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In order to overcome the toxicity of lead halide perovskites, in recent years the research has
focused on replacing lead with more environmentally friendly metals like tin, germanium,
bismuth or antimony. However, lead-free perovskites still present instability issues and low
performances that do not make them competitive when compared to their lead-based
counterparts. Here we report the synthesis of lead-free Cs2SnX6 (X � Br, I) nanostructures
of different shapes by using various surface ligands. These compounds are a promising
alternative to lead halide perovskites in which the replacement of divalent lead (Pb(II)) with
tetravalent tin (Sn(IV)) causes a modification of the standard perovskite structure. We
investigate the effects of different amines on the morphology and size of Cs2SnX6 (X � Br, I)
nanocrystals, presenting a facile hot-infection method to directly synthesize three-
dimensional (3D) nanoparticles as well as two-dimensional (2D) nanoplatelets. The
amines not only modify the shape of the crystals, but also affect their optical
properties: increasing the length of the amine carbon chain we observe a widening in
the bandgap of the compounds and a blue-shift of their emission peak. Alongside the
tuning of the chemical composition and the reduction of the crystal size, our study offers a
new insight in controlling the physical properties of perovskite nanocrystals by means of
the capping ligands, paving the way for future research on lead-free materials.
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INTRODUCTION

In the last decade metal halide perovskites (MHPs) have emerged as a new class of promising
semiconductors owing to their peculiar physical properties that make them suitable for different
optoelectronic applications. (Fu et al., 2019; Shamsi et al., 2019; Arya et al., 2020; Chouhan et al.,
2020; Roy et al., 2020). In particular, the major results of these materials were attained in the
photovoltaic field: after just 5 years of research, the efficiency of perovskite solar cells increased from
4 to 20% and they can currently achieve certified values of more than 25%. (Kojima et al., 2009;
Stranks and Snaith, 2015; Ono and Qi, 2018; Grancini and Nazeeruddin, 2019; Roy et al., 2020; Best
Research-Cell Efficiency Chart | Photovoltaic Research | NREL, 2021).

One of themost remarkable features of MHPs is the possibility to tune their fundamental bandgap
by varying their chemical composition over a broad range of energies, from blue to near infrared,
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thus producing a wide gamut of emitted colors. (Mittal et al.,
2016; Huang et al., 2017a; Chouhan et al., 2020). The tunability of
the emission wavelength is also accompanied by low non-
radiative recombination rates, as well as high optical
absorption coefficients. (De Wolf et al., 2014; Brenner et al.,
2016; Ambrosio et al., 2018; Zhang et al., 2018). From the
electrical viewpoint, instead, MHPs have demonstrated
unusually long carrier lifetimes, resulting in long diffusion
lengths and therefore in good charge-transport properties.
(Chen et al., 2015; Brenner et al., 2016; Roy et al., 2020). All
these features, along with the ease and low cost of processability,
contribute to make perovskites a class of very promising and
versatile materials, suitable for both light-harvesting and light-
emitting applications, and explain the great research interest
about them.

In recent years, experimental studies have also focused on
nanostructured MHPs, producing a variety of nanocrystals (NCs)
in the form of colloidal suspensions. When the size of a crystalline
solid is reduced to the nanoscale it starts displaying new
properties due to quantum confinement effects, which are not
present at macroscopic level. To this regard, MHP NCs offer new
appealing features in comparison to their bulk form: they present
indeed an extremely high photoluminescence quantum yield,
reaching peak values of almost 100%, and very narrow
emission linewidths. (Swarnkar et al., 2015; Zhang et al., 2015;
Gonzalez-Carrero et al., 2016; Shamsi et al., 2019). Another
important advantage of perovskite NCs is their easy
compositional tunability: being colloidally dispersed, their
chemical composition can be easily modified through facile
post-synthetic anion and cation exchange processes.
(Akkerman et al., 2015; Nedelcu et al., 2015; Shamsi et al.,
2019). Besides, control over size and dimensionality offers a
further degree of tunability of the NC optical properties.

Themajor issue of MHPs is the presence of lead. As a matter of
fact, lead-based perovskites are currently the best performing
ones, but hazardous lead poses an obstacle to their
commercialization in real-life applications. For this reason,
more environmentally friendly compounds containing
different metals (e.g., Sn, Ge, In, Bi, Sb) are of crucial
importance for the future development of perovskite-based
technology. (Swarnkar et al., 2017; Creutz et al., 2018; Ju et al.,
2018; Sun et al., 2018; Wu et al., 2018; Zhou et al., 2018; Fan et al.,
2020; Li et al., 2021). Tin-halide perovskites seem to be a
promising alternative to their lead-based counterparts,
however they suffer from a severe chemical instability that
heavily affects their physical properties. Under ambient
conditions Sn(II) tends to easily oxidize into Sn(IV). This
undesired process creates trap states that deteriorate the
emission properties of the samples. In a recent work by
Jellicoe et al., colloidal NCs of CsSnX3 (X � Cl, Cl0.5Br0.5, Br,
Br0.5I0.5, I) were shown to have a very poor quantum yield (less
than 0.5%) and a chemical stability of less than 1 h, thus excluding
any chance for optoelectronic applications. (Jellicoe et al., 2016).

To overcome the oxidation issue of tin, Sn(II) can be replaced
with Sn(IV) and this change in the metal oxidation number leads
to the formation of a new crystal structure called vacancy-ordered
double perovskite. At present, there are very few reports on

Cs2SnX6 (X � Cl, Br, I) perovskites in the form of colloidal
NCs and even less studies focused on the control over the size and
shape of these compounds. To the best of our knowledge,
Cs2SnBr6 has never been synthesized in the form of colloidal
NCs while only a few groups have reported on the synthesis of
nanocrystalline Cs2SnI6 with results very different from each
other. (Wang et al., 2016; Dolzhnikov et al., 2017; Ghosh et al.,
2018a; Xu et al., 2019). As a common outcome, however, all
groups claimed that the samples were more stable under ambient
conditions when compared to the Sn(II)-based compounds, but
still with very low quantum yield (less than 1%), thus showing
that crystal defects play a crucial role in the emissive processes of
these materials.

In this paper, we investigate how the properties of Cs2SnX6

(X � Br, I) NCs are affected by different capping agents. The
samples are prepared adapting a hot-injection procedure we
optimized in a previous study on Sn(IV)-based perovskites.
(Veronese et al., 2020). In a typical hot-injection synthesis a
mixture of organic acids and amines is employed to passivate the
surface of the crystals. Herein, besides the commonly used
oleylamine (OLA), we test also hexylamine (C6A), octylamine
(C8A), decylamine (C10A) and dodecylamine (C12A) in
combination with oleic acid (OA). While OLA leads to the
formation of 3D NCs as expected, we observe that shorter
chain amines cause a modification of the NC morphology
leading to the growth of 2D nanoplatelets (NPs) and we
investigated the correlation between the ligand molecule length
and the changes in the shape, crystal structure and optical
properties of the samples.

RESULTS AND DISCUSSION

NCs of Cs2SnX6 (X � Br, I) were synthesized according to the
methodology reported in the Experimental Section, which is
adapted from a hot injection procedure we developed in a
previous study for Cs2SnX6 (X � Cl, Br, I) 3D NCs. (Veronese
et al., 2020).

X-Ray Diffraction
The crystal structure of the two halide series of NCs is
investigated by mean of X-ray diffraction (XRD) and the
relative diffraction patterns are reported in Figure 1. When
OLA is used as capping agent, each sample shows well distinct
peaks between 12 and 33° that correspond to the reflections of
(111), (220), (222) and (400) planes. Moreover, the peaks of
Cs2SnBr6 are qualitatively equal to those of Cs2SnI6 but shifted to
higher angles thus suggesting a reduction of the crystal cell
volume as expected since Br− ions are smaller. This proves
that both compounds present one and the same crystal phase
that corresponds to the cubic Fm-3m space group (225), as
previously reported by our and other groups. (Wang et al.,
2016; Jing et al., 2019; Lin et al., 2019; Xu et al., 2019;
Veronese et al., 2020). We also evaluated the lattice constants
of the two samples being 11.6505 Å and 10.8138 Å for Cs2SnBr6
and Cs2SnI6, respectively. These results are in line with the data
reported in literature and coherent with a decrease of the ionic
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radius moving from iodine to bromine. (Kaltzoglou et al., 2016;
Saparov et al., 2016; Yuan et al., 2019).

Replacing OLA with shorter amines, instead, leads to dramatic
changes in the XRD patterns: the appearance of intense periodic
peaks at low angles is the essential evidence of the formation of
2D nanoplatelets. These peaks, which correspond to the (002l)
family of crystallographic planes, are indeed the fingerprint of
layered structures, indicating a high degree of preferred
orientation. In a conventional perovskite, with general formula
ABX3, the metal ion B and the halide X form a cubic array of
[BX6]

4– octahedra sharing one corner in all the three directions,
while the A ion is situated in the interstitial spaces of this metal
halide framework. Vacancy-ordered double perovskites,
characterized by the formula A2BX6, are a derivative of the
standard perovskite structure in which one octahedron is
alternatively removed along each of the three axes of the cubic
array. In 2D structures, instead, the [BX6]

4– octahedra are still
corner sharing but confined in planes separated by the ligand
molecules.

Organic acids and amines revealed to be very effective in
passivating the surface of colloidal nanomaterials but only when
combined. (Huang et al., 2017a; Luo et al., 2017a; Luo et al.,
2017b). This phenomenon can be explained by a protonation
reaction that takes place between the two organic molecules
during the crystal synthesis: an H+ ion is transferred from the
carboxylic group -COOH to the amino group -NH2 generating
charged terminations -COO− and -NH3

+ in the molecules that
can bind to the crystal surface ions. (De Roo et al., 2016; Huang
et al., 2017b; Almeida et al., 2018; Yang et al., 2018). In this
framework, the protonated amine moiety attaches to the halogen
anions through hydrogen bonding and can stick into the crystal
lattice between the tin(IV) halide layers thus keeping them
separated. (Xu et al., 2003; Xiao et al., 2018).

From the diffractograms we can see that when C6A is used in
place of OLA it leads again to the formation of 3D nanocrystals.
In the case of Cs2SnI6, however, the coexistence of layered
structures is also detected as revealed by the peaks at 4.51,
17.89 and 22.41°. Moving from C6A to C8A, the patterns
appear very different: 2D phases are now predominant with
well distinguishable peaks at low angles while the 3D phase
disappears in the I-based samples and just small traces are
present in the Br-based ones. Finally, a further increasing of
the amine molecule length results in the complete vanishing of
the 3D phase and only the NP peaks are now detectable. When
only OA is used as ligand, instead, we observed that the synthesis
leads to 3D NCs, but they do not present any photoluminescence
emission. The formation of different crystal structures is related
to a competition between the Cs+ ions and the alkylammonium
ions to bind to the inorganic octahedra during the nanocrystal
growth. (Ravi et al., 2017; Almeida et al., 2018). The prevalence of
NPs over NCs in a synthesis depends on the ratio between amine
and Cs, the amine binding affinity for the tin(IV) halide and the
acid-base equilibrium between the ligands. (Fanizza et al., 2019;
Xu et al., 2019). When the pH decreases, the amine molecules
protonate and the concentration of alkylammonium raises. This
unbalances the reaction at the expense of Cs and the growth of 2D
structures is promoted. The appearance in our samples of

different crystal phases depending on the halogen may be due
to the different binding affinity of the amines with the two halides;
this aspect requires further investigation to understand the
correlation between the amine length and the crystal
morphology and its origin.

Interestingly, we notice in almost every sample the presence of
cesium halide. This can be due to the excess of tin(IV) halide used
during the syntheses. As mentioned above, when the amino
group of the capping molecules bonds to the octahedra layers
it takes in fact the position of the A cation, so the Cs+ ions that do
not enter into the lattice can react with the excess halogen in the
solution producing the halide salts we detect. These results show
already a clear evidence of the influence of capping agents on the
structure of nanocrystals.

Electron Microscopy
These changes revealed by XRD are confirmed in crystal shape
and morphology by high resolution transmission electron
microscopy (HRTEM). The images taken for the 3D samples,
reported in Figures 2A,B, show that the synthesis with OLA leads
to spherical nanoparticles with a diameter of about 3 nm and a
narrow size distribution, accordingly with previous studies on
Cs2SnI6 NCs. (Wang et al., 2016; Ghosh et al., 2018b; Veronese
et al., 2020). In the case of shorter amines, HRTEM analysis
reveals remarkably different properties. The C6A sample of the
iodine series, as previously shown by XRD measurements,
presents a mixed phase composed of spherical NCs and 2D
nanobelts, namely planar structures elongated in one direction
with lateral size of hundreds of nanometers (Figures 2C,D and
Supplementary Figure S1A). In particular, the NCs display
similar features to those synthesized with OLA but are
characterized by a bigger diameter of about 10 nm. The C12A
sample, instead, consists only of a 2D phase with NPs of
hexagonal or square shape. This planar morphology reflects
the layered crystal structure that was detected by XRD
measurements. Contrary to 3D crystals, here the platelets
appear more varied presenting different shapes and a wide size
distribution ranging from 10 to almost 100 nm (Figures 2E,F and
Supplementary Figure S1B). Both samples show a high degree of
crystallinity as verified by electron diffraction (Supplementary
Figures S3A,B). These results are in agreement with the only
literature data on Cs2SnI6 2D layered structures by Xu et al. where
they obtained hexagonal NPs with lateral size of several hundreds
of nanometers. (Xu et al., 2019).

The analysis on the Cs2SnBr6 series leads to similar results,
although with some substantial differences, which are collected in
the Supporting Information (SI) section along with additional
TEM images. The C6A sample presents aggregates that appear
made of spherical NCs of the order of 50 nm, with no planar
structures like the previous nanobelts (Supplementary Figures
S2A,B). The C12A sample, instead, shows only 2D NPs with
lateral size of hundreds of nanometers (Supplementary Figures
S2C–E). As mentioned, contrary to the I series the Cs2SnBr6
crystals exhibit a high tendency to agglomerate forming clusters
of great size. However, the electron diffraction reveals that also
these samples are highly crystalline (Supplementary Figures
S3C,D). The cause of this phenomenon is unclear. In general,
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the colloidal stability of nanocrystals is a multifactorial issue that
depends on the nature of the compound, the ligands and the
suspension solvent and it is determined by a balance between
attractive and repulsive interparticle forces. (Boles et al., 2016).
The aggregation of the Br-based samples could be related to a
different interaction between halide and amines that makes the
ligand binding to the crystal surface more labile, but its origin and
mechanisms are still unknown and thorough investigations are
needed to understand them.

The HRTEM instrumentation allowed also to perform energy
dispersive X-ray (EDX) analysis to investigate the chemical
composition of the samples. Representative X-ray spectra of
NPs, along with their EDX elemental maps, are reported in
Supplementary Figures S4, S5, S6 of the SI and they show
the clear presence of the three constituting elements of each
perovskite, thus confirming the formation of the compounds
revealed by XRD.

Absorption
The length of the amine carbon chain not only affects the
morphology of the crystals but also their optical properties.
The absorption spectra of both I and Br series are reported in
Figure 3. From a qualitative analysis, the NP spectra appear
significantly different when compared to those of their 3D
counterparts: they present a slow rise across the entire visible
range and a rapid increase in the UV region. Moreover,
differently from Pb-based NCs, none of the samples have a
sharp excitonic absorption peak, but rather they display a long
tail toward the low energies. This feature has been previously
reported also for Sn(IV)-based perovskite thin films and it was
attributed to the presence of crystal defects (most likely halide
vacancies since they have a low formation energy) that introduce
a sizable density of shallow electronic states below the conduction
band (CB) edge. (Xiao et al., 2015; Maughan et al., 2016; Saparov
et al., 2016). In the case of Cs2SnBr6, we notice also that the C6A
and C8A samples show a peak around 360 nm, similarly to their
3D counterparts, which disappears for the longer amines. This
difference can be explained by the exclusive presence of the 3D
phase in these samples, as we have inferred from XRD
measurements.

From the Tauc plots for direct bandgap of the absorption
spectra the value of the energy bandgap is derived, as reported in
Supplementary Table S1. For 3D NCs synthesized with OLA,
Cs2SnI6 and Cs2SnBr6 are found to have gaps of 1.57 and 3.33 eV,
that are higher than those of their relative bulk forms (1.3 and
2.7 eV, respectively). (Kaltzoglou et al., 2016; Yuan et al., 2019).
Moving to 2D structures, on the other hand, we can observe that
the gap energy becomes even higher, increasing linearly with
increasing the amine length (Figure 4). These results can be
ascribed to quantum confinement effects caused by the small size
of the crystals consistently with previous studies on Cs2SnI6 NCs.
(Wang et al., 2016; Dolzhnikov et al., 2017; Xu et al., 2019;
Veronese et al., 2020). In particular, being made of a few atomic
layers, perovskite NPs are reported to have very strong exciton
confinement, thus explaining their larger increment of the
bandgap. (Tyagi et al., 2015; Weidman et al., 2017; Wang
et al., 2018). Besides the case of NPs, the gap energy of 3D

NCs synthesized with short amines is also evaluated from Tauc
plot extrapolations. In the case of Cs2SnI6 sample with C6A,
where mixed phase is present, the gap of 3D phase is estimated at
1.54 eV. The NCs of the C6A and C8A samples with Br, instead,
are found to have a gap energy of 3.13 and 3.25 eV, respectively.
All these values are reasonably close to those of NCs prepared
with OLA: the differences can be ascribed to the larger diameter
of the crystals causing a smaller size effect.

Photoluminescence
Light emission is also affected by the change in the nanocrystal
dimensionality. As it is evident from the photoluminescence (PL)
spectra of Figure 5, replacing OLA with shorter amines results in
a blue-shift of the emission, which is particularly evident in the
case of I compounds where the emission color changes from dark
red to orange. The 3D NCs of Cs2SnI6 and Cs2SnBr6 present PL
peak emission at λ � 790 and 603 nm, respectively. Moving from
C8A to C12A, the emission of Cs2SnBr6 NPs shifts from 599 to
575 nm following a linear trend. In the case of Cs2SnI6, instead,
the NP spectra are peaked at 635, 624, and 628 nm. Remarkably,
the samples synthesized with C6A of both halide series do not
show any emission.

In the synthesis of nanomaterials, ligands play a crucial role in
stabilizing the crystals. In fact, they are necessary not only to
passivate the surface of the NCs—restoring dangling bonds and
so preventing the consequent defect states within the
bandgap—but also to create a protective layer that shields
them from detrimental external agents. (Heuer-Jungemann
et al., 2019). Moreover, the chemical stability of NCs depends
on the shape of ligand molecules: long and branched molecules
were demonstrated to achieve the best results in stabilizing
nanomaterials. (Luo et al., 2017a; Yang et al., 2018; Kumar
et al., 2019; Xie et al., 2019). In this regard, the lack of
emission from the C6A samples can be attributed to a poor
stabilization of the amine resulting in the formation of defect
states that quench the PL radiative process. We notice that the
emission energy peak of each sample is significantly lower than
the value found for its energy gap. Coherently with the wide tail
observed in the absorption spectra, this large Stokes shift may be
caused by a high density of electronic states, arising from crystal
defects, that locate right below the CB minimum: when the
electrons are excited into the CB, they thermalize toward
the edge, transfer into the defect states, and finally decay in
the valence band with radiative emission of light. This phenomenon
requires further investigation to be fully understood.

Due to the asymmetry of the curve, the PL spectra were fitted
using two Gaussian lineshapes thus revealing a second peak at
longer wavelengths, from 729 to 717 nm for the I samples and
from 697 to 642 nm for the Br compounds (Supplementary
Figure S8). The corresponding energy values of the two emission
peaks are reported in Figure 6 and Supplementary Table S1.
Accordingly with previous study by Xu et al. on Cs2SnI6 2D NPs,
the peak emerging at lower energy may be ascribed to an emission
from defect states. (Xu et al., 2019). In their work, indeed, Xu and
coworkers attributed the origin of such defects to a structural
distortion caused by a phase transition between two layered
structures based on orthorhombic and monoclinic unit cells.
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This lattice distortion should modulate the formation energies of
the defects while the spatial shifts of the ligand molecules, altering
the bonding between the amino group and the halide octahedra,
can generate more crystal defects. This phenomenon has already
been observed in Pb(II)- and Sn(IV)-based 2D layered
perovskites (Okuda et al., 1993; Pradeesh et al., 2009; Dohner
et al., 2014; Cortecchia et al., 2017) and can be consistent with our
previous observations on large Stokes shifts in emission and wide
tails in absorption. However, in order to fully reveal the link
between these three aspects and their exact origin further studies
are needed.

CONCLUSION

In summary, we developed a facile hot-injection method that
allows to synthesize simultaneously 3D nanocrystals and 2D
nanoplatelets for both Cs2SnI6 and Cs2SnBr6 perovskites. The
crystal morphology is tuned by changing the amine employed
as capping agent during the synthetic procedure. When using
OLA, the most common amine widely employed in literature,
the synthesis leads to spherical NCs with a very small diameter
of about 3 nm. When using amines with a shorter carbon
chain, instead, the results are very different and the synthesis
leads to 2D layered NPs with diverse crystal structures
depending on the ligand used, as demonstrated by XRD and
TEM analyses. The change in the morphology of the crystals is
also followed by a modification of their optical properties.
Thanks to the reduced size, all the samples present a much
wider bandgap in comparison to their bulk form due to strong
quantum confinement effects, so that the NP gap energy

linearly shifts from 1.3 to 2.87 eV in the case of Cs2SnI6
and from 2.7 to 4.32 eV in the case of Cs2SnBr6. Besides,
light emission is also affected by the ligand choice and
changing the amines allows to tune the emission of Cs2SnI6
samples from 1.57 to 1.99 eV moving from 3D NCs to 2D NPs,
and analogously from 2.06 to 2.16 eV nm for the Cs2SnBr6
samples. These results present an interesting advance in the
research on perovskite nanocrystals toward lead-free
compounds and offer a further insight in Sn(IV)-based
double perovskites for possible future applications in
optoelectronic devices.

EXPERIMENTAL SECTION

Chemicals
Cs2CO3 (Acros Organics, 99.995%), SnBr4 (Sigma-Aldrich, 99%),
SnI4 (Sigma-Aldrich, 99.999%), 1-octadecene (ODE, Acros
Organics, 90%), oleic acid (OA, VWR Chemicals, 81%),
oleylamine (OLA, Acros Organics, 80–90%), hexylamine (C6A,
Sigma-Aldrich, ≥99%), octylamine (C8A, Sigma-Aldrich, 99%),
decylamine (C10A, Sigma-Aldrich, 95%), dodecylamine (C12A,
Sigma-Aldrich, 98%), hexane (HEX, Sigma-Aldrich ≥99%). All
reagents were used without further purification.

Synthesis
Synthesis of Cs-oleate: 4.5 ml of ODE and 0.5 ml of OA were
loaded in a 50 ml three-neck flask and dried under vacuum at
120°C for 1 h. Subsequently, 0.1625 g of Cs2CO3 was added to
the mixture and the solution was dried again under vacuum at
the same temperature for one additional hour. Finally, the flask

FIGURE 1 | XRD patterns of Cs2SnI6 (A) and Cs2SnBr6 (B) samples synthesized with different amines.
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was heated at 150°C under nitrogen flow until complete
dissolution of Cs2CO3 (approximately 1 h). Since Cs-oleate
is insoluble in ODE at room temperature, the precursor
solution was preheated at 100°C before use to completely
dissolve the precipitate.

Synthesis of Cs2SnX6 (X � Br, I) NCs: 5 ml of ODE were
loaded in a 50 ml three-neck flask with 0.2 ml of OA and 0.2 ml
of OLA and the mixture was degassed under vacuum at 120°C
for 1 h. Subsequently, 0.235 mmol of SnX4 (0.1027 g of SnBr4

and 0.1468 g of SnI4, respectively) was added to the flask and
the solution was dried under vacuum at 80°C for 15 min. The
flask was then moved under nitrogen flow and heated up to
220°C. As soon as it reaches the desired temperature, 0.5 ml of
the as-prepared Cs-oleate solution was quickly injected in the
reaction vessel and after 1 min it was cooled down in an ice
bath. To purify the NCs, 2.5 ml of HEX was added to the
mother solution, the mixture was centrifugated at 7000 rpm
for 5 min and the surfactant was discarded. Part of the crystals

FIGURE 2 | TEM images of OLA synthesized NCs of Cs2SnI6 (A) and Cs2SnBr6 (B), and HRTEM images of Cs2SnI6 samples synthesized with C6A (C, D) and
C12A (E, F).
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was then deposited on glass slides for future measures while
the rest crystals was dispersed in 5 ml of HEX. All the synthetic
and purification processes were conducted under ambient
conditions and no argon-filled glovebox was used to store
the final samples.

Synthesis of Cs2SnX6 (X � Br, I) NPs: the synthesis of
nanoplatelets follows the same procedures illustrated for the
3D NCs except that 0.2 ml of the desired amine was used in
place of OLA. The mother solution was finally purified by
centrifugation at 7000 rpm for 5 min after adding 2.5 ml of
HEX and the resulting samples were stored under ambient
conditions.

High Resolution Transmission Electron
Microscopy
High resolution transmission electron microscopy (HRTEM) was
performed on a ZEISS LIBRA200FE equipped with a high-angle
annular dark-field (HAADF) detector for STEM (scanning TEM)
mode. Energy dispersive X-ray (EDX) analysis was conducted on
the same instrument using an Oxford X-stream two probe. The
specimens were prepared by depositing 8 µl of the sample
dispersed in HEX on a copper grid covered with a double
carbon film and letting the solvent evaporate in air. The size
of the samples was measured from TEM images using ImageJ
1.52a software.

X-Ray Diffraction
X-ray diffraction (XRD) measurements were performed under
ambient condition on a Bruker D8 Advance diffractometer in the
Bragg-Brentano configuration using copper Kα radiation (λ �
1.54056Å) as X-ray source. The diffractograms were recorded
from 3 to 40°, with resolution of 0.04° and integration time of 4 s.
The specimenswere prepared by depositing the sample on a glass slide
with a spatula and spreading it thoroughly in order to get a smooth
surface. The reference patterns were calculated with PowderCell 2.4
software using the literature data specified in the text as references.

Absorption Spectroscopy
Ultraviolet-Visible (UV-Vis) absorption measurements were
performed under ambient conditions using a Varian Cary 50
spectrophotometer equipped with a Xe lamp as light source, a
silicon photodiode as detector and a Czerny-Turner
monochromator with fixed spectral bandwidth of 1.5 nm. The
spectra were recorded from 200 to 1,000 nm, with resolution of
2 nm and integration time of 0.5 s. The specimens were prepared

FIGURE 3 | Absorption spectra of Cs2SnI6 (A) and Cs2SnBr6 (B) samples synthesized with different amines. (Curves were shifted vertically for clarity).

FIGURE 4 | Fundamental energy gap of 2D NPs as a function of the
amine length used as capping agent. (Lines are just a guide for the eye).
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by loading the samples into quartz cuvettes with 1 cm optical path.
The baseline was taken using the cuvettes filled withHEX as reference.

Steady-State Photoluminescence
Spectroscopy
PL measurements were performed under ambient conditions
using Varian Cary Eclipse fluorescence spectrophotometer

equipped with Xe lamp as light source, a photomultiplier
as detector and two Czerny-Turner monochromators with
limiting resolution of 1.5 nm. The spectra were recorded
exciting the samples at 360 nm wavelength. The specimens
were prepared by loading the samples into quartz cuvettes
with 1 cm optical path. To find the emission peaks, the PL
spectra were fitted with two Gaussian lineshapes using
OriginLab Origin 8.1 software.

FIGURE 5 | PL spectra of Cs2SnI6 (A) and Cs2SnBr6 (B) samples synthesized with different amines. (Curves were shifted vertically for clarity).

FIGURE 6 | Energy of the PL peaks of Cs2SnI6 (A) and Cs2SnBr6 (B) 2D NPs. (Lines are just a guide for the eye).
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