
XMA2: A crossbar-aware
multi-task adaption framework
via 2-tier masks

Fan Zhang, Li Yang, Jian Meng, Jae-sun Seo, Yu Cao and
Deliang Fan*

School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ,
United States

Recently, ReRAM crossbar-based deep neural network (DNN) accelerator has

been widely investigated. However, most prior works focus on single-task

inference due to the high energy consumption of weight reprogramming

and ReRAM cells’ low endurance issue. Adapting the ReRAM crossbar-based

DNN accelerator for multiple tasks has not been fully explored. In this study, we

propose XMA2, a novel crossbar-aware learning method with a 2-tier masking

technique to efficiently adapt a DNN backbone model deployed in the ReRAM

crossbar for new task learning. During the XMA2-based multi-task adaption

(MTA), the tier-1 ReRAM crossbar-based processing-element- (PE-) wise mask

is first learned to identify the most critical PEs to be reprogrammed for essential

new features of the new task. Subsequently, the tier-2 crossbar column-wise

mask is applied within the rest of the weight-frozen PEs to learn a hardware-

friendly and column-wise scaling factor for new task learningwithoutmodifying

the weight values. With such crossbar-aware design innovations, we could

implement the required masking operation in an existing crossbar-based

convolution engine with minimal hardware/memory overhead to adapt to a

new task. The extensive experimental results show that compared with other

state-of-the-art multiple-task adaption methods, XMA2 achieves the highest

accuracy on all popular multi-task learning datasets.

KEYWORDS

neural networks, in-memory computing, non-volatile memory, continual learning,
emerging architectures

1 Introduction

Deep neural networks (DNNs) have recently shown outstanding performance in

many applications. However, the single task’s high degree of specialization restrains its

potential development. Motivated by this, researchers began devising algorithms that

could sequentially adapt a DNN model to multiple tasks while still performing well on

past tasks. This process of gradually adapting the DNN model to learn from various tasks

is known as multi-task adaption (MTA) (Mallya et al., 2018; Yang et al., 2021). Fine-

tuning (Kornblith et al., 2019) is an intuitive way to adopt the knowledge from the current

model (i.e., backbone model) to a new task. Although it offers good accuracy on the new

OPEN ACCESS

EDITED BY

Yu Wang,
Tsinghua University, China

REVIEWED BY

Rishad Shafik,
Newcastle University, United Kingdom
Xiaoming Chen,
Institute of Computing Technology
(CAS), China

*CORRESPONDENCE

Deliang Fan,
dfan@asu.edu

SPECIALTY SECTION

This article was submitted
to Integrated Circuits and VLSI,
a section of the journal
Frontiers in Electronics

RECEIVED 30 August 2022
ACCEPTED 30 November 2022
PUBLISHED 20 December 2022

CITATION

Zhang F, Yang L, Meng J, Seo J-s, Cao Y
and Fan D (2022), XMA2: A crossbar-
aware multi-task adaption framework
via 2-tier masks.
Front. Electron. 3:1032485.
doi: 10.3389/felec.2022.1032485

COPYRIGHT

© 2022 Zhang, Yang, Meng, Seo, Cao
and Fan. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Electronics frontiersin.org01

TYPE Original Research
PUBLISHED 20 December 2022
DOI 10.3389/felec.2022.1032485

https://www.frontiersin.org/articles/10.3389/felec.2022.1032485/full
https://www.frontiersin.org/articles/10.3389/felec.2022.1032485/full
https://www.frontiersin.org/articles/10.3389/felec.2022.1032485/full
https://www.frontiersin.org/articles/10.3389/felec.2022.1032485/full
https://www.frontiersin.org/articles/10.3389/felec.2022.1032485/full
https://crossmark.crossref.org/dialog/?doi=10.3389/felec.2022.1032485&domain=pdf&date_stamp=2022-12-20
mailto:dfan@asu.edu
mailto:dfan@asu.edu
https://doi.org/10.3389/felec.2022.1032485
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org/journals/electronics#editorial-board
https://www.frontiersin.org/journals/electronics#editorial-board
https://doi.org/10.3389/felec.2022.1032485


task, updating the weights of the backbone model means

forgetting old knowledge upon earlier tasks, thus resulting in

significant performance degradation on previous tasks. Such a

phenomenon is known as catastrophic forgetting (Parisi et al.,

2019; Yang et al., 2021; Kirkpatrick et al., 2017; Mallya et al.,

2018), which widely exists in MTA.

From the hardware side, DNNs require a considerable

amount of multiply and accumulate (MAC) operations and

data movement. In conventional hardware (e.g., CPU and

GPU), the massive data communication energy could be

almost two orders larger than data processing, known as

“memory wall” (Mittal, 2019). In-memory computing (IMC)

has attracted tremendous attention as an alternative approach

due to its capability to computeMAC directly within thememory

array. Such ability significantly alleviates the “memory wall” issue

(Eckert et al., 2018; Fan and Angizi, 2017; Chi et al., 2016; Song

et al., 2017; Cheng et al., 2019; Xue et al., 2019; ChenW.-H. et al.,

2018; Li et al., 2016; Shafiee et al., 2016; Cai et al., 2019; Ankit

et al., 2019; Chen and Li, 2018). Compared to other volatile or

non-volatile IMC designs, the ReRAM crossbar-based design is a

promising candidate for ultra-efficient DNN accelerator for

inference due to its simple structure, high on/off ratio, high

density, multi-bit per cell storage, and fabrication compatibility

with CMOS (Mittal, 2019; Hu et al., 2016; Xu et al., 2015; Chen,

2020; Akinaga and Shima, 2010; Cai et al., 2019). Based on such

benefits, many ReRAM crossbar-based designs have been

proposed to support DNN inference for a single specialized

task (Mittal, 2019; Song et al., 2017; Yin et al., 2020; Eckert

et al., 2018; Shafiee et al., 2016; Ankit et al., 2019; Chi et al., 2016;

Song et al., 2017).

A general practice to adapt a specialized DNN model

deployed in the ReRAM crossbar for a new task is to fine-

tune the weight parameters (i.e., cell conductance) of the

backbone model using the data of the new task (Kornblith

et al., 2019). However, this procedure has to update the

conductance (i.e., reprogramming) of nearly all ReRAM cells

to represent the new fine-tuned weight parameters. Due to the

well-known non-volatile ReRAM device limitations, such as high

reprogramming energy and limited endurance, and catastrophic

forgetting for large-scale multi-task learning, the fine-tuning

(Kornblith et al., 2019) approach is inefficient and

impracticable for multi-task learning in practice.

Recently, mask-based learning algorithms (Mallya et al.,

2018; Yang et al., 2021; Zhang et al., 2022a,c,b) have been

proposed to perform MTA in a more efficient way. For

example, piggyback (Mallya et al., 2018), as a representative

work, learns a task-specific binary mask ∈ {0, 1} with respect to all
weights in an element-wise manner for each new task while

freezing the backbone model. Kernel-wise Soft Mask (Yang et al.,

2021) extends the task-specific mask from binary to a hybrid

binary and real value to improve the adaption capacity.

Furthermore, our prior works—XBM (Zhang et al., 2022a)

and XMA (Zhang et al., 2022b)—propose the mask-based

learning method in a crossbar column-wise pattern with the

consideration of deploying on the ReRAM crossbar hardware.

Specifically, each learned mask value controls the operations

(i.e., on/off and shift) of the entire crossbar column for the new

task inference without reprogramming ReRAM cells. Thus, these

methods lead to memory and energy reduction compared to the

element-wise piggyback. However, the adaption capability of

these works is limited, which has a clear accuracy gap

compared to fine-tuning-based methods. The main reason is

that these methods completely freeze the weights of the backbone

model and only apply the binary (Mallya et al., 2018; Zhang et al.,

2022a) or shift-value (Zhang et al., 2022b) masks, causing limited

optimization space for learning new tasks. Furthermore, the

performance of task adaption is highly dependent on the

relevance between the source task and the new task. For

example, if the data distribution of the new task (Saleh and

Elgammal, 2015) is very different from the source task [e.g.,

Image Net (Russakovsky et al., 2015)], the accuracy of these

methods is much worse than that of the fine-tuning-based

methods.

In contrast, as we discussed earlier, the fine-tuning method is

impractical and inefficient to be deployed on crossbar hardware

for MTA due to the high reprogramming energy of ReRAM cells.

Therefore, a new approach that could balance both benefits is

much needed.

To tackle these issues, in this work, we propose XMA2, a

novel ReRAM crossbar-aware learning framework via 2-tier

masks for MTA, which utilizes the hardware hierarchy of

ReRAM crossbar-based DNN accelerator architecture. In

XMA2, each ReRAM crossbar-based accelerator is

associated with a tier-1 PE-wise mask and tier-2 column-

wise mask.

• In order to learn a new task, the tier-1 PE-wisemask is used to

identify the most critical PEs in a small portion only, which

are reprogrammed for learning essential new features. To

achieve this, we compute the gradient of each PE-wise mask

with respect to the new task data, where the larger gradient

magnitude indicates a higher importance level of associated

PE with respect to the new task. Then, those top-ranked PEs

(e.g., 10%) will be disabled for the current new task to preserve

old knowledge but will be replaced with newly learned PEs

with task-specific weights. By doing so, each task-specific

model could perform inference without forgetting prior

knowledge through a combination of task-specific masks to

filter prior weights and a small portion of new task-specific

weights.

• In order to further improve the learning capability, with

the constraint that we cannot program the majority of

weight-frozen PEs (a.k.a. the PEs with lower ranking

gradients), we adopt a tier-2 crossbar column-wise mask

from our prior work (Zhang et al., 2022b,a), which applies

a learnable and shift-based scaling factor to the output of

Frontiers in Electronics frontiersin.org02

Zhang et al. 10.3389/felec.2022.1032485

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2022.1032485


each crossbar column. It could also provide extra learning

capability to weight-frozen PEs.

The rest of this study is organized as follows: Section 2 covers

the background and related works. Section 3 details the

methodology of the proposed 2-tier mask learning method.

Section 4 demonstrates the hardware implementation. Section

5 gives the algorithm performance on different tasks and

hardware evaluation. In the end, Section 6 presents a conclusion.

2 Background

2.1 Multi-task adaption

MTA (Rebuffi et al., 2017; Rosenfeld and Tsotsos, 2018) aims

to train a versatile model to adapt multiple visual tasks and

domains using as few incremental parameters as possible.

Rosenfeld and Tsotsos (2018) recombined the filter channels

of the backbone model via controller modules. Liu et al. (2019)

proposed domain-specific attention modules for the backbone

model. Piggyback (Mallya et al., 2018) tackled the MTA problem

by learning the task-specific learnable binary masks while

freezing the backbone model except for the classifier head

(known as multi-head). The real-value learnable weight masks

mr were first binarized by function Φ with threshold τ:

Forward: mb � Φ mr( ) � 1 if mr ≥ τ
0 otherwise

{ (1)

Backward: ∇mb � ∇mr (2)

As the binarization function is non-differentiable during

backpropagation, the straight-through estimator (STE)

(Hubara et al., 2016) is employed to estimate the mask

gradient ∇mb. Following the binary mask method, Mallya

et al. (2018), Mancini et al. (2018), and Yang et al. (2021)

introduced an additional floating-point scaling factor to

improve the adaption capacity. However, it suffered increased

computation and memory cost during training. In this work, we

also leverage the popular task-specific mask-based learning

methodology to overcome the forgetting of prior knowledge.

2.2 ReRAM-based NN accelerator

With the high parallelism and dense storage, ReRAM-based

IMC has emerged as an attractive solution for DNN inference

(Mittal, 2019; Song et al., 2017; Yin et al., 2020; Eckert et al., 2018;

Zhang et al., 2022a,b; Shafiee et al., 2016; Ankit et al., 2019; Chi

et al., 2016; Song et al., 2017). Figure 1 depicts the basic

architecture of the 1T1R crossbar array. The parallelly

performed analog computation along the column provides

high efficiency to the vector–matrix multiplication (VMM).

Given the pre-trained DNN model, the weights are

programmed as the conductance G inside ReRAM cells. The

input vector is represented as the analog voltage pulses Vin (Hu

et al., 2016; Zhang and Hu, 2020; Chen, 2020), fed through the

horizontal source-line. The VMM output is the product current

between the incoming voltage Vin and programmed conductance

G along the bit line (BL).

Attracted by the high energy efficiency, various ReRAM-based

neural network accelerators have been proposed (Mittal, 2019; Song

et al., 2017; Yin et al., 2020; Eckert et al., 2018). However, most of the

existing ReRAM-based IMC accelerators focus on DNN inference

with a one-time deployed pre-trained model, which lacks the

flexibility to the changing tasks. Adapting the new tasks often

requires additional training and second-time deployment.

Recently, several ReRAM-crossbar-based accelerator designs have

been proposed to support continual learning. Efficient Multi-Task

Architecture for Transfer Learning (Chen and Li, 2018; Li et al.,

2022) analyzed the data flow and made the hardware modification

to support backpropagation. It enabled on-device weight update and

FIGURE 1
ReRAM 1T1R crossbar array (Zhang et al., 2022b).

Frontiers in Electronics frontiersin.org03

Zhang et al. 10.3389/felec.2022.1032485

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2022.1032485


continual learning but demanded high endurance of the ReRAM

device. Moreover, frequent weight update consumes a lot of energy

and causes a loss of energy benefit. To avoid the expensive weight

update/reprogramming, XBM (Zhang et al., 2022a) first performed

the on-device mask-based multi-task adaptation in a column-wise

fashion. It learns the unforeseen tasks corresponding to unraveling

the column-wise masks while keeping the backbone model fixed.

Compared to the prior works, enabling the columns for the new

tasks eliminates the programming/fine-tuning cost, leading to the

high energy efficiency of MTA. Motivated by XBM, XMA (Zhang

et al., 2022b) introduced the shifted mask to enrich the learning

space ofmulti-task adaptation, elevating the accuracy with negligible

hardware overhead. Under the context of MTA, naïve fine-tuning

provides the best accuracy with the highest hardware cost.

Embracing fine-tuning in a hardware-friendly manner remains

unexplored. Different from the prior works (Zhang et al.,

2022a,b), where the MTA completely relies on the on-device

adjustment while leaving the weight untouched, this work

balances the ReRAM crossbar deployment cost and the accuracy-

driven model fine-tuning.

2.3 Neural network quantization and
pruning

Quantization has been widely studied as an effective way to

compress the DNN model and elevate the energy efficiency of

computation while maintaining accuracy by compressing the data

precision (e.g., weight and activation) (Zhou et al., 2016; Choi et al.,

2019; Park and Yoo, 2020). The stringent resource constraint of the

hardware accelerator necessitates efficient quantization algorithms.

Early research works (Zhou et al., 2016) demonstrated the feasibility

of discretizing the full precision weights between the fixed

boundaries [−1, 1]. However, the deterministic quantization

range failed to fit the layer-wise distributions adaptively. It leads

to sub-optimal model performance. Various studies have

introduced layer-wise learnable clipping parameters to minimize

quantization error during training. Under this context, PACT (Choi

et al., 2018) dynamically clipped the activation based on the

trainable quantization boundary. However, PACT (Choi et al.,

2019) only utilized the gradient inside the truncation range,

leading to insufficient learning. To avoid this issue, we adopt the

quantization algorithm from PROFIT (Park and Yoo, 2020) to train

the DNN model.

Orthogonal to quantization, the model size reduction obtained

from the sparse neural network also leads to practical hardware

benefits (e.g., energy and latency reduction). The pioneering

research works (Han et al., 2015) have shown that DNNs can

still retain performance with high element-wise weight sparsity.

However, the high fine-grained sparsity introduces a large amount

of index memory storage and irregular memory access for

hardware computation. This promotes the structured pruning

scheme as a hardware-friendly solution (Meng et al., 2021). For

structured and unstructured pruning, selecting an appropriate

importance metric is essential to localize the unimportant

weights. The score-based pruning justifies the weight

redundancy based on magnitude (Han et al., 2015) or

normalized impact score (Lee et al., 2020) and then applies the

binary mask to the forward pass. However, the score-based

sparsification ignores the model’s vulnerability with respect to

pruning. Motivated by this, SNIP (Lee et al., 2018) determined the

connection sensitivity based on gradient rather than weight

magnitude. Removing the Top-K connections with the least

sensitivity mitigates the impact of pruning and further

optimizes the overall sparse model architecture.

3 Methodology

3.1 Overview

In this section, we introduce our 2-tier mask-based

learning method for crossbar-aware MTA. The processing

element (PE) typically consists of one or more ReRAM

crossbar arrays that share the peripheral circuits and

buffers. For simplicity, we use one crossbar per PE as an

example, where each PE is associated with one tier-1 PE-wise

mask. As shown in Figure 2, during the offline training for one

new task, the gradient of such tier-1 PE-wise mask will be first

computed based on the new task data, where the larger

magnitude of such PE-wise mask gradient indicates the

higher importance level of associated PE with respect to the

new task (Lee et al., 2018). Based on such theory, we pick the

top-P-ranked (“P” is a parameter with a small value, e.g., 10%)

PEs as our candidate weights to be reprogrammed for learning

the new task, defined as adaptable weights. In comparison, we

define the frozen weights in the remaining PEs as non-

adaptable weights. However, to preserve the prior

knowledge without forgetting, we choose to disable and

retain the top-P-ranked PEs for old tasks. Meanwhile, we

replace those PEs with the same number of new PEs with

newly learned adaptable weights for the new task. Thus, each

task-specific model could perform inference without

forgetting prior knowledge through a combination of task-

specific masks to filter prior weights and new task-specific

adaptable weights. To further improve the learning capability,

in this work, with a constraint that we cannot program the

frozen weights (a.k.a non-adaptable weight in the PEs with

lower gradient ranking), we adopt a tier-2 crossbar column-

wise mask inherited from Zhang et al. (2022a,b). It is a

learnable mask that could apply a learnable and shift-based

scaling factor to the output of each corresponding crossbar

column. It could also provide extra learning capability to the

non-adaptable weight kernels in the weight-frozen PEs. The

following subsections will present the detailed 2-tier mask for

the multi-task learning procedure.

Frontiers in Electronics frontiersin.org04

Zhang et al. 10.3389/felec.2022.1032485

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2022.1032485


3.2 Tier-1 PE-wise mask learning

In the ReRAM crossbar-based DNN accelerator design, the

whole structure consists of multiple PEs, the basic computing units

to perform VMM to support convolution operations. Based on

this, we define the PE-wise binary maskmPE ∈ {0, 1} to identify and
re-learn the adaptable weight in the corresponding small portion

of PEs for the new task while freezing the weights in the remaining

PEs. The “1” and “0” values of the PE-wise mask indicate the

adaptable weights and the rest of the non-adaptive weights,

respectively, which are learned by the gradient ranking method.

3.2.1 Gradient ranking to identify PE-wise
adaptable weights

Inspired by the pruning work (Lee et al., 2018), which removed

the unimportant weights before the single-task training, we

propose to identify the task-adaptable weights based on their

importance in the changing loss of the new task.

Mathematically, given a new task D, the optimization objective

of the PE-wise mask learning can be formulated as follows:

min
mPE

L wPE ⊙ mPE,D( ) s.t.
‖mPE‖0
N

≤P (3)

where L(·) is the loss function, wPE are weights distributed

into PEs, N is the total number of PEs, and P is the pre-defined

ratio of the adaptable weights. From the perspective of the

changing loss, the impact of removing partial weights wi
PE

can be formulated as follows:

ΔL wi
PE,D( ) � L mi

PE � 1,D( ) − L mi
PE � 0,D( ) (4)

According to Lee et al. (2018), the changed loss can be

approximated as follows:

ΔL wi
PE,D( ) ≈ zL

z wi
PE ⊙ mi

PE,D( ) wi
PE ⊙ mi

PE( ) � zL
zmi

PE
(5)

Equation 5 shows that the gradient of the PE-wise mask can

approximate the loss change for the new task optimization.

Therefore, we use the gradient magnitude of the PE-wise mask

to indicate the adaptable weights. The large value of the unsigned

gradient magnitude represents the corresponding PE-wise weights

sensitive to the changing loss, which has to be re-learned. Based on

this, we perform the gradient ranking to generate the sensitivity

score computed by normalizing the gradient magnitude of the PE-

wise masks, as shown in Algorithm 1. Subsequently, the top-P

largest values are selected as “1” in PE-wise masks, and the rest of

the PEs are flagged as “0” values. Here, “P” is a hyperparameter

that could be tuned based on the specific dataset and hardware

availability. Aligning with prior works, using only one mini-batch

data to calculate the gradient is precise enough. It is worth noting

that the computation cost is negligible compared to the whole

training procedure.

Algorithm 1. PE-wise mask learning.

FIGURE 2
Overview of the crossbar-aware multi-task adaption framework, including PE-wise masking for retraining and col-wise masking for activation
adjustment.

Frontiers in Electronics frontiersin.org05

Zhang et al. 10.3389/felec.2022.1032485

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2022.1032485


3.3 Tier-2 column-wise mask for weight-
frozen PEs

3.3.1 The offline shift-based mask learning
As explained in the previous section, the main purpose

of the tier-1 PE-wise mask is to select the new task-specific

PEs and reprogram the corresponding weights to learn

new features of the new task. To reduce the ReRAM

cell programming energy, the portion of the new task-specific

PEs needs to be small (e.g., 10%). Thus, it leaves the majority

of PEs non-adaptable or frozen. To further incorporate

learning capability into those frozen PEs, in this work, we

adopt the column-wise shift mask for each crossbar column

in the frozen PEs motivated by our prior work (Zhang et al.,

2022b).

As in the piggyback method (Mallya et al., 2018), the

adopted binary mask is generated by binarizing the trainable

real-valued masks mr, as presented in Eq. 1. Such real-valued

masks’ magnitudes represent the importance of the

corresponding weight of the backbone model. Inspired by

this, the real-valued masks could help improve the adaption

capability. However, from the hardware perspective,

multiplying a mask (i.e., 32-bit floating-point number) for

every weight/partial sum is a tremendous overhead in both

latency and energy. The learnable shift-based mask ms is a

hardware-friendly trade-off that keeps the “1” in the binary

mask but introduces additional shift factors as, a replacement of

the zero elements in the binary mask counterpart to improve

the adaption capacity with the hardware-friendly operation and

negligible overhead. The shift-based mask can be expressed as

follows:

ms � mb
mb�1, a

s
mb�0[ ] (6)

where mb
mb�1 means the shift-based mask with all “1”s

and asmb�0 denotes that the “0” in the binary mask replaced

by the shift factor. It can be understood as we fix the important

kernels (“1” in the binary mask) and scale the unimportant

kernels (“0” in the binary mask) as different shift levels for the

new task.

3.3.1.1 Learn the shift factor as

In practice, we first normalize the real-valued mask

under the range [0,1], serving as a scaling factor to represent

the weight importance for MTA. Then, the normalized real-

valued mask is quantized to the nearest power-of-two values

(i.e., 1/2, 1/4, and 1/8) or zero. Accordingly, the shift-based

mask ms could maximally include three different shift

levels (i.e., 1/8, 1/4, and 1/2) and two non-shift levels

(i.e., 0 and 1). By doing so, the computing/memory-hungry

multiplication operation between the real-valued mask and

fixed weight can be replaced by the shift operation, resulting

in computation and energy reduction. Moreover, such shift

operation can be implemented by reusing the existing shift

adder (SA) in most ReRAM-based IMC platforms without

increasing hardware overhead. In addition, selecting the

number of shift levels “N” in shift-based mask is flexible that

could be adjusted to achieve different trade-offs between

accuracy and mask overhead. For example, if N = 3, it

supports maximally three different shift levels and two non-

shift levels (i.e., 0, 1/8, 1/4, 1/2, and 1), achieving the best

accuracy. Notably, mask value “1” means no shift, and mask

value “0” means turning off the current column. If N = 0, the

shift-based mask is equivalent to the binary mask with the

smallest mask memory overhead.

3.3.1.2 Learn the binary mask mb

To learn the binary mask, we leverage the Gumbel-Sigmoid

trick, inspired by Gumbel-Softmax (Jang et al., 2016),

which performs a differential sampling to approximate a

categorical random variable. As the Sigmoid function σ(__) can

be viewed as a special two-class case of softmax, it can be

defined as follows:

p mr( ) � 1
1 + exp − logπ0 + g0 − g1( )/T( ), (7)

where π0 represents σ(mr). g0 and g1 are samples from the

Gumbel distribution. The temperature T is a hyperparameter

to adjust the range of input values. Benefiting from the

differential property of Eq. 7, the real-value mask mr can be

embedded with existing gradient-based backpropagation

training. To represent p (mr) as binary format mb, we use a

hard threshold (i.e., 0.5) during the forward propagation

of training. Because most values in the distribution of p (mr)

will move toward 0 or 1 during training, generating the

binary mask by p (mr) (instead of the real-value mask mr

directly) could have a more accurate decision, resulting in

better accuracy.

3.3.2 Column-wise mask
From the system hierarchy perspective, applying an

element-wise mask to a 1T1R array is challenging

because it needs to manipulate every ReRAM cell

independently and store the same sized mask as the 1T1R

array. Inspired by the 1T1R crossbar array parallelism, the

entire row or column share the same input, and the transistors’

gates are connected horizontally or vertically. Such row-/

column-wise parallelism allows the row-/column-wise

control for the existing crossbar design. In order to leverage

the row/column-wise parallelism, the mask size is defined

as G × kh × kw to make it consistent with the size of a

crossbar column, namely a column-wise mask, where

the group G ∈ {1, Cin}. Cin is the input channel dimension.

This way, a single mask value can control the entire column

of a crossbar array, which improves the computation

efficiency significantly compared to the element-wise mask.

Frontiers in Electronics frontiersin.org06

Zhang et al. 10.3389/felec.2022.1032485

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2022.1032485


In our design, the size of the crossbar column is set as 72 × 1.

Equivalently, we define the group size of the kernel-wise mask

as 8 × 3 × 3 with the group G = 8 in the algorithm.

4 Hardware implementation

Figure 3 shows the overview of ReRAM crossbar

architecture to support the proposed 2-tier mask method. It

consists of an I/O interface for data exchange, multiple

processing elements (PEs) grouped as banks for computing,

and the interface controller to decode the instruction. Inside

the bank, PEs have been divided into two groups. Most of the

PEs are used to map the backbone model. Besides, some PEs

are left as spare to reserve for new task adaption as adaptable

weights. Note, for XMA and XBM, the spare PEs are not used

for adaptable weights because they do not have the tire-1 PE-

wise mask. Each PE includes ReRAM crossbar sub-arrays for

the convolution operation; global ReLU and adder tree are

used to post-process the partial sum from the sub-arrays.

Inside the ReRAM sub-array, convolution kernels are mapped

on ReRAM cells as conductance. According to the ReRAM

device and the kernel size, it may need multiple ReRAM cells

to represent one convolution kernel. For example, suppose

each ReRAM cell can represent four different statuses equal to

2-bit information. Moreover, the convolution kernel is

quantized to 4 bits. Then, each convolution weight requires

two adjacent cells to map its higher and lower bits. In

convolutional neural networks (CNNs), a convolution

kernel usually exists as a 4D tensor with dimensions H ×

W × Inc × Outc. Traditionally, the convolution kernel is

unrolled along the Outc dimension to minimize the data

movement because the inputs are identical for each Outc
dimension, although the H × W × Inc weights are unique.

Analogous to the ReRAM crossbar, input is fed through the

horizontal SL and shared with the entire row. Therefore,

different H × W × Inc weights are unrolled to different 1D

vectors and mapped to ReRAM columns to share the same

inputs. Due to the precision mismatch between the quantized

weight and the ReRAM cell, the weight may be divided into

multiple columns. Each column only carries a partial

accumulation which ADC reads as partial activation. The

SA manipulates the partial activation to reconstruct the

actual activation. On top of each column, we add a mask

buffer that stores the column-wise mask and controls how to

shift the activation. The processed activation is then sent to

the global adder tree and ReLU, which subsequently is

conveyed to the next layer as the input.

After the offline new task adaption learning, the tier-1 PE-

wise mask indicates which PE needs to be disabled and

replaced with newly learned PE (implemented through

programming the spare PEs in the system). In contrast, the

rest of PE will still need to be used in the new task-specific

model. For the rest of the weight-frozen PEs, the tier-2

column-wise mask values are stored in the mask buffers.

With the input voltage, V applied on each row-wise SL, the

current through each ReRAM cell with conductance G is

calculated by the multiplication operation I = V × G. The

current is then accumulated on the column-wise BL as ∑I and

converted to bit series by ADC as the MAC result. As

explained earlier, each column’s ADC output is just a

partial result and needs the SA to construct the final result.

FIGURE 3
Hardware structure and implementation.

Frontiers in Electronics frontiersin.org07

Zhang et al. 10.3389/felec.2022.1032485

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2022.1032485


During this step, the SA also reads the column-wise shift mask

from the mask buffer. Thus, the SA shifts the partial sum result

based on its significance and the corresponding col-wise shift

mask values. Afterward, the ReLU unit and local storage buffer

process the data the same as the backbone model.

5 Experiment result

5.1 Algorithm performance

In this section, we evaluate the proposed 2-tier masking

performance. For a fair comparison and following the setup

of prior works, we choose the popular ResNet-50 (He et al.,

2015) as our backbone model, which is pre-trained on the

ImageNet dataset (Russakovsky et al., 2015). Five fine-

grained object classification datasets are utilized as the new

tasks to perform the MTA, including CUBS (Wah et al.,

2011), Stanford Cars (Krause et al., 2013), Flowers

(Nilsback and Zisserman, 2008), WikiArt (Saleh and

Elgammal, 2015), and Sketch (Eitz et al., 2012). These

datasets are summarized in Table 1.

5.1.1 Performance of col-wise mask

Table 2 shows the inference accuracy of the column-wise

mask on different datasets. In this setup, there is no PE-wise

mask. We assume no weight reprogramming/updating for all

tasks, and the column-wise mask applies to all PEs. We quantize

the backbone model to 4-bit precision (4-bit weight and 4-bit

activation) to simulate the crossbar inference behavior. The

quantization method is adopted from PROFIT (Park and Yoo,

2020). We choose the group size G = 8 in the experiment. The

group concept also helps cut down the training parameters,

which boosts the training convergence speed. Moreover,

sharing the mask value among the entire column significantly

saves the memory overhead for mask storage.

Different shift levels determine the mask storage overhead

and affect the accuracy. Table 2 also shows the accuracy and

mask overhead for different shift levels. More shift levels show

better accuracy in the cost of more mask overhead, where the

mask overhead is defined as the complete storage required by the

mask over the storage required by all the weights in the backbone

model. As the shift level goes down, one extreme example is when

no shift level is available in the range of [0,1], which means the

mask only has binary values. In that case, our shift-based mask

method (XMA) is equivalent to the column-wise binary mask

(XBM). Due to the groupmask sharing, binary groupmask size is

only 1
72 of piggyback. For the ResNet-50 backbone model,

piggyback’s element-wise binary mask requires 23M/8 =

TABLE 1 Datasets examined in experiments.

Dataset CUB (Wah et al.,
2011)

Stanford Cars (Krause
et al., 2013)

Flowers (Nilsback and
Zisserman, 2008)

WikiArt (Saleh
and Elgammal,

2015)

Sketch (Eitz
et al., 2012)

Description It is an extended version
of the CUB-200 dataset.
This dataset is
overlapped with
ImageNet.

Each class has been split
roughly in a 50–50 split. Classes
are typically at the level of
make, model, year, etc.

The flowers are commonly
occurring in the
United Kingdom. Each class
consists of 40–258 images

The WikiArt dataset
contains painting from
195 different artists

This dataset contains
20,000 unique sketches
evenly distributed over
250 object categories

# of classes 200 196 102 195 250

Train size (#
of img.)

5,994 8,144 2,040 42,129 16,000

Test size (#
of img.)

5,794 8,041 6,149 10,628 4,000

Accuracy
Metric

Top-1 Top-1 Top-1 Top-1 Top-1

TABLE 2 The impact of different shift levels.

Column-wise mask

Dataset Shift mask Shift mask Shift mask Binary mask

Shift levels 3 2 1 0

Mask levels [0,18,
1
4,

1
2,1] [0,14,

1
2,1] [0,12,1] [0,1]

CUBS 80.07 79.67 79.38 77.86

Stanford Cars 88.32 88.12 88.02 87.48

Flowers 95.59 95.14 95.04 95.02

WikiArt 72.6 72.51 2.56 71.18

Sketches 79.62 79.92 79.92 78.8

Mask overhead 0.87% 0.69% 0.52% 0.35%

The bold value means the best accuracy among different methods.

Frontiers in Electronics frontiersin.org08

Zhang et al. 10.3389/felec.2022.1032485

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2022.1032485


2.88MB, whereas the binary mask only consumes around 40 KB.

Although the binary mask claims the least mask overhead, it

achieves the worst accuracy than other shift-based methods. For

the best accuracy, three shift levels only require less than 100 KB

storage for the mask, which is only 3.4% of that in piggyback

(i.e., 29.4× reduction). Despite this reduction, on average, the

accuracy is 3.2% higher than that of piggyback.

5.1.2 Performance of 2-tier XMA2

Table 3 shows the performance of the 2-tier mask-based

XMA2 method on the aforementioned datasets with different

methods and configurations. It shows fine-tuned results based on

the floating-point number representation to demonstrate the

theoretical performance baseline. With the help of the

floating-point number’s high precision, the fine-tuned-based

method has the highest flexibility to change any weight to any

level. Therefore, fine-tuning the backbone model with a floating-

point number achieves the best accuracy in all datasets.

For the other methods, we adopt quantization-aware training

(QAT) to simulate the performance on the actual hardware

environment. PROFIT (Park and Yoo, 2020) is used to quantize

both weight and activation to 4 bits. The piggyback scheme adopts

the binary element-wise mask, where the binary precision of the

mask limits the flexibility of the backbone model. Thus, piggyback

shows slightly worse accuracy than fine-tuning. The shift-mask-only

(XMA) method adopts the column-wise shift mask with five

different mask levels (three shift levels: 1/8, 1/4, 1/2; and two

non-shift levels: 0, 1). We assume the ReRAM crossbar array

size is 72 × 72, which means each array can map a 3 × 3 × 8 ×

72 convolution kernel. Thus, the group size sharing the same mask

value in each column is 3 × 3 × 8. As ImageNet is much larger and

more complex than other datasets, the shift-mask-only performance

is already near fine-tuning for most datasets. However, there is still a

considerable gap between fine-tuning and shift-mask-onlymethods.

Especially on the WikiArt dataset, the shift-mask-only

method shows almost a 5% accuracy drop compared to

fine-tuning. Our proposed 2-tier mask is marked as shift-

mask + fine-tuning because the two different masks are

associated with weight fine-tuning and activation shift,

respectively. We conduct a series of experiments with 5%

PE-wise weight fine-tuning to 40% PE-wise weight fine-tuning

to explore how much weight fine-tuning is necessary to

achieve a considerable accuracy improvement. The result

shows that the accuracy improved significantly even with

the help of 10% weight fine-tuning. It achieves higher

TABLE 3 Multi-task adaption accuracy (%).

Precision 4-bit weight and 4-bit activation quantization (%) Floating
(%)

Datasets Shift mask
(%) + 5%
fine-tuning

Shift mask
(%) + 10%
fine-tuning

Shift mask
(%) + 15%
fine-tuning

Shift mask
(%) + 20%
fine-tuning

Shift mask
(%) + 30%
fine-tuning

Shift mask
(%) + 40%
fine-tuning

Piggyback (%)
(Mallya
et al., 2018)

Shift-mask-only (%)
(Zhanget al., 2022b)

fine-tuning

CUBS 0.00% 80.32 79.57 79.77 79.55 79.72 74.47 80.07 82.8%

Stanford Cars 88.40% 89.07 89.07 89.19 89.42 89.43 86.85 88.32 91.8%

Flowers 95.10% 95.61% 95.17% 95.43% 95.14% 95.15% 91.09% 95.59% 96.56%

WikiArt 73.81% 74.72% 73.88% 74.39% 74.68% 74.48% 68.97% 72.6% 75.6%

Sketches 80.17% 80.70% 79.97% 79.88% 79.97% 79.22% 78.88% 79.6% 80.78%

The bold value means the accuracy with 10% weight fine-tuning which is a sweet point. As we mentioned in the manuscript: with 10% weight fine-tuning the accuracy is higher than

Piggyback and shift-mask-only method for all datasets.

TABLE 4 Specification of ReRAM hardware and peripheral circuits.

RRAM sub-array

Components Area (μm2) Energy (pJ)

Memory array (72 × 72) 84.93

Switch matrix (WL and SL) 457.3 1.1

SAR ADC (5 bits) 8,409.3 8.3

Shift-add-input 1,412.9 6.8

Shift-add-weight (2 col., use 1) 825.8 1.0

Mask buffer (72 × 1) 190.4 0.003/bit/access

Total 11,380.2 17.2

Peripheral circuits

1-stage AdderTree (128 units) 2,510.3 4.4

2-stage AdderTree (128 units) 7,740.1 13.7

3-stage AdderTree (128 units) 18,408.8 32.6

Global buffer (64 × 112 × 112 × 4) 8,490,034 0.003/bit/access

ReLU (128 units) 939.5 0.9

Frontiers in Electronics frontiersin.org09

Zhang et al. 10.3389/felec.2022.1032485

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2022.1032485


accuracy than those of the piggyback and shift-mask-only

methods for all datasets. This is especially true for the WikiArt

dataset, where the piggyback and shift-mask-only methods

show the most degraded accuracy. Note that the accuracy does

not increase monotonically with increasing tunable

parameters. This is because fine-tuning is not element-wise.

We fine-tune the weights in a PE-wise fashion. We first rank

the PEs based on the sensitivity score. Therefore, when we

fine-tune more weights (more PEs), the extra weights (PEs)

are less sensitive to the target dataset (minor sensitivity score).

Thus, fine-tuning those weights (PEs) will have less benefit.

On the contrary, the less sensitive PEs extract more general

features. As the new task is usually way smaller than the

ImageNet dataset (some dataset even has more test images

than training images), fine-tuning those less sensitive PEs will

lose more general features. More tunable parameters make the

NN harder to train.

5.2 Hardware evaluation

We implement the proposed 2-tier mask algorithm on

hardware, as shown in Figure 3. The hardware performance

of different algorithms is evaluated based on NeuroSim (Peng

et al., 2019). The 4-bit quantized DNN weights are programmed

to the RRAM array with an HfO2-based 2-bit per cell device,

FIGURE 4
Area breakdown of 4-bit ResNet-50 backbone model hardware deployment. The peripheral circuits, including the ReLU module, adder tree,
and mask buffer.

FIGURE 5
Total energy (reprogramming + inference)/inference energy for different learning tasks and methods.

Frontiers in Electronics frontiersin.org10

Zhang et al. 10.3389/felec.2022.1032485

https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2022.1032485


characterized by Wu et al. (2018) with a 32 nm CMOS node. The

ReRAM array characteristics and the total area usage are

summarized in Table 4 and Figure 4. Each ReRAM column is

connected to a 5-bit successive approximation register (SAR)

analog-to-digital converter (ADC). The global buffer is

designated to hold the largest activation feature map of the

model. Figure 5 shows the overhead of different sub-tasks

with different algorithms. The total inference energy of each

sub-task is the summation of inference energy and the

reprogramming energy. For each updated weight element, the

reprogramming energy can be computed based on the write

voltage, write pulses, and conductance level changes (Wu et al.,

2018; Chen P.-Y. et al., 2018). Task-specific fine-tuning generates

the highest accuracy but requires universal reprogramming or

even second-time deployment. The high energy consumption of

reprogramming hinders the pragmatic benefits of continual

learning. Piggyback (Mallya et al., 2018) partially programs

the weights to zero for different tasks. Compared to the

inference energy, reprogramming the element-wise sparsity

elevates the total energy up to 8.16×. Furthermore, the

element-wise sparsity requires additional fine-grained sparse

indexes, leading to intricate hardware design and storage

overhead.

Different from the naïve fine-tuning or piggyback (Mallya

et al., 2018) learning, the proposed algorithm updates the model

in a structured manner. The marginal 10% reprogramming

ReRAM columns for different sub-tasks updates the model

without fine-grained indexes. Compared to the fine-tuning

and piggyback (Mallya et al., 2018) methods, this work

reduces the total energy consumption to 13.72× and 4.38×,

respectively, as shown in Figure 4. Such significant energy

reduction of the proposed XMA2 algorithm unleashes the

practical advantage of continual learning.

6 Conclusion

In summary, we proposed XMA2, a 2-tier mask-based learning

framework, to efficiently and accurately deploy the MTA to a

crossbar-based DNN accelerator. The main contribution of XMA2

is that it consists of two different levels of masks that work on new

knowledge learning and old knowledge recombination. It can keep

the neural network structure and the data flow for new task

learning. Furthermore, it is flexible to make the trade-off

between weight reprogramming overhead and the new task

performance. Moreover, the XMA2 reuses the existing SA to

apply the shift-based mask onto a fixed weight and minimize

the hardware overhead. XMA2 significantly saves inference energy

compared to other mask-based methods while achieving higher

accuracy.

Data availability statement

The original contributions presented in the study are

included in the article/supplementary material, Further

inquiries can be directed to the corresponding author.

Author contributions

FZ: the first author conducts most of the experiments and

paper writing. LY: the second author helps conduct the

experiments, paper writing, and idea discussion. JM: the third

author helps conduct the hardware evaluation and related section

writing. JS and YC helped discuss the idea and experiments. Also,

help to proofread/polish the manuscript, DF, the corresponding

author, helps conduct the cooperation, form the idea, and

proofread/polish the manuscript.

Funding

This work is supported in part by the National Science

Foundation under Grant No.2003749, and No. 2144751.

Acknowledgments

Some of the material published within this article first

appeared as part of the Proceedings of the 59th ACM/IEEE

Design Automation Conference. The corresponding conference

paper can be accessed here: https://dl.acm.org/doi/10.1145/

3489517.3530458. The authors confirm that they hold the

copyright to the material published within this paper.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations or those of the publisher, the editors, and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers in Electronics frontiersin.org11

Zhang et al. 10.3389/felec.2022.1032485

https://dl.acm.org/doi/10.1145/3489517.3530458
https://dl.acm.org/doi/10.1145/3489517.3530458
https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2022.1032485


References

Akinaga, H., and Shima, H. (2010). Resistive random access memory (reram) based on
metal oxides. Proc. IEEE 98, 2237–2251. doi:10.1109/JPROC.2010.2070830

Ankit, A., Hajj, I. E., Chalamalasetti, S. R., Ndu, G., Foltin, M., Williams, R. S.,
et al. (2019). “Puma: A programmable ultra-efficient memristor-based accelerator
for machine learning inference,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems (New York, NY, USA: Association for Computing Machinery), 715–731.
doi:10.1145/3297858.3304049

Cai, F., Correll, J. M., Lee, S. H., Lim, Y., Bothra, V., Zhang, Z., et al. (2019). A fully
integrated reprogrammable memristor–cmos system for efficient
multiply–accumulate operations. Nat. Electron. 2, 290–299. doi:10.1038/s41928-
019-0270-x

Chen, F., and Li, H. (2018). “Emat: An efficient multi-task architecture for
transfer learning using reram,” in 2018 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). doi:10.1145/3240765.3240805

Chen, P.-Y., Peng, X., and Yu, S. (2018a). Neurosim: A circuit-level macro model
for benchmarking neuro-inspired architectures in online learning. IEEE Trans.
Comput. -Aided. Des. Integr. Circuits Syst. 37, 3067–3080. doi:10.1109/tcad.2018.
2789723

Chen, W.-H., Li, K.-X., Lin, W.-Y., Hsu, K.-H., Li, P.-Y., Yang, C.-H., et al.
(2018b). “A 65nm 1mb nonvolatile computing-in-memory reram macro with sub-
16ns multiply-and-accumulate for binary dnn ai edge processors,” in 2018 IEEE
International Solid - State Circuits Conference - (ISSCC), 494–496. doi:10.1109/
ISSCC.2018.8310400

Chen, Y. (2020). Reram: History, status, and future. IEEE Trans. Electron Devices
67, 1420–1433. doi:10.1109/TED.2019.2961505

Cheng, M., Xia, L., Zhu, Z., Cai, Y., Xie, Y., Wang, Y., et al. (2019). Time: A
training-in-memory architecture for rram-based deep neural networks. IEEE Trans.
Comput. -Aided. Des. Integr. Circuits Syst. 38, 834–847. doi:10.1109/TCAD.2018.
2824304

Chi, P., Li, S., Xu, C., Zhang, T., Zhao, J., Liu, Y., et al. (2016). Prime: A novel
processing-in-memory architecture for neural network computation in reram-
based main memory. SIGARCH Comput. Archit. News 44, 27–39. doi:10.1145/
3007787.3001140

Choi, J., Venkataramani, S., Srinivasan, V., Gopalakrishnan, K., Wang, Z., and
Chuang, P. (2019). “Accurate and efficient 2-bit quantized neural networks,” in
MLSys.

Choi, J., Wang, Z., Venkataramani, S., Chuang, P. I.-J., Srinivasan, V., and
Gopalakrishnan, K. (2018). Pact: Parameterized clipping activation for quantized
neural networks.

Eckert, C., Wang, X., Wang, J., Subramaniyan, A., Iyer, R., Sylvester, D., et al.
(2018). “Neural cache: Bit-serial in-cache acceleration of deep neural networks,” in
Proceedings of the 45th Annual International Symposium on Computer
Architecture, 383–396. doi:10.1109/ISCA.2018.00040

Eitz, M., Hays, J., and Alexa, M. (2012). How do humans sketch objects? ACM
Trans. Graph. (Proc. SIGGRAPH) 31, 1–10. doi:10.1145/2185520.2185540

Fan, D., and Angizi, S. (2017). “Energy efficient in-memory binary deep
neural network accelerator with dual-mode sot-mram,” in 2017 IEEE
International Conference on Computer Design (ICCD). 609–612. doi:10.
1109/ICCD.2017.107

Han, S., Mao, H., and Dally, W. J. (2015). Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding. doi:10.
48550/ARXIV.1510.00149

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image
recognition.

Hu, M., Strachan, J. P., Li, Z., Grafals, E. M., Davila, N., Graves, C., et al. (2016).
“Dot-product engine for neuromorphic computing: Programming 1t1m crossbar to
accelerate matrix-vector multiplication,” in 2016 53nd ACM/EDAC/IEEE Design
Automation Conference (DAC). doi:10.1145/2897937.2898010

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and Bengio, Y. (2016).
“Binarized neural networks,” in Advances in neural information processing systems,
4107–4115.

Jang, E., Gu, S., and Poole, B. (2016). Categorical reparameterization with gumbel-
softmax.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A.,
et al. (2017). Overcoming catastrophic forgetting in neural networks. Proc. Natl.
Acad. Sci. U. S. A. 114, 3521–3526. doi:10.1073/pnas.1611835114

Kornblith, S., Shlens, J., and Le, Q. V. (2019). “Do better imagenet models
transfer better?,” in IEEE/CVF Conference on Computer Vision and Pattern
Recognition.

Krause, J., Stark, M., Deng, J., and Fei-Fei, L. (2013). “3d object representations for
fine-grained categorization,” in 2013 IEEE International Conference on Computer
Vision Workshops, 554–561. doi:10.1109/ICCVW.2013.77

Lee, J., Park, S., Mo, S., Ahn, S., and Shin, J. (2020). “Layer-adaptive sparsity for
the magnitude-based pruning,” in International Conference on Learning
Representations.

Lee, N., Ajanthan, T., and Torr, P. (2018). “Snip: Single-shot network pruning
based on connection sensitivity,” in International Conference on Learning
Representations.

Li, S., Xu, C., Zou, Q., Zhao, J., Lu, Y., and Xie, Y. (2016). “Pinatubo: A processing-
in-memory architecture for bulk bitwise operations in emerging non-volatile
memories,” in Proceedings of the 53rd Annual Design Automation Conference
(New York, NY, USA: Association for Computing Machinery). doi:10.1145/
2897937.2898064

Li, Y., Zhang,W., Xu, X., He, Y., Dong, D., Jiang, N., et al. (2022). Mixed-precision
continual learning based on computational resistance random access memory. Adv.
Intell. Syst. 4, 2200026. doi:10.1002/aisy.202200026

Liu, S., Johns, E., and Davison, A. J. (2019). “End-to-end multi-task learning with
attention,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 1871–1880.

Mallya, A., Davis, D., and Lazebnik, S. (2018). “Piggyback: Adapting a single
network to multiple tasks by learning to mask weights,” in European Conference on
Computer Vision (ECCV).

Mancini, M., Ricci, E., Caputo, B., and Bulò, S. R. (2018). “Adding new tasks to a
single network with weight transformations using binary masks,” in Proceedings of
the European Conference on Computer Vision (ECCV) Workshops.

Meng, J., Yang, L., Peng, X., Yu, S., Fan, D., and Seo, J.-S. (2021). Structured
pruning of RRAM crossbars for efficient in-memory computing acceleration of
deep neural networks. IEEE Trans. Circuits Syst. Ii. 68, 1576–1580. doi:10.1109/
TCSII.2021.3069011

Mittal, S. (2019). A survey of reram-based architectures for processing-in-
memory and neural networks. Mach. Learn. Knowl. Extr. (2019). 1, 75–114.
doi:10.3390/make1010005

Nilsback, M.-E., and Zisserman, A. (2008). “Automated flower classification over
a large number of classes,” in 2008 Sixth Indian Conference on Computer Vision,
Graphics Image Processing, 722–729. doi:10.1109/ICVGIP.2008.47

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and Wermter, S. (2019). Continual
lifelong learning with neural networks: A review. Neural Netw. 113, 54–71. doi:10.
1016/j.neunet.2019.01.012

Park, E., and Yoo, S. (2020). “Profit: A novel training method for sub-4-bit
mobilenet models,” in European Conference on Computer Vision, 430–446.

Peng, X., Huang, S., Jiang, H., Lu, A., and Yu, S. (2019). “DNN+NeuroSim: An
end-to-end benchmarking framework for compute-in-memory accelerators with
versatile device technologies,” in IEEE International Electron Devices Meeting.

Rebuffi, S.-A., Bilen, H., and Vedaldi, A. (2017). Learning multiple visual domains
with residual adapters. Adv. Neural Inf. Process. Syst., 506–516.

Rosenfeld, A., and Tsotsos, J. K. (2018). Incremental learning through deep
adaptation. IEEE Trans. Pattern Anal. Mach. Intell. 42, 651–663. doi:10.1109/tpami.
2018.2884462

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015).
Imagenet large scale visual recognition challenge.

Saleh, B., and Elgammal, A. (2015). Large-scale classification of fine-art paintings:
Learning the right metric on the right feature. Corr. abs, 00855.

Shafiee, A., Nag, A., Muralimanohar, N., Balasubramonian, R., Strachan, J. P., Hu,
M., et al. (2016). “Isaac: A convolutional neural network accelerator with in-situ
analog arithmetic in crossbars,” in Proceedings of the 43rd International
Symposium on Computer Architecture, 14–26. doi:10.1109/ISCA.2016.12

Song, L., Qian, X., Li, H., and Chen, Y. (2017). “Pipelayer: A pipelined reram-
based accelerator for deep learning,” in 2017 IEEE International Symposium on
High Performance Computer Architecture, 541–552. doi:10.1109/HPCA.2017.55

Wah, C., Branson, S., Welinder, P., Perona, P., and Belongie, S. (2011). The
caltech-UCSD birds-200-2011 dataset. Tech. Rep. CNS-TR-2011-001. California
Institute of Technology.

Frontiers in Electronics frontiersin.org12

Zhang et al. 10.3389/felec.2022.1032485

https://doi.org/10.1109/JPROC.2010.2070830
https://doi.org/10.1145/3297858.3304049
https://doi.org/10.1038/s41928-019-0270-x
https://doi.org/10.1038/s41928-019-0270-x
https://doi.org/10.1145/3240765.3240805
https://doi.org/10.1109/tcad.2018.2789723
https://doi.org/10.1109/tcad.2018.2789723
https://doi.org/10.1109/ISSCC.2018.8310400
https://doi.org/10.1109/ISSCC.2018.8310400
https://doi.org/10.1109/TED.2019.2961505
https://doi.org/10.1109/TCAD.2018.2824304
https://doi.org/10.1109/TCAD.2018.2824304
https://doi.org/10.1145/3007787.3001140
https://doi.org/10.1145/3007787.3001140
https://doi.org/10.1109/ISCA.2018.00040
https://doi.org/10.1145/2185520.2185540
https://doi.org/10.1109/ICCD.2017.107
https://doi.org/10.1109/ICCD.2017.107
https://doi.org/10.48550/ARXIV.1510.00149
https://doi.org/10.48550/ARXIV.1510.00149
https://doi.org/10.1145/2897937.2898010
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1109/ICCVW.2013.77
https://doi.org/10.1145/2897937.2898064
https://doi.org/10.1145/2897937.2898064
https://doi.org/10.1002/aisy.202200026
https://doi.org/10.1109/TCSII.2021.3069011
https://doi.org/10.1109/TCSII.2021.3069011
https://doi.org/10.3390/make1010005
https://doi.org/10.1109/ICVGIP.2008.47
https://doi.org/10.1016/j.neunet.2019.01.012
https://doi.org/10.1016/j.neunet.2019.01.012
https://doi.org/10.1109/tpami.2018.2884462
https://doi.org/10.1109/tpami.2018.2884462
https://doi.org/10.1109/ISCA.2016.12
https://doi.org/10.1109/HPCA.2017.55
https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2022.1032485


Wu, W., Wu, H., Gao, B., Yao, P., Zhang, X., Peng, X., et al. (2018). “A
methodology to improve linearity of analog RRAM for neuromorphic
computing,” in IEEE Symposium on VLSI Technology, 103–104.

Xu, C., Niu, D., Muralimanohar, N., Balasubramonian, R., Zhang, T., Yu, S., et al.
(2015). “Overcoming the challenges of crossbar resistive memory architectures,” in
2015 IEEE 21st International Symposium on High Performance Computer
Architecture, 476–488. doi:10.1109/HPCA.2015.7056056

Xue, C.-X., Chen, W.-H., Liu, J.-S., Li, J.-F., Lin, W.-Y., Lin, W.-E., et al. (2019).
“24.1 a 1mb multibit reram computing-in-memory macro with 14.6ns parallel mac
computing time for cnn based ai edge processors,” in 2019 IEEE International Solid-
State Circuits Conference - (ISSCC), 388–390. doi:10.1109/ISSCC.2019.8662395

Yang, L., He, Z., Zhang, J., and Fan, D. (2021). “Ksm: Fast multiple task adaption
via kernel-wise soft mask learning,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 13845–13853.

Yin, S., Sun, X., Yu, S., and Seo, J.-S. (2020). High-throughput in-memory
computing for binary deep neural networks with monolithically integrated
RRAM and 90-nm CMOS. IEEE Trans. Electron Devices 67, 4185–4192. doi:10.
1109/TED.2020.3015178

Zhang, F., and Hu, M. (2020). “Cccs: Customized spice-level crossbar-array
circuit simulator for in-memory computing,” in Proceedings of the 39th
International Conference on Computer-Aided Design. ICCAD ’20. doi:10.
1145/3400302.3415627

Zhang, F., Yang, L., Meng, J., Cao, Y. K., Seo, J.-s., and Fan, D. (2022a). “Xbm: A
crossbar column-wise binary mask learning method for efficient multiple task
adaption,” in 2022 27th Asia and South Pacific Design Automation Conference
(ASP-DAC), 610–615. doi:10.1109/ASP-DAC52403.2022.9712508

Zhang, F., Yang, L., Meng, J., Seo, J.-S., Cao, Y., and Fan, D. (2022b). “Xma: A
crossbar-aware multi-task adaption framework via shift-based mask learning
method,” in 2022 59th ACM/IEEE Design Automation Conference (DAC).

Zhang, F., Yang, L., Meng, J., Seo, J.-S., Cao, Y., and Fan, D. (2022c). “Xst: A
crossbar column-wise sparse training for efficient continual learning,” in
2022 Design, Automation Test in Europe Conference Exhibition (DATE).
doi:10.23919/DATE54114.2022.9774660

Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., and Zou, Y. (2016). Dorefa-net:
Training low bitwidth convolutional neural networks with low bitwidth
gradients.

Frontiers in Electronics frontiersin.org13

Zhang et al. 10.3389/felec.2022.1032485

https://doi.org/10.1109/HPCA.2015.7056056
https://doi.org/10.1109/ISSCC.2019.8662395
https://doi.org/10.1109/TED.2020.3015178
https://doi.org/10.1109/TED.2020.3015178
https://doi.org/10.1145/3400302.3415627
https://doi.org/10.1145/3400302.3415627
https://doi.org/10.1109/ASP-DAC52403.2022.9712508
https://doi.org/10.23919/DATE54114.2022.9774660
https://www.frontiersin.org/journals/electronics
https://www.frontiersin.org
https://doi.org/10.3389/felec.2022.1032485

	XMA2: A crossbar-aware multi-task adaption framework via 2-tier masks
	1 Introduction
	2 Background
	2.1 Multi-task adaption
	2.2 ReRAM-based NN accelerator
	2.3 Neural network quantization and pruning

	3 Methodology
	3.1 Overview
	3.2 Tier-1 PE-wise mask learning
	3.2.1 Gradient ranking to identify PE-wise adaptable weights

	3.3 Tier-2 column-wise mask for weight-frozen PEs
	3.3.1.1 Learn the shift factor as
	3.3.1.2 Learn the binary mask mb
	3.3.2 Column-wise mask


	4 Hardware implementation
	5 Experiment result
	5.1 Algorithm performance
	5.1.1 Performance of col-wise mask
	5.1.2 Performance of 2-tier XMA2
	5.2 Hardware evaluation

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


