expected to be in 4 bits, the comparator

is set to 16-value thermometer code output. The input current is

mirrored by P-type current mirror which generates a row of pull

up current sources, similarly, the reference current is mirrored by

N-type current mirror which generates a row of pull down

current sinks. By adjusting the size of M1 to MN, the reference

current can be set to different levels. If a current source has a

higher value than the corresponding current sink, the voltage at

the junction point is pulled up to Vdd, otherwise, the junction

point voltage is pulled down to ground. Therefore, the

comparator will generate a thermometer code in the buffer array.

In order to make this design work for our 4-bit crossbar

mixed-signal multiplier, the transistor sizes need to be tuned to fit

the multiplier current output characteristics. The details of MOS

transistor size choices are listed in Table 1.

3.2.2 Thermometer code to binary encoder
The thermometer code is an intermediary format which, after

serving the purpose of fast comparison and product precision

adjustment, has to be converted into voltage binary code for

MAC output. The structure of the thermometer to binary

encoder is presented in Figure 6B. As can be seen, this

encoder consists of an AND gate array and a ROM encoder.

For a 4-bit digital output, the 16-value thermometer code is first

converted by the AND array to a 16-digit one hot code, which is

then fed to the ROM encoder to generate a 4-bit binary output.

The complete MAC unit therefore accepts as inputs a multiplier

in the form of 4-bit binary voltage signals and a multiplicand in the

form of 4-bit binary memristor conductance values, and generates a

product in the form of 4-bit binary voltage signals. This voltage-

encoded 4-bit binary number can then be used directly as the

multiplier for another MAC of the same configuration, or used to

write the multiplicand for it. This means that the digital-to-digital

MAC can be instantiated multiple times to form a NN or other

machines that require a number of distinct MAC units of the same

type working together.

4 Investigation of performance and
functional correctness

This section describes results from investigating a number of

implementations of our MAC unit. All parts of the system are

realized in UMC 65 nm technology and studied in the Cadence

Virtuoso environment through analog simulations.

4.1 Multiplication cell design

The structure of our multiplication cell is presented in

Figure 3, the parallel connected memristors and transistors are

marked with brown to indicate them operating under Ohm’s law.

Similarly, cell output current path to column line is purple

marked to indicate the KCL operation. Since the

multiplication cell works as a conductive component on

crossbar, both memristor and transistor contributes to the cell

conductance. Therefore, it is important to ensure that the

memristor dominates the cell conductance because we use the

transistors as (ideal) switches. In other words, the high value of

memductance should bemuch larger than the ON state transistor

conductance, making the contribution to current by the

transistor negligible. Meanwhile, the OFF state transistor

conductance should be small enough to isolate a selected cell

from the rest of the crossbar so that it can be in holding mode

whilst other cells are written. With the memristor count for each

cell determined by the digit significance, the transistor count and

size need adjustments to balance that. Therefore, cells with fixed

ratios of memristor count and transistor count are studied on our

4-bit crossbar multiplier.

TABLE 1 Thermometer code generator transistor size.

Component Size Component Size Component Size Component Size

Min 3.2μ m Mref 1.6μ m P1 100 nm P11 80 nm

Mout 1.6μ m P2 140 nm P12 100 nm

M1 100 nm M9 715 nm P3 80 nm P13 100 nm

M2 110 nm M10 785 nm P4 80 nm P14 100 nm

M3 310 nm M11 850 nm P5 80 nm P15 100 nm

M4 365 nm M12 965 nm P6 80 nm P16 100 nm

M5 440 nm M13 1 μm P7 80 nm

M6 510 nm M14 1.11 μm P8 80 nm

M7 580 nm M15 1.19 μm P9 80 nm

M8 650 nm M16 1.27 μm P10 80 nm
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In Figures 7A,B comparisons between crossbar with

respective yTxM cell are shown. As can be seen, the 4-bit

crossbar multiplier generates same levels of Iout with different

count transistor-memristor cells, and the product values are

symmetric between multiplicand and multiplier indicating

commutative multiplication. However, the 1T2M cell stands

out in the error rate comparison. The maximum error rate of

1T2M cell crossbar multiplier is 0.58%while for the 7T16M cell it

is 0.72% and for the 15T32M cell it is 0.86%. Therefore, apart

from the least significant bit using a 1T1M cell, all the

multiplication cells in this 4-bit multiplier follow the

memristor-transistor ratio of 1T2M, i.e., two memristors for

each transistor in a cell.

4.2 MAC unit design

The 4-bit crossbar multiplier shown in Figure 4 has two

operations in each multiplication, writing (operand preparation)

and reading (multiplying). Whenmultiplication starts with a new

multiplicand, all multiplication cells will be clear to LCS by each

row line (RL), then the multiplicand is written by each gate line

(GL) column. Finally, the reading (multiplier) voltages are

applied on all RLs, meanwhile, all cell transistors are switched

on. The multiplication result can be obtained from the ADC out

terminal (See Figure 6B). When multiplying with an existing

multiplicand, the writing step is omitted and the reading step

directly starts. That is why this multiplier is well suited for

asymmetrical multiplication applications such as multiplying

variables to coefficient/reference values found in such

applications as monitoring and control and certain operations

of NNs where one of the operands (e.g., the multiplicand) does

not change too often.

ADC transistor design parameters are presented in Table 1

and writing operation setting parameters are presented in

Table 2. To reduce latency, the writing operations are

parallelized on a per-row basis. To match the values of high

and low memconductance, the reading (multiplier) voltage has

values of 0.42 V as logic 0 and 0.7 V as logic 1. The total delay of

each multiplication is 2 ns which is almost entirely ADC delay.

Three multiplications 15 × 15, 15 × 0 and 9 × 6 are tested on the

4-bit multiplier, Figures 8A,B present the results.

FIGURE 7
yTxM MC performance mapping. In (A), output current error rate in all 4 by 4 multiplications mapping is presented, in (B), output current in all
4 by 4 multiplications mapping is presented.

TABLE 2 Multiplier operation design details.

Area Time (ns) Voltage (V)

Entire Crossbar write 1 write 0 write 1 write 0

0.43 16.9 1.8 −2

Single Row write 1 write 0 write 1 write 0

0.275 0.43 1.8 −2

Single Cell write 1 write 0 write 1 write 0

0.261 — 1.8 —
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The red dash steps in Figure 8A are the thresholds for the

current comparator, which translates currents to a thermometer

code. For instance, Iout = 100 μA translates to the thermometer

code value of 8, and 9 × 6 results in Iout ≈ 90 μA which translates

to the thermometer code of 7. The output bit voltages are

recorded in Figure 8B. Here B3 is the MSB and B0 the LSB. It

can be seen that the ADC delay is data-dependent and the more

bits are 1 the longer the delay. Since the less significant bits are

settled after more significant bits and before then they may have

swings. The output value of 1,111, corresponding to 15 × 15,

takes just less than 2 ns to become stable, which is the worst-case

delay of the MAC. In comparison, 0 × 0 incurs almost no delay.

Value-wise, 15 × 15 results in 1,111 (the largest number

possible out of 4 bits). 15 × 0 results in 0000 and 9 × 6 results in

0111. These values work well for a 4-bit digital in and 4-bit digital

out MAC unit.

5 Neural network case study

This section presents a case study to validate the proposed

MAC unit. In this section, an MLA NN is created using copies of

our MAC unit servicing as perceptrons. The machine learning

problem solved with this NN is the classification of the MNIST

dataset.

As our MAC unit supports only 4-bit inputs (integers), we

need to apply a quantization technique to preserve the high

accuracy while using such low-precision numbers. Two state of

the art techniques exist for this, namely post-training

quantization (PTQ) and quantization-aware training (QAT).

Regarding PTQ, the weights will be quantized to the target

bitwidth after the floating-point based training. This is a

simple technique yet not suitable for < 8-bit resolution

applications because of the increasing quantization error

(Nagel et al., 2021). Alternatively, the QAT technique injects

the quantization error during training. This allows the lower-

resolution NN to learn and improve its weights appropriately.

Previously, 98% accuracy of MNIST classification using 4-bit NN

with QAT technique has been shown in (Chahal, 2019).

Therefore, this technique will be applied in our NN training.

The most challenging issue in our NN training is that the

output of our MAC unit contains variations due to its analog

nature. To overcome this issue, we will use the same idea as QAT;

the variations will be included in our training so that the NN can

learn these variations and adjust its accuracy accordingly. In

summary, this section contributes the QAT technique analysis to

inject the MAC unit variations, the demonstration of NN

training for MNIST classification and the accuracy

comparison between the NN trained using our MAC unit and

the basic 4-bit QAT NN. Note that, for the ease of computation

analysis, our NN consists of fully-connected layers only. Extra

software library development to include the proposed MAC unit

in the convolution layers is considered as our future work.

5.1 QAT analysis

Fundamentally, fully-connected NN computation contains

dot-product operations between weight matrices and input

vectors. Eq. 18 means that the resulting matrix element r3 at

row i and column k is obtained from the sum of products between

the pairs of the weight matrix elements r1 at row i and the input

vector elements r2 at column k. In general, these variables are

presented precisely in floating-point format.

r i,k( )
3 � ∑N

j�1
r

i,j( )
1 r

j,k( )
2 (18)

To compute the above equation using integer-arithmetic

hardware, we need to quantize these real numbers. Following

(Jacob et al., 2018), any real numbers can be quantized resulting

positive quantized-values q in integers minus the zero-point Z

and scaled by the scale factors S as shown in (Eq. 19). In addition,

the range of q is between 0 and 2n−1, where n is the number of bits.

Therefore, q in this work is in the [0, 15] range (4-bit unsigned

integer).

r � S q − Z( ) (19)

Replacing the weights r1 and inputs r2 in (Eq. 18) by Eq. 19

yields Eq. 20 which can be re-written as Eq. 21:

FIGURE 8
Three cases multiplication result. In (A), 3 multiplication
output currents are presented, the red dash steps are the threshold
for each digital output, in (B), respective digital output from B0
(LSB) to B3 (MSB) are presented. 0–2.97 ns is 15 × 15,
4.57 –7.13 ns is 0 × 0, and 10.77–13. 2ns is 9 × 6.
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r i,k( )
3 � ∑N

j�1
S1 q

i,j( )
1 − Z1( )S2 q

j,k( )
2 − Z2( ) (20)

r i,k( )
3 � S1S2 NZ1Z2 − Z1 ∑N

j�1
q

j,k( )
2 − Z2 ∑N

j�1
q

i,j( )
1 +∑N

j�1
q

i,j( )
1 q

j,k( )
2

⎛⎝ ⎞⎠
(21)

In Eq. 21 there is no dot-product operation on floating-point

numbers; it happens only in the term ∑N
j�1q

(i,j)
1 q(j,k)2 where both

operands are integers and therefore our multiplier is applicable to

this operation.

Another issue is that our MAC unit is centered around an

analog product. It therefore contains a non-ideal effect where

its multiplication results deviates from the expected values as

shown in Table 3, which is obtained from analog simulations

of a single MAC unit. Note that the errors in this input-

output correspondence error map shows that the actual full-

MAC implementation has more errors than the crossbar

itself given in Section 3.1.4. This is because the DAC part

introduces more errors. However, the maximal error value

of −5 shows that the MAC is still a four-bit unit with a higher

resolution than a three-bit device (the maximal possible

output value of this MAC is 15). In Eq. 22, we add∑N
j�1C(q(i,j)1 ,q(j,k)2 ) to sum up the variation from every

multiplication. The value of C can be found at column

q(i,j)1 and row q(j,k)2 of Table 3. This allows the NN to learn

and adjust its weights according to our multiplier’s numerical

characteristics.

r i,k( )
3 � S1S2 NZ1Z2 − Z1 ∑N

j�1
q

j,k( )
2 − Z2 ∑N

j�1
q

i,j( )
1 +∑N

j�1
q

i,j( )
1 q

j,k( )
2

⎛⎝

−∑N
j�1

C q
i,j( )

1 ,q
j,k( )

2( )⎞⎠ (22)

From Eq. 22, we can separate the loss term from the main

bracket by multiplying the scale factors S1 and S2 as expressed in

(Eq. 23). It can be seen that the large term remains the same as

(Eq. 21). Therefore, we can conclude that the variation in our

MAC unit can be simulated by subtracting the product of both

scale factors and the sum of the MAC unit’s errors from the basic

dot-product’s result. Eq. 24 will be added to our training graph as

explained in the next section.

r i,k( )
3 � S1S2 NZ1Z2 − Z1 ∑N

j�1
q

j,k( )
2 − Z2 ∑N

j�1
q

i,j( )
1 +∑N

j�1
q

i,j( )
1 q

j,k( )
2

⎛⎝ ⎞⎠
− S1S2 ∑N

j�1
C q

i,j( )
1 ,q

j,k( )
2( )

(23)

r i,k( )
3 � ∑N

j�1
r

i,j( )
1 r

j,k( )
2 − S1S2 ∑N

j�1
C q

i,j( )
1 ,q

j,k( )
2( ) (24)

6 Results and discussions

6.1 MAC units

Our study is mainly based on worst-case delay assumptions.

The worst-case multiplication cycle includes 4 row writing 0

(reset) operations with 1.72 ns delay, 4 row writing 1 (set)

TABLE 3 Multiplication errors of the proposed MAC unit.

Result Multiplier

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Multiplicand 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 −1 −1 −1 −1 −1 −2 −2 −1 −1 −1 −2 −2 −2 −2 −2

2 0 −1 −2 −2 −1 −2 −2 −2 −3 −3 −3 −4 −3 −3 −3 −4

3 0 −2 −2 −2 −2 −2 −3 −3 −3 −3 −3 −4 −4 −4 −4 −4

4 0 −2 −2 −2 −3 −3 −3 −3 −4 −4 −3 −4 −4 −5 −4 −4

5 0 −2 −2 −2 −3 −3 −3 −4 −3 −4 −4 −4 −4 −5 −4 −4

6 0 −2 −2 −3 −2 −3 −4 −3 −4 −3 −4 −4 −4 −4 −4 −4

7 0 −3 −2 −3 −3 −3 −3 −4 −3 −4 −3 −4 −3 −4 −3 −4

8 0 −2 −2 −2 −3 −3 −3 −3 −4 −3 −4 −3 −4 −3 −4 −4

9 0 −2 −3 −2 −3 −3 −3 −3 −3 −4 −3 −3 −3 −3 −4 −3

10 0 −2 −3 −3 −2 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3

11 0 −2 −3 −3 −2 −2 −3 −3 −2 −2 −3 −3 −2 −2 −2 −2

12 0 −2 −2 −3 −3 −2 −2 −2 −3 −2 −2 −2 −2 −2 −2 −1

13 0 −2 −2 −2 −3 −3 −2 −2 −2 −2 −1 −1 −2 −2 −1 −1

14 0 −2 −2 −2 −2 −2 −2 −1 −2 −2 −2 −2 −1 −1 −1 0

15 0 −2 −2 −2 −2 −2 −2 −2 −1 −1 −1 −1 0 0 0 0
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operations with 1.1 ns delay, and one entire crossbar reading

(multiply + ADC) operation with 2 ns delay, which represents an

order of magnitude speedup over existing memristor-based

multipliers reported in (Guckert and Swartzlander, 2017). The

average power is 290 μW, also lower than the competition. The

average energy consumption per multiplication cycle of the 4-bit

1T2M crossbar multiplier is 1.39 pJ over a 4.82 ns period.

The writing delay and energy costs are reduced from (Guckert

and Swartzlander, 2017) because in the latter both operands are

represented by memristor conductance values with the high

memristor writing costs incurred twice. The structures of the

multipliers featured in (Guckert and Swartzlander, 2017) also

incur more delays compared with our crossbar mixed-signal

approach because the latter takes advantage of resistive Ohm’s

Law and KCL. In addition, these are worst-case comparisons

where both operands need to be written completely with the

greatest writing delay considered. For the case where only one of

the operands needs updating (and it happens to be the one with the

more frequent updating requirement) our MAC will fare much

better as there is no memristor writing. For applications where the

writing frequency requirements for the two operands are

asymmetric, our solution would show much greater improvements.

The energy per multiplication cycle worst case happens with

15 × 15 because of its longest delay and highest Iout value

(187.3 μA) among all multiplication cases. This worst-case

cycle has an energy consumption of 3.91 pJ. The best case

happens with 0 × 0 which requires only 0.00524 pJ of energy

to complete, primarily because parameter setting, crossbar and

ADC all take negligible time and in addition the currents and

voltages also take low values.

The energy consumption of our MAC unit is compared with

state-of-the-art memristor multipliers in Table 4. Generally, the

proposed work saves 83.7% and 74.1% energy per multiplication

cycle than the MAD shift-and-add multiplier and optimized MAD

shift-and-add multiplier in their respective worst cases. In the best

case, the energy saving can reach almost 99% comparative energy

savings. Even the average energy consumption of the proposed

MAC unit, at 1.39 pJ, is significantly lower than the best case figures

achieved by the competition.

These very low energy consumption figures are based on the

assumption that the crossbar part of the MAC is shut down after a

cycle of operation ends before the next cycle starts. This crossbar

structure should not be used to hold a constant output as that entails

a continuous Iout needing to be maintained. In practice this can be

solved by holding the output of theMAC in a register and powering

down the crossbar when not needed. With one of the operands in

non-volatile memory and the other the responsibility of the supplier

of the voltage input, this regime does not introduce operational

difficulties.

6.2 NN training and results

To demonstrate the application of the proposed MAC unit in

our NN training, we constructed a three fully-connected layers

perceptron for MNIST classification as illustrated in Figure 9A.

MNIST is chosen because it is commonly used for proving and

benchmarking the NN hardware design concepts in the literature

Mileiko et al. (2020); Amirsoleimani et al. (2020); Wang et al.

(2020); Krestinskaya et al. (2020), especially for low-power edge

applications and suitable as a proof of concept in this paper. We

explore our 4-bit MACwithMNIST to demonstrate its validity in

NN applications. This is the same approach taken by the authors

of (Trusov et al., 2021), who targeted a mobile-relevant dataset

with their 4-bit low-power NN. It is not our intention to confirm

the NN application scalability of 4-bit MACs, given that the case

has been proven in the state of the art (Sun et al., 2020).

In addition, this demonstration aims to show the NN-type

applications’ ability to absorb the output variations of our MAC

unit. In other words, we need to validate the MAC design

through demonstrating its usefulness for NN applications

even under worst-case MAC variation scenarios including

worst-case memristor RML and RMH value combinations.

The numbers of neurons in the input/hidden/output layers

are 800/500/10. The forward-pass calculation of each layer

follows the graph in Figure 9B. Regarding the QAT concept,

the inputs and weights of each layer are quantized and de-

quantized based on Eq. 19 to simulate the quantization error.

Note that this procedure is known as fake quantization in the

literature (Chahal, 2019). In addition, the resolution of q is set to

4-bit, which is consistent with the input resolution of our

MAC unit.

Then, the dot-product of the inputs and weights are

preformed and the biases are added. Next, we insert a MAC

block to subtract the dot-product results by our MAC’s output

variations as explained in Section 5.1. After this step, the MAC

TABLE 4 Energy consumption per multiplication comparison with memristor-based MAD shift-and-addmultiplier and optimized MAD shift-and-add
multiplier (Guckert and Swartzlander, 2017).

MAD S-and-A Opt MAD S-and-A 1TxM
Cu:ZnO (this work)

Best Case 13.5 pJ 8.37 pJ 5.24 fJ

Worst Case 24.1 pJ 15.1 pJ 3.91 pJ
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block’s results pass the ReLU activation function and another

fake quantization of the activation is executed. Finally, the layer’s

output will be the input of the next layer.

Three NN configurations as listed in Table 5 have been

implemented using the PyTorch library (Paszke et al., 2019).

The first one, which is our baseline, is the 4-bit QATNN obtained

from (Chahal, 2019) without the convolution layers. The

backward pass is implemented using stochastic gradient

descent while the straight through estimator is applied for the

fake quantization blocks. The related parameters are as follows:

batch size = 64, learning rate = 0.01 and momentum = 0.5. To

inspect the effect of the MAC’s output variations, the second NN

is trained using the above procedure while the variations are

injected only in the testing phase. Lastly, the variations are

included in both training and testing phases to evaluate the

accuracy improvement.

Table 5 shows our baseline yields the testing accuracy of 94%,

which is only 4% accuracy drop from the convolutional NN

implementation by (Chahal, 2019). This means the

implementation with pure fully-connected layer is acceptable

for MNIST classification. Without simulating the impact of our

MAC unit in the NN training, however, the accuracy

substantially drops to 30%. This confirms the MAC unit

simulation is highly required in the training phase. Finally,

the accuracy is back up to 93% when training the NN with

the MAC’s output variations. This implies the proposed MAC

unit is applicable for NN applications and that variation injection

is required during the NN training to maintain the accuracy.

6.3 Effects of technology parametric
variations

However, device parametric variation in multiplication cell

may lead to additional and substantial analog output error.

Devices may have different properties or technology

FIGURE 9
(A)Neural network structure to demonstrate MNIST classification using the proposedMAC unit. It consists of three fully-connected layers, each
of which (input/hidden/output) contains 800/500/10 neurons. The traditional MAC unit will be replaced by the proposed one. (B) The training graph
of the neural network in (A). We added the MAC block (highlighted in blue) where the output of the dot-product will be subtracted by the non-ideal
effect of our MAC unit following Eq. 24 and the multiplication errors in Table 3. This allows the neural network to learn the loss regarding the
proposed MAC unit.
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parametric variations. For our MAC, we consider faster/slower

operating speeds of transistors and higher/lower RMH and RML

values of memristors. Therefore, the multiple-component cell

design in this work risks large accuracy drops resulting from such

variations. Both the transistor variation and memristor variation

have been investigated to show the relation between variation

and NN accuracy of MNIST classification.

The variability transistor models are investigated first. The

fabricated transistor’s performance can be modeled as Fast-Fast

(FF), Typical-Typical (TT), and Slow-Slow (SS) corners. Analog

simulations of the MAC corresponding with these corners are

used to generate modifiedMAC input to output error maps in the

same style as Table 3. Then respective NN simulation using the

method given in Section 6.2 generates the accuracy results

reported in Table 6.

Then we investigate the effects of memristor resistance

variability. As shown in (Siddik et al., 2020), for the

technology of our choice (Cu:ZnO), the device-to-device (DD)

variability is 59% for the high resistance state (HRS) and 36% for

the low resistance state (LRS), while the cycle-to-cycle (CC)

variability is 89% for the HRS and 51% LRS for the LRS. Note

that although the CC variability is especially large, it is not

possible for RML to become higher than RMH given that the

baseline ratio between these two parameters is 1,000 for the Cu:

ZnO technology.

Similar to the case of transistor variation investigations, our

simulation investigations include analog simulations of one

MAC unit with all possible corner cases of expected variability

in the memristors. The result of these simulations are put into

digital models in the form of input value to output value

correspondence error maps in the form of Table 3. These

corner case models are then used in NN training exercises on

the MNIST dataset, using exactly the same method described in

Section 6.2. The accuracy results are reported in Table 6.

In presenting these results we focus on investigating how the

worst-case scenarios of memristor variability may affect the NN

application and compare with the average case. The worst case

happens when RMH takes the lowest possible value coinciding

with RML taking the highest possible value. This maximally

reduces the margin between these two values and hence

reduce the precision of the multiplier part of the MAC, as

discussed in Section 3.1.4.

The reported average case results are the average values

obtained from all different corner cases and do not correspond

with any one particular set of parameter value. It is noteworthy

that some of the accuracy numbers reported in Table 6 are

actually better than those reported in the last row of Table 5.

This is because in many cases, the technology parametric

variation corner cases have smaller errors in their input-

output relation error maps than the non-variation case of

Table 6. This is a result of effective cancellations between the

two kinds of errors. The true global worst case results,

however, do happen with worst-case memristor parametric

variation combinations.

As can be seen from the results, in all experiments both

training and testing always successfully complete, but in the

highlighted cases the accuracy does not achieve better than 90%.

However, even the global worst case of 79% accuracy should be

tolerable for low-power edge AI applications. It is also

noteworthy that NN operations seem to be especially resistant

to the CC type of parametric variability. This is likely because NN

operations usually include a substantial number of cycles during

which CC variability in the MACs is moderated by a kind of low-

pass filtering process.

7 Conclusion

In this paper, a MAC unit based on a crossbar multiplier is

presented. By using memristor-transistor single-bit

multiplication cells with mixed-signal design, this crossbar

multiplier removes the need for carry propagation.

TABLE 5 MNIST classification accuracy comparison.

NN configuration Training acc. (%) Testing acc. (%)

4-bit QAT NN (baseline) 97 94

4-bit QAT NN w/o MAC variation training 97 30

4-bit QAT NN with MAC variation training 93 93

TABLE 6 QAT NN with MAC component variation training.

Transistor Training acc. (%) Testing acc. (%)

Slow-Slow 96 96

Typical-Typical 96 96

Fast-Fast 90 85

Memristor Training acc. (%) Testing acc. (%)

Average Worst Average Worst

DD 95 86 94 79

CC 95 95 95 94
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Multiplying by passive current generation across resistive

elements only, the multiplication step itself can be regarded as

instantaneous according to Ohm’s law and KCL. By using a

mixed-mode, flash ADC conversion step, latency is kept under

control for the ultimate digital-in/digital-out unit through single-

action thermometer code generation. This means that the worst

case delay depends only on writing memristor values and

converting thermometer code to binary code. This latency

management means that the MAC unit has a relatively low

worst-case latency. At the same time, the energy efficiency is

also improved over conventional digital multipliers using

memristors by eliminating the need for costly carry-to-the-left

operations.

The proposed MAC unit also has the same precision for both

input and output, which means that it can be used to compose

multi-MAC structures such as NNs without worrying about bit-

conversion when fitting outputs of one layer to the inputs of

another layer. The approximation happens in the thermometer

code generation step where it leads to circuit size and complexity

reductions in subsequent circuitry without sacrificing precision

unnecessarily.

To validate this MAC unit, it is used as the basic perceptron

in the creation of an NN of multiple neurons and layers, and the

resulting NN is used to classify the MNIST dataset. The low

precision and multiplication errors attributed to the analog

product from the crossbar multiplier are shown to be

compensatable through an extended use of QAT. With such

compensation techniques, our case study NN achieves

comparable learning accuracy to the same NN based on fully-

digital QAT MAC units of the same bit width. In doing this, we

additionally demonstrate the potential for extending QAT to

compensate for any characterizable imprecision beyond

quantization effects in the perceptron unit. The effects of

parametric variability for both transistors and memristors are

also investigated demonstrating the usability of this type of MAC

units.
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