
CoFHE: Software and hardware
Co-design for FHE-based machine
learning as a service

Mengxin Zheng1, Lei Ju2 and Lei Jiang1*
1Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, United States, 2School
of Cyber Science and Technology, Shandong University, Jinan, China

Introduction: Privacy concerns arise whenever sensitive data is outsourced to untrusted
Machine Learning as a Service (MLaaS) platforms. Fully Homomorphic Encryption (FHE)
emerges one of the most promising solutions to implementing privacy-preserving
MLaaS. But prior FHE-based MLaaS faces challenges from both software and
hardware perspectives. First, FHE can be implemented by various schemes including
BGV, BFV, and CKKS, which are good at different FHE operations, e.g., additions,
multiplications, and rotations. Different neural network architectures require different
numbers of FHE operations, thereby preferring different FHE schemes. However, state-
of-the-art MLaaS just naïvely chooses one FHE scheme to build FHE-based neural
networks without considering other FHE schemes. Second, state-of-the-art MLaaS uses
power-hungry hardware accelerators to process FHE-based inferences. Typically, prior
high-performance FHE accelerators consume > 160 Watt, due to their huge capacity
(e.g., 512MB) on-chip SRAM scratchpad memories.

Methods: In this paper, we propose a software and hardware co-designed FHE-based
MLaaS framework, CoFHE. From the software perspective, we propose an FHE compiler
to select thebest FHE scheme for a network architecture.Wealsobuild a low-power and
high-density NAND-SPIN and SRAM hybrid scratchpad memory system for FHE
hardware accelerators.

Results: On average, under the same security and accuracy constraints, on average,
CoFHE accelerates various FHE-based inferences by 18%, and reduces the energy
consumption of various FHE-based inferences by 26%.

Discussion: CoFHE greatly improves the latency and energy efficiency of FHE-based
MLaaS.

KEYWORDS

fully homomorphic encryption, MLaaS, hardware accelerator, compiler, software and
hardware co-design

1 Introduction

Machine Learning as a Service (MLaaS) Ribeiro et al. (2015) is one of the most important
solutions to solving a wide variety of problems ranging from computer vision to recommender
system. Average users feel reluctant to upload their sensitive data, e.g., health or financial
records, to untrusted servers in the cloud. New legislation like the European Union General
Data Protection Regulation Hoofnagle et al. (2019) and the California Consumer Privacy Act
Camhi and Lyon (2018) requires MLaaS providers to bemore attentive about collecting, storing,
utilizing, and transferring average users’ data. To protect users’ privacy, Fully Homomorphic
Encryption (FHE)-based privacy-preserving neural networks Gilad-Bachrach et al. (2016);
Brutzkus et al. (2019); Dathathri et al. (2019, Dathathri et al. (2020); Lou and Jiang (2021) are

OPEN ACCESS

EDITED BY

Avi Mendelson,
Technion Israel Institute of Technology,
Israel

REVIEWED BY

Xing Hu,
Institute of Computing Technology (CAS),
China
Ibrahim Elfadel,
Khalifa University, United Arab Emirates

*CORRESPONDENCE

Lei Jiang,
jiang60@iu.edu

SPECIALTY SECTION

This article was submitted to Integrated
Circuits and VLSI,
a section of the journal
Frontiers in Electronics

RECEIVED 07 November 2022
ACCEPTED 26 December 2022
PUBLISHED 12 January 2023

CITATION

Zheng M, Ju L and Jiang L (2023), CoFHE:
Software and hardware Co-design for
FHE-based machine learning as a service.
Front. Electron. 3:1091369.
doi: 10.3389/felec.2022.1091369

COPYRIGHT

© 2023 Zheng, Ju and Jiang. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Electronics frontiersin.org01

TYPE Original Research
PUBLISHED 12 January 2023
DOI 10.3389/felec.2022.1091369

https://www.frontiersin.org/articles/10.3389/felec.2022.1091369/full
https://www.frontiersin.org/articles/10.3389/felec.2022.1091369/full
https://www.frontiersin.org/articles/10.3389/felec.2022.1091369/full
https://crossmark.crossref.org/dialog/?doi=10.3389/felec.2022.1091369&domain=pdf&date_stamp=2023-01-12
mailto:jiang60@iu.edu
mailto:jiang60@iu.edu
https://doi.org/10.3389/felec.2022.1091369
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org/journals/electronics#editorial-board
https://www.frontiersin.org/journals/electronics#editorial-board
https://doi.org/10.3389/felec.2022.1091369

proposed to perform neural inferences directly on encrypted data. The
majority of state-of-the-art FHE schemes including BFV Fan and
Vercauteren (2012), BGV Halevi and Shoup (2015) and CKKS Jung
et al. (2020) supports only FHE multiplications and additions.
Although FHE-based neural networks approximate their activation
layers by degree-2 polynomials, they still can obtain competitive
inference accuracy Gilad-Bachrach et al. (2016); Brutzkus et al.
(2019); Dathathri et al. (2019), Dathathri et al. (2020); Lou and
Jiang (2021). However, an FHE-based neural network inference is
time-consuming. An inference of a typical FHE-based neural network
Dathathri et al. (2019), Dathathri et al. (2020) costs > 2 seconds on an
encryptedMNIST image and > 70 seconds on an encrypted CIFAR-10
image. There is a ~×100 latency gap between an FHE-based inference
and a unencrypted inference, due to the software and hardware
drawbacks.

Although FHE can be implemented by multiple schemes, i.e., BFV
Fan and Vercauteren (2012), BGV Halevi and Shoup (2015) and CKKS
Jung et al. (2020), prior FHE-based neural networks Gilad-Bachrach et al.
(2016); Brutzkus et al. (2019); Dathathri et al. (2019), Dathathri et al.
(2020); Lou and Jiang (2021) just naïvely select one FHE scheme without
considering other alternatives. Different FHE schemes have different
advantages Jiang and Ju (2022). BFV and BGV support FHE integer
multiplications and additions, while CKKS is good at approximate
complex fixed-point arithmetics. Moreover, at the same security level,
different FHE schemes have distinctive SIMD batch sizes, and different
latencies when performing additions, multiplications, and rotations Jiang
and Ju (2022). Different neural networks having different architectures,
i.e., layer numbers, kernel sizes, and input/output channel numbers, may
favor distinctive FHE schemes, because their FHE inferences have various
bottlenecks, e.g., small batch size, slow multiplications, or slow rotations.
Unfortunately, there is a total lack of a software tool that can select a
suitable FHE scheme for a network architecture.

For FHE hardware, although multiple FHE hardware accelerators
Samardzic et al. (2022); Kim et al. (2022); Samardzic et al. (2021) propose
highly-optimized Number Theoretic Transform (NTT) units to process
polynomial multiplications in FHE operations, all of them use many
power-hungry SRAM arrays connected by a large Network-on-Chip
(NoC) to form a 256MB ~ 512MB SRAM Samardzic et al. (2022);
Kim et al. (2022) scratchpad memory, store evaluation keys used by
various FHE operations, and keep hundreds of NTT units busy.
Unfortunately, 512MB SRAM arrays and their NoC consume huge
amount of power seriously limiting the further scaling of state-of-the-
art FHE hardware accelerators. For instance, in the latest FHE accelerator
Kim et al. (2022), the 512MB SRAM scratchpad memory and its NoC
consume 38% of the total power and occupy 63% of the chip area.

In this paper, we propose a software and hardware co-designed
FHE-based MLaaS framework, CoFHE, to tackle the software and
hardware shortcomings of prior FHE-based neural networks. Our
contributions can be summarized as follows.

• At the software level, we propose an FHE compiler for CoFHE to
select the best FHE scheme for a network architecture. The idea
behind our compiler is simple, i.e., for a network architecture
under a security level, our compiler generates BFV-, BGV-, and
CKKS-based solutions, and then compares their client setup
latencies, server inference latencies, and inference accuracies. At
last, our compiler selects the best FHE scheme according to the
design requirement.

• At the hardware level, we build a low-power and high-density
NAND-Spintronic (SPIN) and SRAM hybrid scratchpad
memory for FHE accelerators. A NAND-SPIN array is highly
dense but its write latency is long. The scratchpad memory uses
NAND-SPIN arrays to store various evaluation keys, since they
are read-only data. The scratchpad memory adopts NAND-
SPIN and SRAM hybrid arrays to keep ciphertexts, which may
receive heavy write traffic. Our hybrid scratchpad memory
greatly reduces the energy consumption of the FHE
accelerator without greatly degrading the FHE-based network
performance.

• We implemented, evaluated, and compared CoFHE against the
state-of-the-art hardware-accelerated MLaaS. On average, under
the same security and accuracy constraints, CoFHE improves
the inference latency of various FHE-based neural networks by
18%, and reduces the energy consumption of various FHE-based
inferences by 26%.

2 Background

2.1 Fully Homomorphic Encryption

Basics. Fully Homomorphic Encryption (FHE) Fan and
Vercauteren (2012) allows operations on encrypted data
(ciphertexts) without the secret key. We use pub to denote a
public key, sec to indicate a secrete key, ϵ to represent an
encryption function, and σ to symbolize a decryption function.
A homomorphic operation ◇ can be defined if there is another
operation + such that σ(ϵ(x1, pub)◇ϵ(x2, pub), sec) = σ(ϵ(x1 + x2,
pub), sec), where x1 and x2 are two plaintexts. The state-of-the-art
FHE schemes initially introduce an error to the ciphertext to
guarantee security. Moreover, each homomorphic operation
introduces a certain amount of noise into the ciphertext. When
the accumulated noise in the ciphertext exceeds the noise budget,
an error happens during the decryption. An FHE scheme with a
fixed set of parameters has a limited noise budget, and thus
supports only a limited number of homomorphic operations.
This is called leveled FHE. The FHE scheme may periodically
use a bootstrapping operation Brakerski et al. (2014) to reduce
the noise in the ciphertext, so that it can support an unlimited
number of homomorphic operations. This is called fully FHE.

Notations. In this paper, integer and real numbers are written in
normal case, e.g., q. Polynomials and vectors are written in bold, e.g., a.
Vectors of polynomials and matrices are written in upper-case bold,
e.g., A. We use a subscript to denote the index, e.g., ai is the ith
polynomial or row of A. We assume that n is a power-of-two integer
and define a polynomial ring R � Z[X]/(Xn + 1)whose elements have
degrees at most n−1 since Xn = −1 ∈ R. We write Rq = R/qR for the
residue ring of R modulo an integer q. u ·v denotes the multiplication
of two polynomials where the product is reduced modulo Xn+1 in R
and reduced modulo q in Rq.

FHE Operations. We use the FHE scheme BFV as one example to
explain the most important FHE operations as follows.

• Setup(λ). For a security parameter λ, we set a ring size n, a
ciphertext modulus q, a special modulus p coprime to q, a key
distribution χ, and an error distribution Ω over R.

Frontiers in Electronics frontiersin.org02

Zheng et al. 10.3389/felec.2022.1091369

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2022.1091369

• Encryption. A BFV ciphertext is encrypted as a vector of two
polynomials (c0, c1) ∈ R2

q. Specifically, we have c0 = −a and
c1 � a · s + q

pm + e0, where a is a uniformly sampled
polynomial. s and e0 are polynomials whose coefficients
drawn from X σ (σ is the standard deviation).

• Decryption. The decryption computes p
q (c0 · s + c1) � m + p

qe0.
When q

p≫ e0, e0 can be removed. Each FHE operation enlarges
e0. To successfully decrypt the ciphertext, a bootstrapping is
required to keep e0 in check. Or we have to choose a larger q to
accommodate a larger depth of FHE operations, since a larger q
can omit a larger e0.

• Addition. For two ciphertexts c0 = (c0,0, c1,0) and c1 = (c0,1, c1,1),
an FHE addition simply adds the polynomials of the two
ciphertexts and outputs the result ciphertext c = (c0,0+c0,1,
c1,0+c1,1).

• Multiplication. During an FHE multiplication, two ciphertexts
c0 = (c0,0, c1,0) and c1 = (c0,1, c1,1) are first multiplied and
assembled to compute cx = (m0, m1, m2) = (c0,0c0,1,
c0,0c1,1+c1,0c0,1, c1,0c1,1). And then, a key-switching
(relinearization) operation happening m0 to produce two
polynomials (u0, u1) = keyswitch (m0) via a relinearization
key. The final output is c = (m1+u0, m2+u1).

• Rotation. FHE schemes support SIMD-style batching Fan and
Vercauteren (2012), which can pack m plaintexts [p0, . . ., pm−1]
into a ciphertext. A homomorphic multiplication or addition
happening between two ciphertexts (c0,0, c1,0) and (c0,1, c1,1) is
equivalent to m multiplications or additions between [p0,0, . . .,
pm−1,0] and [p0,1, . . ., pm−1,1]. For instance, an FHE addition can
achieve p0,0+p0,1, . . ., pm−1,0+pm−1,1. An FHE rotation operation
rotates a ciphertext by several plaintext slots. For instance, [p0,0,
. . ., pm−1,0] can be rotated to [pn,0, . . ., pm−1,0, p0,0, . . ., pn−1,0] by
n plaintext slots. The FHE rotation is also achieved via a
rotation key.

Both relinearization and rotation keys can be called evaluation
keys. The size of evaluation keys greatly increases with an enlarging
ciphertext modulus q.

FHE Schemes. FHE can be implemented by various schemes
including BFV Fan and Vercauteren (2012), BGV Halevi and
Shoup (2015), CKKS Jung et al. (2020), FHEW Ducas and
Micciancio (2015), and TFHE Chillotti et al. (2018). A brief
comparison between these FHE schemes is shown in Table 1. The
word-wise FHE schemes, i.e., BGV, BFV, CKKS, are built upon the
Ring Learning With Error (RLWE) paradigm Brakerski et al. (2014).
They are good at computing vectorial multiplications and additions.
They support the SIMD batching, which allows a vector of plaintexts
to be encrypted as a single ciphertext. BGV and BFV support only

integer arithmetic operations, while CKKS is more efficient when
processing complex fixed-point numbers. Compared to BGV, BFV
uses a different version of relinearization in an FHE multiplication.
CKKS supports only approximate computing, where each CKKS
operation slightly modifies the value of the fraction part of the
ciphertext. The bootstrapping operations of BGV, BFV and CKKS
are super time-consuming. For instance, the latency of a BGV
bootstrapping operation costs several hundred seconds Halevi and
Shoup (2015). On the contrary, FHEW and TFHE are developed upon
the Learning With Error (LWE) paradigm Chillotti et al. (2018). They
are good at FHE binary logic operations, e.g., NAND, AND, XOR, and
OR. Their bootstrapping operations are fast. For example, a TFHE
bootstrapping requires only 13ms on a CPU. Although prior work
Bourse et al. (2018); Lou and Jiang (2019) uses TFHE to implement an
FHE neural network using low bit-width quantized weights, these
highly-quantized neural networks greatly degrade the inference
accuracy. Recent work Lou et al. (2020) performs linear layers by
BGV and activation layers by TFHE, but the switching operations
between BGV and TFHE are extremely slow, e.g., tens of seconds. In
this paper, we focus on only BGV, BFV, CKKS, and neural networks
implemented by these FHE schemes.

2.2 FHE-based neural networks

Data Flow. The data flow of FHE-based MLaaS is shown in
Figure 1. The client typically uses a CPU processor. She generates
various keys, encrypts her data, and sends only the ciphertext to the
cloud. The untrusted server in the cloud conducts an FHE-based
neural inference Brutzkus et al. (2019) on encrypted data by FHE
hardware accelerators and sends the encrypted result back to the
client. In order to support SIMD-style FHE operations, an encoding
step is required by the client to pack many numbers into a single
ciphertext. Encoding, decoding, encryption and decryption are all
performed by the client, while the server performs only FHE
computations on the encrypted data without decryption.

FHE Neural Networks. FHE-based neural networks Gilad-
Bachrach et al. (2016); Brutzkus et al. (2019); Dathathri et al.
(2019, 2020); Lou and Jiang (2021) are created to support
inferences directly on encrypted data. Prior FHE-based networks
approximate their non-linear activation layers by degree-2
polynomials, and compute their linear (i.e., convolutional and
fully-connected) layers by FHE multiplications and additions.
The major operations in linear layers are homomorphic dot-
product, as shown in Figure 2. For a fully-connected layer, the
encrypted input vector x consisting of n (e.g., n = 4) elements, while
the encrypted output vector y has m (e.g., m = 1) elements. Prior
FHE-based networks keep weights on only the server side, so the
weights are not encrypted. The plaintext weight matrix W has a
dimension of n × m. The homomorphic dot-product can be
computed as

y[] � W · x[], y[] � ∑
log2n

i�1
rot y[], n

2i
() (1)

where [x] means encrypted x; [y] is encrypted y; · indicates a FHE
SIMD multiplication between a batched plaintext and a batched
ciphertext; and rot means an FHE rotation. So log2n FHE rotations
are required to accumulate an element of y.

TABLE 1 The comparison of FHE schemes.

Operation BFV BGV CKKS FHEW TFHE

Native FHE Add/Sub ✓ ✓ ✓ 7 7

Native FHE Mult ✓ ✓ ✓ 7 7

SIMD Batching ✓ ✓ ✓ 7 7

< 1s Bootstrapping 7 7 7 ✓ ✓

Data Type integer integer fixed-point binary binary

Frontiers in Electronics frontiersin.org03

Zheng et al. 10.3389/felec.2022.1091369

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2022.1091369

2.3 FHE hardware accelerators

FHE operations are time-consuming and power-inefficient when
running on conventional CPUs and GPUs Riazi et al. (2020). Multiple
ASIC-based FHE accelerators Samardzic et al. (2022); Kim et al.
(2022); Samardzic et al. (2021) are proposed to improve the energy
efficiency and latency of FHE operations. These FHE ASIC
accelerators highly optimize the NTT units to accelerate the most
computationally intensive kernel, i.e., polynomial multiplications, in
FHE operations. However, to keep large evaluation (relinearization
and rotation) keys and large ciphertexts on-chip, these accelerators
adopt fast yet power-hungry SRAM arrays connected by a large NoC

to form a 512 MB scratchpadmemory Kim et al. (2022). To support an
FHE neural network consisting of 10 ~ 20 layers, the size of evaluation
keys and ciphertexts greatly increases (e.g., 128 MB ~ 256MB). A
512 MB scratchpad memory can prevent most NTT units from
waiting their data by keeping a ciphertext and a relinearization or
rotation key on-chip. However, the huge-capacity SRAM scratchpad
memory consumes huge amount of power and seriously limits the
energy efficiency of prior FHE ASIC accelerators.

2.4 NAND-like spintronic memory

NAND-Like Spintronic (NAND-SPIN) Memory Wang et al.
(2018) is a low-power and high-density memory technology, which
has good CMOS compatibility and thus can be directly integrated with
CMOS logic. Furthermore, the write endurance of a NAND-SPIN cell
is > 1012. As Table 2 shows, NAND-SPIN has a small cell size of 13F2,
which is even smaller than SOT-MRAM. The read latency of NAND-
SPIN is comparable to SRAM, while the write latency of NAND-SPIN
is much longer than SRAM. The basic structure of a 4-bit NAND-
SPIN cell is shown in Figure 3. The cell consisting of multiple magnetic
tunnel junctions (MTJs) sits on a heavy metal strip. The free layers of
the MTJs in the cell are all contacted with the heavy metal strip. Each
MTJ has an access transistor connected to the pinned layer, and the
other side of these transistors are connected to bit-lines (BLs). At one
end of the heavy metal, one transistor is connected to Vdd and
controlled by P source-line (PSL). On the other end of the heavy
metal, another transistor is connected to GND and controlled by NSL.
The cell can be selected by PSL and NSL. The write operation of this
cell requires two steps. First, all MTJs are erase and reset to ‘0’. In this
step, PSL is 0, while NSL is 1. All WL transistors are turned off, and a
write current is generated in the heavy metal strip to reset MTJs to ‘0’.
Second, the MTJs which attempt to be written to ‘1’ is programmed.
All corresponding WL transistors are closed and PSL is set to 0,
resulting in currents flowing through the MTJs from the free layer to
the pinned layer. And then, these MTJs are written to ‘1’. For a read
operation, the corresponding WL transistor is closed and NSL is set to
1. And then, a read current is produced.

FIGURE 1
The data flow of end-to-end encrypted FHE-based MLaaS.

FIGURE 2
An FHE dot-product.

TABLE 2 The comparison of various memory technologies.

Metric NAND-SPIN SOT-MRAM SRAM

Cell Size per Bit 13F2 20F2 140F2

Cell Leakage 0 0 huge

Cell Read Latency 50ps 50ps 20ps

Cell Write Latency 1+4ns 2ns 20ps

FIGURE 3
A NAND-like spintronic memory cell.

Frontiers in Electronics frontiersin.org04

Zheng et al. 10.3389/felec.2022.1091369

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2022.1091369

2.5 Motivation

Prior hardware-accelerated FHE-based MLaaS is limited by both
its software and hardware designs. At software level, prior FHE-based
neural networks Gilad-Bachrach et al. (2016); Brutzkus et al. (2019);
Dathathri et al. (2019), Dathathri et al. (2020); Lou and Jiang (2021)
just naïvely adopt one FHE scheme without considering other
alternatives. For the same security level, different FHE schemes
operate on different data types, support different SIMD batch sizes,
and use different latencies when performing additions, multiplications,
and rotations Jiang and Ju (2022), resulting in different setup latencies
on the client side, inference latencies on the server side, and inference
accuracies for one network architecture. The setup on the client side
includes encryption, decryption, and public/private/evaluation key
generation. As Figure 4 shows, we use BGV, BGV, and CKKS to
implement a 4-feature logistic regression algorithm Kim et al. (2018)
and a SqueezeNet Dathathri et al. (2020) working on CIFAR10. The
detailed experimental methodology is shown in Section 4. Low-power
IoT devices are sensitive to the computational overhead of client
setup. BFV has the smallest client setup latency, while BGV is the
slowest during the setup on the client side. For FHE-based inferences,
BGV achieves the shortest latency on logistic, while BFV obtains the
shortest latency on SqueezeNet. In contrast, CKKS has the highest
accuracy for both. Therefore, average users need a software tool to
select the best FHE scheme tomeet their goals (i.e., client/server latency
and accuracy) when building an FHE-based neural network. At
hardware level, state-of-the-art FHE hardware accelerators use a
huge (e.g., 512 MB) power-hungry SRAM scratchpad memory to
store evaluation keys used by FHE multiplications and rotations.
All SRAM arrays in the scratchpad memory are connected by a
NoC that uses large SRAM buffers to temporarily store the
transferring data. The SRAM scratchpad memory and its NoC
dissipate huge amount of power, and degrade the energy efficiency

of prior FHE accelerators. For example, on the latest 7 nm FHE
accelerator Kim et al. (2022), the 512 MB SRAM scratchpad
memory and the SRAM buffers (Scratch + SRAM NoC) in its NoC
consume 61 W, i.e., 38% of the total power, and occupy 235mm2,
i.e., 63% of the chip area, as shown in Figure 5.

3 CoFHE

W propose a software and hardware co-designed FHE-based
MLaaS framework, CoFHE, to tackle the software and hardware
shortcomings of prior FHE-based neural networks. At software
level, we present a compiler to select the best FHE scheme for a
network architecture to meet a design goal, i.e., the shortest latency on
the server or client side, or the highest accuracy. At hardware level, we
build a low-power NAND-SPIN and SRAM hybrid scratchpad
memory system for FHE hardware accelerators.

3.1 A multi-FHE-scheme compiler for FHE-
based neural networks

We first profile and benchmark major operations of three FHE
schemes, and use the profiling data to build a latency/energy library for
our CoFHE compiler. And then, we elaborate the design details of our
CoFHE compiler.

FHE Scheme Profiling. To identify the most efficient FHE scheme
for each type of FHE operation, we run OpenFHE Badawi et al. (2022)
on our CPU and ASIC baselines Kim et al. (2022). We assume the client
uses our CPU baseline, while the server uses our FHEASIC baseline.We
divide FHE operations into two groups: client and server. As we
introduced in Section 2.2, the client needs to generate private, public,
relinearization, and rotation keys to use a FHE-based neural network.
Moreover, the client also has to encrypt and decrypt the sensitive data.
In contrast, the server performs only FHE arithmetic operations for the
FHE-based neural inference. For FHE operations, we consider only
additions between two ciphertexts (AddCC), multiplications between
two ciphertexts (MultCC), and rotations (Rotate). AddCC and Rotate
are used in FHE dot-product operations, while MultCC is invoked
during FHE activations. Because state-of-the-art FHE-based neural
networks Gilad-Bachrach et al. (2016); Brutzkus et al. (2019);
Dathathri et al. (2019, 2020); Lou and Jiang (2021) use only these
leveled FHE operations without bootstrapping, we do not consider
bootstrapping. We use the following profiling data to build a latency/
energy library.

FIGURE 4
The latency and accuracy comparisonQ14 of various FHE-based networks (A): client setup latency; (B): server inference latency; (C): inference accuracy;
all latency results are normalized to BGV.

FIGURE 5
The SRAM scratchpad and NoC SRAM buffers of a prior FHE
accelerator Kim et al. (2022).

Frontiers in Electronics frontiersin.org05

Zheng et al. 10.3389/felec.2022.1091369

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2022.1091369

• Client. The latency comparison of the setup for FHE-based
neural networks on the client side is shown in Figure 6, where
“depth N”means the FHE parameters supporting N consecutive
FHE multiplications. A larger FHE depth allows an FHE-based
network consisting of more layers, and thus exponentially
increases the setup latency on the client side. Except the
decryption, BGV requires the longest latency when the depth
is large, while CKKS has the longest decryption latency. When
the FHE depth is small, i.e., ≤ 2, BFV requires longer latencies of
key generation and decryption than BGV. Therefore, when an
FHE-based network operates on integers, if the network is small,
the client favors BGV; otherwise the client may use BFV. By the
Intel VTune profiling tool, we have the energy values of these
FHE operations, which share the same trend as their latencies.

• Server. The latency and throughput comparison of FHE
multiplications and additions on the server side is shown in
Figure 7. A larger FHE depth exponentially increases the latency
of FHE operations on the accelerator of the server. To accommodate
a large depth, BGV, BFV and CKKS have to use a larger ciphertext
modulus q, which greatly prolongs the latency of FHE
multiplications and additions. For the depth of > 5, BFV uses
the shortest latencies for FHE multiplications and additions. For
the depth of ≤ 5, BGV has the shortest latencies of FHE
multiplications and additions. Because BGV, BFV and CKKS
support SIMD batching, we also show the throughput of FHE
arithmetic operations (FHE operations per second). BFV achieves
the largest throughput for most FHE operations. If an FHE-based
network requires fixed-point arithmetics for higher accuracy, the
server prefers CKKS. For an FHE-based network working on
integers, when the depth is > 5, the server favors BFV; otherwise
it uses BGV. The energy values of these FHE operations also share
the same trend as their latencies on our accelerator baseline.

CoFHE Compiler. We present an FHE compiler for CoFHE to
select the best FHE scheme for a neural network architecture in
Figure 8. The compiler can be executed on the server side. For a
L-layer network configuration including kernel size (Ki), input/
output channel number (Ii/Oi), and weight valuesWi, where 1 ≤ i ≤
L, the compiler tries three FHE schemes, i.e., BGV, BFV, and
CKKS. The compiler uses the latest plaintext data encoding layout
Brutzkus et al. (2019) to batch input examples and weights of the
server, and then adopts different FHE parameters Boemer et al.
(2019) to encrypt the batched plaintexts to find the minimal FHE
parameters that can support the network. The set of minimal FHE
parameters can be directly converted to an FHE depth which is
used to lookup our latency/energy library to compute the latency/
energy of the neural network for the server/client. Our CoFHE
compiler also supports a combinatorial evaluation metric defined
as α0 · clat+α1 · slat+α2 · ceng+α3 · seng+α4 · acc, where α0 ~ α4 are
hyper-parameters; clat means the client side latency; slat is the

FIGURE 6
The latency comparison of client setup operations on a CPU for FHE.

FIGURE 7
The latency and throughput comparison of server operations on an FHE hardware accelerator between various FHE schemes.

FIGURE 8
The CoFHE compiler.

Frontiers in Electronics frontiersin.org06

Zheng et al. 10.3389/felec.2022.1091369

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2022.1091369

server side latency; cengmeans the client side energy; seng indicates
the server side energy; and acc denotes the accuracy. Finally, the
compiler quantizes all weights into their integer or fixed-point
representations based on the data type of an FHE scheme and the
plaintext modulus, and then fine-tunes the network for few epochs
to produce the inference accuracy for an FHE scheme. The server
can select the best FHE scheme for a FHE-based network to achieve
the shortest latency on server/client, the smallest energy on server/
client, the highest accuracy, or the combinatorial evaluation
metric.

3.2 A low-power scratchpad memory system
for FHE hardware accelerators

Scratchpad Memory Architecture. To reduce the energy
consumption of prior FHE hardware accelerators, we build a
NAND-SPIN and SRAM hybrid scratchpad memory system
connected by a NAND-SPIN and SRAM hybrid NoC in
Figure 9. For the NAND-SPIN and SRAM hybrid scratchpad
memory system, all evaluation keys, i.e., relinearization and
rotation keys, are stored in only NAND-SPIN scratchpad array,
since FHE operations need to only read them while the NAND-
SPIN read latency is close to SRAM. On the contrary, all
ciphertexts are stored in the NAND-SPIN and SRAM hybrid
arrays shown in Figure 9A, where there is a large NAND-SPIN
array and a small SRAM array. As Figure 9B shows, the NAND-
SPIN array consists of multiple NAND-SPIN sub-arrays
connected by a H-Tree structure. Each NAND-SPIN sub-array
is an array of NAND-SPIN cells connected by vertical word-lines
and horizontal bit-lines, as shown in Figure 9C. Each MTJ on a
NAND-SPIN cell is controlled by a word-line and selected by a row
decoder. The NAND-SPIN cells in a horizontal line share a bit-line
selected by a column multiplexer and can be sensed/written by a
sense amplifier/write driver. All NAND-SPIN and SRAM hybrid
arrays and NAND-SPIN arrays are connected by a NAND-SPIN
and SRAM hybrid NoC shown in Figure 9D. The hybrid NoC
consists of multiple virtual channels. One virtual channel uses a
multiplexer to select NAND-SPIN banks or SRAM banks. The
NAND-SPIN banks are used to store non-critical large-block
transferring data, while the SRAM banks store urgent small-
block transferring data.

Scratchpad Memory Management. The algorithm of our
scratchpad memory management is simple. All read-only
evaluation keys of various FHE operations are stored in large
NAND-SPIN arrays, while most ciphertexts and other intermediate
results are kept in small SRAM arrays. If the SRAM capacity is not
large enough, data swapping operations occur to move data between
NAND-SPIN and SRAM arrays.

4 Experimental methodology

In this section, we introduce the details of our experimental
methodology.

FHE Scheme. We evaluated various word-wise FHE schemes
including BFV Fan and Vercauteren (2012), BGV Halevi and
Shoup (2015), and CKKS Jung et al. (2020). BFV and BGV support
FHE exact integer arithmetic operations, while CKKS performs
approximate complex and fixed-point arithmetic operations.
Although three FHE schemes support bootstrapping, their
bootstrapping operations are slow, e.g., ~ 15 minutes. In this paper,
we do not consider bootstrapping, and use only leveled FHE. All FHE
schemes use the FHE parameters to guarantee > 128-bit security.

FHE Library. We studied the latest FHE library OpenFHE (.9.5)
Badawi et al. (2022). The library is compiled with the Intel icc compiler
using the -O3 optimization flag.

Hardware Baselines. Our CPU baseline is an Intel Xeon Gold 6138P
with a 128 GB DDR4 main memory. It has 20 2 GHz x86 cores sharing a
27.5 MB L3 cache. Each core support the AVX-512 instructions. The
thermal design power of our CPUbaseline is 195W.We selected the latest
7 nm FHE hardware accelerator, BTS Kim et al. (2022), as our ASIC
baseline. BTS consists of 2K processing elements (PEs), each of which has
a NTT unit, a base conversion unit, a modular multiplier, a modular
adder, and a 256 KB SRAM scratchpad array. All scratchpad arrays are
connected by a large NoC. BTS operates at 1.2 GHz and has two HBM2e
DRAM memory controllers. BTS supports all three FHE schemes,
i.e., BFV, BGV, and CKKS. The complete configuration of BTS can be
viewed in (Kim et al., 2022). We assume the client uses our CPU baseline,
while the server adopts our ASIC baseline.

Compiler Implementation. We built our CoFHE compiler upon
NGraph-HE2 Boemer et al. (2019). We used OpenFHE as the FHE
backend of our CoFHE compiler to compile an FHE-based neural
network into a sequence of FHE operations which can be executed by

FIGURE 9
The SPIN-SRAM hybrid scratchpadmemory and its hybrid NoC (A): a SPIN-SRAM array; (B): a NAND SPIN array; (C): a sub-array; (D): a multi-bank hybrid
virtual channel.

Frontiers in Electronics frontiersin.org07

Zheng et al. 10.3389/felec.2022.1091369

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2022.1091369

our CPU baseline. Our hardware baseline can use its operation
scheduler and mapper to run the sequence of FHE operations.

NAND-SPIN Scratchpad Modeling. We adopted NVSIM Dong
et al. (2012) to estimate the power, latency, and area overhead of our
NAND-SPIN and SRAM hybrid scratchpad memory system. We set
the ratio between SRAM and NAND-SPIN in our hybrid memory to
1 : 8.

Profiling and Simulation. We used the Intel VTune tool to profile
all FHE operations on our CPU baseline. We modeled BTS with our
CoFHE NAND-SPIN and SRAM hybrid scratchpad memory system
by a cycle-accurate FHE accelerator simulator, Sapphire-Sim Banerjee
et al. (2019), which is validated against several crypto-processor chips.
The input of Sapphire-Sim is the FHE operation schedule generated by
our CoFHE compiler based on a neural network architecture. Based on
the configuration of an accelerator, Sapphire-Sim simulates the cycle-
level execution and data movement for each FHE operation, and then
produces the total latency and energy consumption of an FHE-based
neural network.

Network Architecture. We evaluated various FHE-based neural
network architectures. For small-scale networks, we considered a 4-
feature logistic regression algorithm Kim et al. (2018) (Log) on a breast
lesion dataset McLaren et al. (2009). For medium-scale networks, we
selected a 4-layer CNN (Lola) Brutzkus et al. (2019) inferring on the
MNIST dataset. For large-scale networks, we chose CNNs including
SqueezeNet (Squ) Dathathri et al. (2020) and AlexNet (Alex)
Dathathri et al. (2020) working on the CIFAR10 dataset.

Schemes. We implemented and compared the following schemes.

• BTS. The ASIC hardware accelerator Kim et al. (2022) with a
512 MB SRAM scratchpad memory system runs all FHE-based
neural inferences.

• CKKSBTS. The scheme implements all neural networks by CKKS
using the state-of-the-art compiler Dathathri et al. (2020) and runs
them on BTS with a 512MB SRAM scratchpad memory.

• CoFHE. The scheme implements neural networks using our
CoFHE compiler and runs them on BTS with a NAND-SPIN
and SRAM hybrid scratchpad memory system that has the same
area overhead of a 512 MB SRAM scratchpad memory.

5 Evaluation and results

5.1 CoFHE com piler

The latency, energy, and accuracy comparison of FHE-based
neural networks generated by our CoFHE compiler with different

FHE schemes including BGV, BFV, and CKKS is shown in Figure 10.
All latency and energy results are normalized to BGV.

First, all FHE setup operations including encryption, decryption,
and various key generation are performed on our CPU baseline. As
Figure 10A shows, the setup latency of the BGV-based neural
networks is the longest, due to its slow relinearization and rotation
key generation. And the BFV-based neural networks have shorter
setup latency than CKKS-based neural networks, since the decryption
operations of CKKS are the slowest among three FHE schemes. The
energy consumption of the client setup of three FHE schemes shares
the same trend as the latency result, as shown in Figure 10B, where
BGV uses the largest energy while BFV consumes the smallest energy.

Second, all FHE neural network inferences are executed on our
hardware accelerator baseline BTS. As Figure 10C shows, for the
small-scale network Log, BGV achieves the shortest inference latency,
while CKKS is the slowest, i.e., 2.3× inference latency. For the medium-
and large-scale networks Lola, Squ, and Alex, BFV is the fastest while
CKKS is still the slowest. Since the power consumption of BTS running
these FHE-based neural inferences is similar to each other, the energy of
an FHE-based neural network is decided by its latency. Therefore, as
Figure 10D exhibits, the energy consumption of various FHE-based
neural inferences shares the same trend as the latency result.

Third, although CKKS is typically the slowest during FHE-based
neural inferences, the CKKS-based neural networks achieve the
highest inference accuracy, as shown in Figure 10E. This is because
CKKS supports fixed-point representations. Moreover, after each FHE
multiplication, CKKS performs a rescaling operation to discard the
least significant digits and focus on only the most significant digits that
contribute more to the inference accuracy.

5.2 CoFHE NAND-SPIN and SRAM hybrid
scratchpad memory

Latency and energy. The inference latency and energy of our NAND-
SPIN and SRAM hybrid scratchpad memory system is shown in
Figure 11. All results are normalized to BTS with a 512MB SRAM
scratchpad memory system. We assume our hybrid scratchpad memory
has the same area overhead as the 512MB SRAM scratchpad memory.
For the same area, the CoFHE hybrid scratchpad memory system can
achieve a 800MB capacity. As Figure 11A highlights, a larger capacity
hybrid scratchpad memory reduces the latency of medium- and large-
scale FHE-based neural networks by 12.7% ~ 20%. The small-scale
network does not gain benefit from the larger scratchpad, since the
500MB SRAM scratchpad is large enough to hold its working set. The
800MB hybrid scratchpad memory still consumes much smaller power

FIGURE 10
The latency, energy, and accuracy comparison of various FHE-based networks generated by our CoFHE compiler (A): client setup latency; (B): client
setup energy; (C): server inference latency; (D): server inference energy; (E): inference accuracy; all latency and energy results are normalized to BGV.

Frontiers in Electronics frontiersin.org08

Zheng et al. 10.3389/felec.2022.1091369

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2022.1091369

than the 512 MB SRAM scratchpad memory. As Figure 11B shows, the
800MB hybrid scratchpad memory system reduces the energy
consumption of BTS by 32% ~ 44% for different FHE-based neural
networks.

Design space exploration. We adjust the capacity ratio between
SRAM and NAND-SPIN arrays in our hybrid scratchpad memory
system to 1/16 ~ 1/2. The latency and energy results of Lola and Squ
are shown Figure 12. Compared to the ratio of 1/8, although fewer
SRAM arrays (ratio = 1/16) slightly reduce the power of the hybrid
scratchpad memory system, the latency of both networks
implemented by three FHE schemes is greatly prolonged by 8%
~ 33%. Therefore, compared to the ratio of 1/8, the energy overhead
of the ratio of 1/16 actually increases. On the other hand, more
SRAM arrays (ratio = 1/4) only moderately reduce the latency of
two networks but greatly increase the hybrid scratchpad
memory power consumption by > 10%. Further increasing the

SRAM capacity cannot improves the latency of two networks. So
the ratio of 1/8 achieves the smallest energy overhead for two
networks.

5.3 Putting both together

We use both our CoFHE compiler and the hybrid scratchpad
memory, and present the latency and energy results in Figure 13. To
achieve the shortest client setup latency (clat), our CoFHE compiler
always uses BFV. Compared to CKKSBTS, CoFHE improves the
inference latency by 28% and the inference energy by 34%. To
obtain the short server inference latency (slat), our CoFHE
compiler adopts BGV for Log, and BFV for the other neural
networks. CoFHE reduces the inference latency by 37% and the
inference energy by 41% over CKKSBTS. To have the highest

FIGURE 11
The inference latency and energy of BTS with a NAND-SPIN and SRAM hybrid scratchpad memory (A): hybrid scratchpad latency; (B): hybrid scratch
energy; all are normalized to BTS with a 512 MB SRAM scratchpad memory.

FIGURE 12
The design space exploration of the SRAM capacity in our NAND-SPIN and SRAM hybrid scratchpad memory (All are normalized to the BGV-based Lola
having a ratio of 1/8).

FIGURE 13
The inference latency and energy of CoFHE (A): CoFHE latency; (B): CoFHE energy; all are normalized to CKKSBTS; clat: client latency; slat: server
latency; and acc: accuracy.

Frontiers in Electronics frontiersin.org09

Zheng et al. 10.3389/felec.2022.1091369

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2022.1091369

accuracy (acc), our CoFHE compiler always selects CKKS for all
networks. The hybrid scratchpad memory of CoFHE decreases
the inference latency by 18% and the inference energy 26% on
average.

6 Conclusion

In this paper, we propose a software and hardware co-designed
FHE-based MLaaS framework, CoFHE. On average, under the same
security and accuracy constraints, CoFHE accelerates various FHE-
based inferences by 18%, and reduces the energy consumption of
various FHE-based inferences by 26%.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found in the article/supplementary material.

Author contributions

MZ did all experiments. LJu answered some questions. LJi
contributed the idea.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

[Dataset] Badawi, A. A., Bates, J., Bergamaschi, F., Cousins, D. B., Erabelli, S., Genise, N.,
et al. (2022). Openfhe: Open-source fully homomorphic encryption library. Cryptology
ePrint Archive, Paper 2022/915. Available at: https://eprint.iacr.org/2022/915.

Banerjee, U., Ukyab, T. S., and Chandrakasan, A. P. (2019). Sapphire: A configurable
crypto-processor for post-quantum lattice-based protocols. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2019, 17–61. doi:10.46586/tches.v2019.i4.17-61

Boemer, F., Costache, A., Cammarota, R., and Wierzynski, C. (2019). “Ngraph-he2:
A high-throughput framework for neural network inference on encrypted data,” in
ACM Workshop on Encrypted Computing & Applied Homomorphic Cryptography,
45–56.

Bourse, F., Minelli, M., Minihold, M., and Paillier, P. (2018). “Fast homomorphic
evaluation of deep discretized neural networks,” in Advances in cryptology, 483–512.

Brakerski, Z., Gentry, C., and Vaikuntanathan, V. (2014). (leveled) fully homomorphic
encryption without bootstrapping. ACM Trans. Comput. Theory 6, 1–36. doi:10.1145/
2633600

Brutzkus, A., Gilad-Bachrach, R., and Elisha, O. (2019). “Low latency privacy preserving
inference,” in International Conference on Machine Learning, 812–821.

Camhi, R., and Lyon, S. (2018). What is the California consumer privacy act? Risk
Manag. 65, 12–13.

Chillotti, I., Gama, N., Georgieva, M., and Izabachène, M. (2018). Tfhe: Fast fully
homomorphic encryption over the torus. J. Cryptol. 33, 34–91. doi:10.1007/s00145-019-
09319-x

Dathathri, R., Kostova, B., Saarikivi, O., Dai, W., Laine, K., and Musuvathi, M. (2020).
“Eva: An encrypted vector arithmetic language and compiler for efficient homomorphic
computation,” in ACM SIGPLAN Conference on Programming Language Design and
Implementation, 546–561.

Dathathri, R., Saarikivi, O., Chen, H., Laine, K., Lauter, K., Maleki, S., et al. (2019). “Chet:
An optimizing compiler for fully-homomorphic neural-network inferencing,” in ACM
SIGPLAN Conference on Programming Language Design and Implementation, 142–156.

Dong, X., Xu, C., Xie, Y., and Jouppi, N. P. (2012). Nvsim: A circuit-level performance,
energy, and area model for emerging nonvolatile memory. IEEE Trans. Computer-Aided
Des. Integr. Circuits Syst. 31, 994–1007. doi:10.1109/tcad.2012.2185930

Ducas, L., and Micciancio, D. (2015). “Fhew: Bootstrapping homomorphic encryption
in less than a second,” in Advances in cryptology – EUROCRYPT 2015. EUROCRYPT 2015.
Lecture notes in computer science(). Editors E. Oswald and M. Fischlin (Berlin, Heidelberg:
Springer), Vol. 9056, 617–640. doi:10.1007/978-3-662-46800-5_24

[Dataset] Fan, J., and Vercauteren, F. (2012). Somewhat practical fully homomorphic
encryption. Cryptology ePrint Archive, Report 2012/144.

Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., and Wernsing, J.
(2016). “Cryptonets: Applying neural networks to encrypted data with high throughput
and accuracy,” in International Conference on Machine Learning, 201–210.

Halevi, S., and Shoup, V. (2015). “Bootstrapping for helib.” in International conference
on the theory and applications of cryptographic techniques. Berlin, Germany: Springer,
641–670.

Hoofnagle, C. J., van der Sloot, B., and Borgesius, F. Z. (2019). The European Union
general data protection regulation: What it is and what it means. Inf. Commun. Technol.
Law 28, 65–98. doi:10.1080/13600834.2019.1573501

[Dataset] Jiang, L., and Ju, L. (2022). Fhebench: Benchmarking fully homomorphic
encryption schemes. arXiv:2203.00728.

[Dataset] Jung, W., Lee, E., Kim, S., Lee, K., Kim, N., Min, C., et al. (2020). Heaan
demystified: Accelerating fully homomorphic encryption through architecture-centric
analysis and optimization. arXiv:2003.04510.

Kim,M., Song, Y., Wang, S., Xia, Y., and Jiang, X. (2018). Secure logistic regression based
on homomorphic encryption: Design and evaluation. JMIR Med. Inf. 6, e19. doi:10.2196/
medinform.8805

Kim, S., Kim, J., Kim, M. J., Jung, W., Kim, J., Rhu, M., et al. (2022). “Bts: An accelerator
for bootstrappable fully homomorphic encryption,” in IEEE/ACM International
Symposium on Computer Architecture, 711–725.

Lou, Q., Feng, B., Fox, G. C., and Jiang, L. (2020). “Glyph: Fast and accurately training
deep neural networks on encrypted data,” in Annual Conference on Neural Information
Processing Systems, 9193–9202.

Lou, Q., and Jiang, L. (2021). “Hemet: A homomorphic-encryption-friendly privacy-
preserving mobile neural network architecture,” in International Conference on Machine
Learning. vol. 139, 7102–7110.

Lou, Q., and Jiang, L. (2019). “She: A fast and accurate deep neural network for
encrypted data,” in Advances in neural information processing systems (Red Hook, NY,
USA: Curran Associates, Inc.), Vol. 32, 10035–10043.

McLaren, C. E., Chen, W.-P., Nie, K., and Su, M.-Y. (2009). Prediction of malignant
breast lesions from mri features: A comparison of artificial neural network and
logistic regression techniques. Acad. Radiol. 16, 842–851. doi:10.1016/j.acra.2009.
01.029

Riazi, M. S., Laine, K., Pelton, B., and Dai, W. (2020). “Heax: An architecture for
computing on encrypted data,” in ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, 1295–1309.

Ribeiro, M., Grolinger, K., and Capretz, M. A. M. (2015). “MLaaS: Machine learning as a
Service,” in IEEE International Conference on Machine Learning and Applications
(Miami, FL, USA: IEEE), 896–902. doi:10.1109/ICMLA.2015.152

Samardzic, N., Feldmann, A., Krastev, A., Devadas, S., Dreslinski, R., Peikert, C., et al.
(2021). “F1: A fast and programmable accelerator for fully homomorphic encryption,” in
IEEE/ACM International Symposium on Microarchitecture, 17 October 2021, 238–252.
doi:10.1145/3466752.3480070

Samardzic, N., Feldmann, A., Krastev, A., Manohar, N., Genise, N., Devadas, S., et al.
(2022). “Craterlake: A hardware accelerator for efficient unbounded computation on
encrypted data,” in IEEE/ACM International Symposium on Computer Architecture,
11 June 2022, 173–187. doi:10.1145/3470496.3527393

Wang, Z., Zhang, L., Wang, M., Wang, Z., Zhu, D., Zhang, Y., et al. (2018). High-density
nand-like spin transfer torque memory with spin orbit torque erase operation. IEEE
Electron Device Lett. 39, 343–346. doi:10.1109/led.2018.2795039

Frontiers in Electronics frontiersin.org10

Zheng et al. 10.3389/felec.2022.1091369

https://eprint.iacr.org/2022/915
https://doi.org/10.46586/tches.v2019.i4.17-61
https://doi.org/10.1145/2633600
https://doi.org/10.1145/2633600
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1109/tcad.2012.2185930
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1080/13600834.2019.1573501
https://doi.org/10.2196/medinform.8805
https://doi.org/10.2196/medinform.8805
https://doi.org/10.1016/j.acra.2009.01.029
https://doi.org/10.1016/j.acra.2009.01.029
https://doi.org/10.1109/ICMLA.2015.152
https://doi.org/10.1145/3466752.3480070
https://doi.org/10.1145/3470496.3527393
https://doi.org/10.1109/led.2018.2795039
https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2022.1091369

	CoFHE: Software and hardware Co-design for FHE-based machine learning as a service
	1 Introduction
	2 Background
	2.1 Fully Homomorphic Encryption
	2.2 FHE-based neural networks
	2.3 FHE hardware accelerators
	2.4 NAND-like spintronic memory
	2.5 Motivation

	3 CoFHE
	3.1 A multi-FHE-scheme compiler for FHE-based neural networks
	3.2 A low-power scratchpad memory system for FHE hardware accelerators

	4 Experimental methodology
	5 Evaluation and results
	5.1 CoFHE com piler
	5.2 CoFHE NAND-SPIN and SRAM hybrid scratchpad memory
	5.3 Putting both together

	6 Conclusion
	Data availability statement
	Author contributions
	Conflict of interest
	Publisher’s note
	References

