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In the multi-energy supply microgrid, different types of energy can be scheduled from a
“global” view, which can improve the energy utilization efficiency. In addition, hydrogen
storage system performs as the long-term storage is considered, which can promotemore
renewable energy installed in the local consumer side. However, when there are large
numbers of grid-connected multi-energy microgrids, the scheduling of these multiple
microgrids in real-time is a problem. Because different types of devices, three types of
energy, and three types of utility grid networks are considered, whichmake the dispatching
problem difficult. In this paper, a two-stage coordinated algorithm is adopted to operate
the microgrids: day-ahead scheduling and real-time dispatching. In order to reduce the
time taken to solve the scheduling problem, and improve the scheduling performance,
approximate dynamic programming (ADP) is used in real-time operation. Different types of
value function approximations (VFA), i.e., linear function, nonlinear function, and neural
network are compared to study about the influence of the VFA on the decision results.
Offline and online processes are developed to study the impact of the historical data on the
regression of VFA. The results show that the neural network based ADP one-step decision
algorithm has almost the same performance as the Global optimization algorithm, and the
highest performance among all others Local optimization algorithms. The total operation
cost relative error is less than 3%, while the running time is only 31% of the Global
algorithm. In the neural network based ADP, the key technology is continuously updating
the training dataset online, and adopting an appropriate neural network structure, which
can at last improve the scheduling performance.

Keywords: real-time scheduling, gas/electricity/heat, approximate dynamic programming, neural network,
microgrid

1 INTRODUCTION

Hydrogen storage based multi-energy supply microgrids are expected to play an important role in
future smart cities (Mancarella, 2014; Li et al., 2017b). In a multi-energy supply microgrid, several
load demands are covered, such as electricity/heat/gas. At the same time, a hydrogen storage system
can be used to alleviate the intermittence of renewable energy. For the hydrogen storage system,
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when the renewable energy is redundant, surplus energy is
converted to hydrogen (H2) through an electrolyzer; and when
the energy is insufficient, a fuel cell is used to generate power
based on hydrogen (H2). The structure of the multi-energy supply
microgrid used in this work is shown in Figure 1. Based on this
hybrid microgrid, different types of energy can be utilized from a
“global” view, which can improve the energy utilization efficiency
(Li et al., 2018b).

On the other hand, multi-energy supply microgrids can also
interconnect with different utility grids (electricity/heat/gas) (Li
et al., 2018b). The structure of utility grids is shown in Figure 2.
The left network represents the electricity supply system, the
middle network is the gas supply system, and the right network is
the heat supply system. With this integrated utility grid networks,
local loads can better resist to the natural disasters (Wang et al.,
2016). For example, if the electric utility grid is destroyed under
natural disasters, the gas utility grid system can supply gas to a
fuel cell to produce electricity. Then the local loads can still
operate.

However, operating these multi-energy supply grid-connected
microgrids in real-time is still a problem. Because different types
of devices, three types of energy, and three types of utility grid
networks are considered, which make the dispatching problem
difficult.

In fact, the microgrid operation problem is often formulated as
a model predictive control (MPC) problem, because MPC is
widely accepted in varieties of industrial scenarios, and its
effective ability to deal with optimization problems subject to
large numbers of constraints (Shang and You, 2019). In fact,
several methods can be adopted to solve the MPC problem.

The first category is heuristic algorithms, such as GA (Li et al.,
2017a), PSO (Mohammadi-Ivatloo et al., 2013), etc. which are
largely employed to solve the microgrid operation problem. This
is due to their flexibility and the possibility to face complex
constraints. However, heuristic algorithms do not guarantee
obtaining an optimal results, because the solution is updated
based on stochastic searching.

The second category is mixed integer programming (MIP).
This is due to the availability of efficient commercial software,
such as CPLEX and Gurobi (Gurobi, 2018). For example, in (Li
and Xu, 2019), authors study the operation of a multi-energy
microgrid under diverse uncertainties. The problem is
represented as a two-stage operation problem. And at last is
converted to a mixed-integer linear programming (MILP)
problem. In (Li et al., 2021), authors study the optimal
deployment of energy storage in a residential multi-energy
microgrid. Based on the linearisation method, the model is
converted to a MILP problem. However, in the MIP problem,
the number of optimization windows is an important
parameter. When the number of optimization windows is
large, the solving time is long, because the variables needed
to decide are large. When the number of optimization windows
is small, the variables needed to decide are small, the solving
time is then short, but the results are far away from the global
optimal points, because more future impacts are not considered.
So, the trade-off between window numbers and solving time
should be considered.

The third category is dynamic programming (Xie et al., 2017),
which transfers the long time horizon MPC problem into a series
of smaller problems that can be easily solved. But dynamic
programming suffers from the “curse-of-dimensionality” (Shi
et al., 2017), which makes it difficult to use in real-time
operation of large systems.

Then, a method is required which can efficiently and quickly
solve the optimization problem in real-time, where the results are
not far away from the global optimal points.

Approximate dynamic programming (ADP) method can
resolve this problem. ADP method is a one-step decision
model, and the future influence is considered as a value
function approximation (VFA) in the current decision. This
means that if we can find a good VFA, we can then quantify
the future influence well, which leads to a reasonable decision at
the current time. Since ADP is just one-step, the problem-solving
time is faster than the multiple windows MPC method.

Therefore, in this paper, we adopt the ADP method to control
the optimal operation of grid-connected microgrids. We focus on
the performance of the ADP method and compare different
factors, such as regression methods, offline/online process, and
so on.

1.1 Scheduling Problem Based on
Approximate Dynamic Programming
For the ADP method, the main thing is the value function
approximation. In general, there are three methods to describe
the value function approximation (Salas and Powell, 2013; Li and
Jayaweera, 2015): lookup table, parametric approximation and
nonparametric approximation. For example, in (Das and Ni,
2018), authors research about the battery storage systems
operation in islanded microgrid considering battery lifetime
characteristics, and the approximate value function is
formulated based on lookup table idea. In (Li and Jayaweera,
2015), the authors use Q-learning method to define the
approximate value function. In (Keerthisinghe et al., 2018), the
piecewise linear function is used to build the approximate value
function. In (Zeng et al., 2018), deep recurrent neural network
learning is adopted to describe the approximate value function.
The reference papers showed that ADP has better performance
and lower computational burden.

Using the ADP method to optimal control the operation of
microgrids has also attracted lots of attention.

1.1.1 Lookup Table and Parametric Approximate Value
Function
In (Keerthisinghe et al., 2018), the authors present an ADP-based
smart home energy management system. Lookup tables and
piecewise linear functions are used to define approximate
value function, the results show that the ADP-based algorithm
reduces the daily electricity cost without an increase in the
computational burden. In Salas and Powell (2013), authors
present an ADP method to control the operation of the
energy storage systems to achieve an economical goal.
Piecewise linear function is adopted to define approximate
value function. In (Jiang et al., 2014), the authors compare
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different ADP methods for energy storage control problem,
including approximate policy iteration and approximate value
iteration. In (Anderson et al., 2011), the authors apply ADP to the
smart grid dispatching problem. The long-time horizon
scheduling problem is transferred into a series of smaller
problems, which is easier to be solved.

Authors in (Strelec and Berka, 2013), present the ADPmethod
to solve multi-energy supply microgrid economic dispatching

problems, lookup table and regression methods are used to
approximate the cost function. In (Shuai et al., 2018b), the
authors propose the lookup table based ADP algorithm for the
real-time energy management of the microgrid under
uncertainties. The dispatching problem is formulated as a
long-time horizon mixed integer nonlinear programming
model and is then decomposed into several single period
nonlinear programming sub-problems based on ADP method.
Similarly, in (Shuai et al., 2018a), a piecewise linear function
based ADP algorithm is adopted to solve the stochastic microgrid
economic dispatching problem. Authors in (Darivianakis et al.,
2017), transfer the MPC optimal problem into VFA based multi-
stage optimization problem, a piecewise linear function is
adopted to approximate the value function. Authors in
(Bhattacharya et al., 2018) present a two-stage dual dynamic
programming method to manage energy storage in a microgrid, a
piecewise linear function is also adopted to approximate cost-to-
go functions.

1.1.2 Nonparametric Approximate Value Function
In (Ji et al., 2018), authors research about real-time economical
operation of a grid-connected microgrid using the ADP method.
Multilayer perceptron feedforward neural network is adopted to
approximate value function. In (Zeng et al., 2018), the authors
study the economical operation of a microgrid in real-time. ADP
and deep recurrent neural network (RNN) learning are adopted
to solve the problem. Deep RNN architecture is used to estimate
the value function. Furthermore, authors in (Liu et al., 2015)
present an approximate dynamic programming algorithms for

FIGURE 1 | Multi-energy supply microgrid.

FIGURE 2 | The structure of the multiple energy supply network.
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solving undiscounted optimal control problems. Two multilayer
feedforward neural networks are used to approximate both the
control policy and the value function. In order to enhance the
resource utilization rate and reduce the computation cost, authors
in (Wang et al., 2019) present an event-based iterative adaptive
critic algorithm, in which three neural networks are constructed
but possessing different roles. That is: themodel network employed
for prediction, the critic network built for evaluation, and the
action network used for control. In order to tackle dynamic
uncertainties, authors in (Wang, 2019) study robust policy
learning control for nonlinear plants. Neural network based
actor-critic structure is designed to implement the robust control.

Authors in (Zhu et al., 2019) research the optimal
management of multiple batteries over a long time horizon in
order to prolong battery lifetime. Approximate dynamic
programming is adopted to solve the problem, and fuzzy
systems are used to approximate value functions. Compared to
neural networks, the fuzzy approximation only requires to
compute target values.

Based on the above papers, the ADP method is effective to
solve the dispatching problem, and the ADP method can be
divided into the following steps as: 1) build the dispatching
optimization model; 2) transfer the multi-step decision
problem into a series of one-step decision problems; 3) find
the relationship between the states and future costs, using lookup
table/regression/neural network methods to describe the
relationship, namely, build the approximate value function; 4)
integrate the approximate value function into the one-step
decision model; 5) solve the approximate value function based
one-step decision problem.

1.2 Electricity/Heat/Gas Utility Grids
Operation
The above section reviews the related work about scheduling
algorithms for microgrid. In addition, when microgrid
interconnects with the electricity/heat/gas utility grids, the
operation of the electricity/heat/gas utility grids should also be
considered.

For the coupled multi-energy networks operation, centralized
optimization algorithm is often used to solve the optimal power
flow. For example, authors in (Qin et al., 2020) study the operation
of integrated energy systems consisting of electricity and natural
gas utility networks, a multi-objective optimization method is
used to solve the coordinated operation of the coupling network.
In (Sun et al., 2020), authors study the day-ahead scheduling of
gas-electric integrated energy system considering the bi-
directional energy flow. The goal is to minimize the operation
cost, and a second-order cone programming method is utilized to
solve the problem. In (Fang et al., 2018), authors study the
operation of the integrated gas and electrical power system
considering the different response times of the gas and power
systems. The problem is transformed into a single-stage linear
programming. In (Chen et al., 2017), authors study the optimal
operation of electricity-gas integrated energy system. The goal is to
minimize the operation costs for both electrical and natural gas
systems while satisfying steady-state operational constraints.

To model the electricity/heat/gas utility grid networks. The
steady-state operational equations are often built as the
constraints, and added to the previous optimization problem.
For example, in (Liu et al., 2020), authors present a sequential
reliability assessment method considering multi-energy flow and
thermal inertia. Hydraulic circulation and heat exchange
equations are used to model the thermal network.
Conventional power flow equations are adopted to describe
distribution network model. In (Martínez Ceseña et al., 2020),
the electricity network model is represented as conventional
power flow equations, as well as thermal and voltage limits.
The gas network is represented as steady-state equations. The
conventional steady-state equations and a thermal module are
utilized to model the heat network. In (Yang et al., 2020), authors
present a planning strategy for a district energy sector considering
the coupling of power, gas, and heat systems. An optimal multi-
energy flow model is developed, and the objective is to minimize
operational costs. Distflow equations are used to describe the
power distribution system, steady gas flow equations are adopted
to model the gas distribution system, steady-state model is
deployed to describe the distribution heat system. In (Martínez
Ceseña and Mancarella, 2019), authors present a robust
optimization framework for smart districts with multi-energy
devices and electricity/heat/gas energy networks. The electricity
network is modelled with typical power flow equations. The heat
network is described based on nodal balance and cumulative head
losses equations. The gas network is represented based on nodal
balance, pressure drops, and head losses equations.

Based on the above reviews, optimization method is often used
to calculate the power flow of the electricity/heat/gas energy
networks. The electricity network is modelled based on typical
power flow equations. The heat network is modelled based on
nodal balance and heat losses equations. The gas network is
represented based on nodal balance, pressure drops equations.

1.3 Contributions
The above review shows that the operation problem of multi-
energy supply microgrid and the operation problem of coupled
electricity/heat/gas energy networks have drawn a lot of attention.
However, using the ADP algorithm to solve the dispatching
problem of the hydrogen-based multi-energy supply microgrids
considering electricity/heat/gas energy networks has not drawn a
lot of attention. The complexity of the whole model increases the
difficulty of the control, especially the large numbers of constraints.
Motivated by the aforementioned references, we present an ADP-
based computationally efficient algorithm for the real-time
operation of multi-energy supply grid-connected microgrids. A
similar study is our previous work (Li et al., 2018a), in which only
MPC algorithm is used, no other algorithms are compared.

Compared to previous works, the contribution of this paper
can be concluded as follows:

• First, we build an ADP-based one-step decision model for the
optimal operation of multi-energy supply grid-connected
microgrids. In the one-step decision model, we consider large
numbers of logical and physical constraints, and formulate the
problem as a mixed-integer programming model;

Frontiers in Electronics | www.frontiersin.org April 2021 | Volume 2 | Article 6377364

Li and Roche Multiple Multi-Energy Supply Microgrids

https://www.frontiersin.org/journals/electronics
www.frontiersin.org
https://www.frontiersin.org/journals/electronics#articles


• Second, in the ADP model, we research about different
factors. Linear, nonlinear, and neural network regression
are compared to research about the influence of the
approximate value function on the decision results.
Offline and online processes are developed to research
about the impact of the historical data on the regression
approximate value function;

• Last, we compare the performance of the sliding window
MPC, the one-step decision ADP and the global
optimization algorithms from different perspectives,
including the running time, the real-time operation cost,
total operation cost, and the exchanged energy with the
utility grid networks. The results show that the neural
network based ADP method has the best performance,
with the less than 3% total operation cost relative error,
and has a running time of only 31% of Global algorithm.

The remainder of this paper is organized as follows. Section 2
describes the microgrid scheduling problem. Section 3 describes
the electricity/heat/gas utility grids model. Section 6 presents the
simulation results. Finally, Section 7 concludes the paper.

In fact, to operate the electricity/heat/gas integrated
microgrids system, three aspects should be considered: 1)
scheduling of the grid-connected microgrid; 2) utility grids
operation; 3) the operation of the whole system.

2 MICROGRID SCHEDULING PROBLEM
FORMULATION

To schedule the grid-connected microgrids, the coordinated
strategy is often adopted, namely, day-ahead scheduling and
real-time dispatching. In day-ahead scheduling, the expected
exchange energy with utility grids are calculated, based on the
exchanged energy, we can decide the role of the microgrids,
namely, microgrids operate as a generator or as a load. In real-
time dispatching, the ADP-based one-step decision problem is
solved. It takes the future operation cost into consideration and
makes the current dispatching more reasonable, and at the same
time reduces the solving time.

We introduce the problem from three aspects: 1) day-ahead
scheduling; 2) real-time dispatching based on MPC; 3) real-time
dispatching based on ADP.

2.1 Microgrid Day-Ahead Scheduling
In order to make the problem more readable, we use the simple
model to describe the problem, and the detailed model is attached
in Supplementary Material. The scheduling problem can be
described as follows:

min
xt ,xt+1 ,...,xt+T

∑
τ�t

t+T
f (xτ)

s.t. Axi ≤ b; Bxi � c (continuous variables)
lb ≤ xi ≤ ub

Cxj ≤ d; Dxj � e (integer/logical variables)
xi ∈ Z; xj ∈ {0, 1, integer}

(1)

where xi are the continuous variables, xj are the integer/logical
variables; A,B,C,D, b, c, d, e are the constraints matrix; f (.) is the
operation cost function; T is the time horizon.

By solving the above mixed integer programming problem, we
can obtain the scheduling results. However, due to the uncertainty
of the load demand and the output of renewable energy, some
parameters in constraints are not deterministic parameters. The
above problem is then transferred to the following problem:

min
xt ,xt+1 ,...,xt+T

∑
τ�t

t+T
f (xτ)

s.t. Axi ≤ b; Bxi � ~c (continuous variables)
lb ≤ xi ≤ ub

Cxj ≤ d; Dxj � e (integer/logical variables)
xi ∈ Z; xj ∈ {0, 1, integer}

(2)

where ~c are the uncertainty parameters. For example, in power
balance constraints, generated power must equal to load demand,
but the predicted load demand is uncertain.

The common method to solve the above uncertainty problem
is stochastic optimization. The above problem can be transferred
as follows:

min
x1t ,x

1
t+1 ,...,x

1
t+T

x2t ,x
2
t+1 ,...,x

2
t+T

...

xNst ,xNst+1 ,...,x
Ns
t+T

∑
s�1

Ns

ps ·∑
τ�t

t+T
f (xsτ)

s.t. Axsi ≤ b; Bx
s
i � c̃s (continuous variables)

lb ≤ xsi ≤ ub

Cxsj ≤ d; Dxsj � e (integer/logical variables)
xsi ∈ Z; xsj ∈ {0, 1, integer}
s � 1, 2, . . . ,Ns

(3)

In the above stochastic problem, we use a scenario-based
method to transfer the uncertainty parameters ~c to typical
scenarios Ns, and the probability of each scenario is ps. Lastly,
to solve the above problem, we can obtain the scheduling results
in each scenario.

Assume that the variables that exchanged energy with utility
grids are xex ∈ xi. Then the expected exchanged energy is:

xpex � ∑
s�1

Ns

ps · xsex, s � 1, 2, . . . ,Ns (4)

2.2 Microgrid Real-Time Dispatching Based
on MPC
Based on the day-ahead scheduling results, we can then
implement real-time dispatching. Due to the real-time short-
term prediction uncertainty, the real-time exchanged energy with
the utility grid may not equal to the day-ahead scheduling results.
In order to reduce this error, it is necessary for the real-time
exchanged energy to follow the day-ahead scheduling results as
close as possible. The sliding window model predictive control
method is then adopted to deploy the real-time dispatching, the
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detailed model is attached in Supplementary Material. The real-
time dispatching problem can be described as follows:

min
xt ,xt+1 ,...,xt+tn

∑
τ�t

t+tn
g(xτ , xpex)

s.t. Axi ≤ b; Bxi � c (continuous variables)
lb ≤ xi ≤ ub

Cxj ≤ d; Dxj � e (integer/logical variables)
xi ∈ Z; xj ∈ {0, 1, integer}

(5)

where g(.) is the real-time operation cost function; xpex are the
day-ahead scheduling results; tn is the time horizon.

In the real-time sliding window dispatching, in the first time
step t, the MPC problem is solved, then only the current time
decisions (current time is t) are deployed, and the future decisions
(future times are t + 1, . . . , t + tn) are abandoned. After that, the
time slides to the next step t + 1, and the MPC problem is solved
again, then only the new current time decisions (new current time
is t + 1) are deployed, and the future decisions (future times are
t + 2, . . . , t + tn + 1) are abandoned. This process is repeated until
the last time is reached, the process can be seen in Figure 3A.

2.3 Microgrid Real-Time Dispatching Based
on ADP Method
In the above section, the sliding window MPC method is adopted
to deploy real-time dispatching. However, the solving time of the
MPC method is long, because we need to solve the multiple
windows optimization problem. In this section, the one-step
decision model is developed to solve the real-time dispatching
problem.With the one-step decisionmodel, the solving time can be
reduced. On the other hand, the ADP idea is also adopted, namely,
integrating the future impacts into the current decision model, to
make the current decision results more reasonable and effective.

In fact, the aboveMPC problem can be transferred into a series
of smaller problems based on dynamic programming idea, which
can be represented as follows:

min
xt

[g(xt , xtex) +min
xt+1

[g(xt+1, xt+1ex ) +min
xt+2

[g(xt+2, xt+2ex )
+/ ∑

τ�t+tn−m

t+tn
g(xτ , xpex)⎤⎥⎦⎤⎥⎦⎤⎥⎦

s.t. Axi ≤ b; Bxi � c (continuous variables)
lb ≤ xi ≤ ub

Cxj ≤ d; Dxj � e (integer/logical variables)
xi ∈ Z; xj ∈ {0, 1, integer}

(6)

We use VFt+1 to describe the total future cost from t + 1 to t + tn,
namely,

VFt+1 � min
xt+1 ,...,xt+tn

∑
τ�t+1

t+tn
g(xτ , xpex) (7)

Then the above problem can be represented as:

min
xt

[g(xt , xtex) + VFt+1]
s.t. Axi ≤ b; Bxi � c (continuous variables)

lb ≤ xi ≤ ub

Cxj ≤ d; Dxj � e (integer/logical variables)
xi ∈ Z; xj ∈ {0, 1, integer}

(8)

Because the future cost VFt+1 is dependent on the current
decisions xt and post-decision states St+1, then the general
one-step ADP decision model can be described as follows, and
the detailed model is attached in Supplementary Material:

min
xt

g(xt , xtex ,VF(St+1))
s.t. Axi ≤ b; Bxi � c (continuous variables)

lb ≤ xi ≤ ub

Cxj ≤ d; Dxj � e (integer/logical variables)
xi ∈ Z; xj ∈ {0, 1, integer}
xi, xj ∈ xt;
St+1 � SF(St , xt);

(9)

where VF is the approximate value function, VF(St+1) is the
approximate future operation cost based on the state St+1; SF is

FIGURE 3 | (A) Sliding window model predictive control. (B) The state transition process.
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the state transition function, which is used to describe how the
current state St is changed to the next time state St+1.

By solving the above one-step decision model (namely, the
decision variables are only at the current time), one can obtain the
optimal dispatching results. However, it can be seen that the main
thing in the above one-step decision model is the approximate
value function VF. If we can find a good approximate value
function VF to describe the relationship between the state St+1
and the future operation cost Cfuture, then we can obtain good and
effective decision results.

2.3.1 Approximate Value Function VF
The approximate value function VF is used to describe the
relationship between the state St and the future operation cost
Cfuture, which can be represented as follows:

Cfuture � VF(St , Lpre) (10)

where Lpre is the future predicted load demand and renewable
energy output.

With the approximate value functionVF, one can calculate the
future operation cost based on the state St and the predicted data
Lpre. Then, to find a good approximate value function VF is the
key problem. In this section, we introduce how to find the
approximate value function VF.

Firstly, we need to obtain the historical dataset of
{Cfuture, [St , Lpre]}. The dataset can be obtained based on offline
simulation. Give different values of [St , Lpre], solve the problem Eq.
9, we can then calculate the future operation costCfuture. In addition,
in the actual operation, we can also obtain the new dataset. So, the
dataset is updated continuously as the operation running forward.

Secondly, we need to analyze the dataset to find the
relationship between Cfuture and [St , Lpre], namely, calculate the
approximate value functionVF. Here, we adopted three methods,
i.e., the linear, nonlinear regression and neural network
regression algorithms.

In the linear regression method, we use function Cfuture � a0 +
a1 · St + a2 · Lpre to describe the relationship, and the approximate
value function VF is the value of the parameters a0, a1, a2,
namely, VF ≡ {a0, a1, a2}. In nonlinear regression method, the
function is
Cfuture � b0 + b1 · St + b2 · Lpre + b3 · St · Lpre + b4 · S2t + b5 · L2pre,
the approximate value function VF ≡ {b0, b1, b2, b3, b4, b5}. In
neural network regression method, the function is
Cfuture � NN(St , LPVpre , Lelpre, Lheatpre , L

gas
pre), NN is the neural network

function, the approximate value function VF ≡ {NN}.
At last, we developed offline and online processes to deploy the

ADP method. In the offline process, at each time t, there are four
steps: 1) update the dataset {Cfuture, [St , Lpre]}; 2) based on the
dataset, calculate the approximate value function VF; 3) solve the
problem Eq. 9, and obtain the dispatching results; 4) save the
operation results in step 3), and return to step 1). The offline
process can be summarized as:

Algorithm 1 Offline simulation process.

1: initialize dataset {Cfuture, [St , Lpre]};
2: for t � 1 : T do

3: update the dataset {Cfuture, [St , Lpre]};
4: calculate the approximate value function VF;

5: linear method: VF ≡ {a0, a1, a2}
6: nonlinear method:VF ≡ {b0, b1, b2, b3, b4, b5}
7: neural network method: VF ≡ {NN}
8: solve the problem Eq. 9;

9: min
xt

g(xt , xtex,VF(St+1))
10: save the operation results;
11: t � t+1;
12: end for
In the online process, there is not enough initial dataset, so the dataset
is obtained and updated based on the online operation. At each time
t, the process is run Nit times. In each running i, i � 1, 2, . . . ,Nit ,
firstly, the dataset {Cfuture, [St , Lpre]} is updated; and then, the
approximate value function VF is calculated; after that, problem
Eq. 9 is solved; and save the operation results; at last, return to the
next running i + 1. After Nit running times are finished, then go to
the next time t + 1. The online process can be summarized as:

Algorithm 2 Online simulation process

1: initialize Nit ;
2: for t � 1 : T do.

3: initialize the dataset {Cfuture, [St , Lpre]};
4: for i � 1 : Nit do.

5: update the dataset {Cfuture, [St , Lpre]};
6: calculate the approximate value function VF;

7: linear method: VF ≡ {a0, a1, a2}
8: solve the problem Eq. 9;

9: min
xt

g(xt , xtex,VF(St+1))
10: save the operation results;
11: i � i + 1;
12: end for.
13: t � t + 1;
14: end for

2.3.2 ADP State Transition Process
The state transition process can be seen in Figure 3B. It can be
seen that future approximate operation cost
VF(St+1) � VF(St) − ct , where ct is the instant operation cost
from time t to time t + 1. At time t, state St includes hydrogen
tanks state Stgs, electricity/heat/gas load demands Ltel, L

t
heat , L

t
gas,

PV output LtPV . Action at includes the dispatching strategies.

3 UTILITY GRIDS OPERATION PROBLEM

For the integrated utility grids model, an IEEE30 + gas20 + heat14
hybrid network is adopted. The structure of each utility grid
network is presented in Supplementary Material.
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3.1 Electricity Utility Grid Operation
For the electricity utility grid operation, it is a classical optimal power
flow (OPF) problem. The OPF problem can be seen as follows:

min
Pg ,Qg ,V

∑ng
i�1
{f iP(Pi

g) + f iQ(Qi
g)}

s.t.(12), (13)
(11)

where the Pi
g ,Q

i
g are the real and reactive power of the ith

generator. f iP , f
i
Q are the individual polynomial cost function of

the ith generator.
Power balance constraints can be shown as the following:

Pg
i � Pload

i +∑nbus
j�1

ViVj(Gline
ij cosθij + Bline

ij sinθij)
Qg

i � Qload
i +∑nbus

j�1
ViVj(Gline

ij sinθij − Bline
ij cosθij) (12)

where Pload
i ,Qload

i are the real and reactive load demand at bus i.
Gline
ij ,Bline

ij are the parameters of the power lines from bus i to bus j.

Vi,min
m ≤Vi

m ≤Vi,max
m ; i � 1, 2, . . . , nbus

Pi,min
g ≤ Pi

g ≤ P
i,max
g ; i � 1, 2, . . . , ng

Qi,min
g ≤Qi

g ≤Q
i,max
g ; i � 1, 2, . . . , ng

(13)

where Vi
m,V

i,min
m ,Vi,max

m are the voltage magnitude, minimum
voltage magnitude and maximum voltage magnitude at bus i.
Pi,min
g , Pi,max

g ,Qi,min
g ,Qi,max

g are the minimum and maximum real
and reactive power of i generator.

3.2 Heating Utility Grid Operation
For the heating utility grid, it is a heating power flow problem.
During the heating transportation, heat transportation loss should
be considered. The heating transportation loss can be described as
follows (Pirouti, 2013; Shabanpour-Haghighi and Seifi, 2015).

Qloss
heat � cp · _m(Ts1 − Ts2) (14)

where cp is the specific heat capacity (KJ/kgK), _m is the mass flow
rate (kg/s), and Ts1,Ts2 are the temperature at node s1 and node s2.

The temperature drop through the heating flow system can be
described as:

Ts2 � (Ts1 − Tg) · e− lU
cp · _m + Tg (15)

where l is the pipe length, U is the heat transition coefficient (W/
mK), and Tg is the ground temperature.

Based on (Eqs. 14Eqs. 15), it can be seen that the heating loss
during the transportation is a nonlinear equation. In order to
reduce the complexity, in this paper, we choose a linear model to
describe the heating transportation loss. We assume that the
heating loss is a linear function of the transportation distance,
which can be shown as the following:

Qloss
heat � klossheat · l (16)

where klossheat is the coefficient of the heating loss.
Then, the heating power flow of the heating utility grid can be

presented. For each heating pipeline, two state variables (binary

variables, 0 or 1): ULineoutheat ,ULine
in
heat are defined. Then the

heating power flow in each pipeline can be described as the
following constraints:

0≤ Lineoutheat(i, t)≤ULineoutheat(i, t) · Linemax
heat(i)

0≤ Lineinheat(i, t)≤ULineinheat(i, t) · Linemax
heat(i)

ULineoutheat(i, t) + ULineinheat(i, t)≤ 1
(17)

An example is presented here to explain the logical illustrated
in Eq. 18. In Eq. 18, there are three nodes h1, h2, and h3, the
connections are h1↔h2, and h2↔h3. The heating power flow at
node h2 can be described as in Eq. 19.

h1
Lineout

heat(1,t)
Linein

heat(1,t)
− − −

←
�����→h2

Lineout
heat(2,t)

Linein
heat(2,t)

− − −
←

�����→h3
Lineout

heat(3,t)
Linein

heat(3,t)
− − −

←
�����→ (18)

Lineoutheat(1, t) · (1 − Qloss,1
heat ) − Lineinheat(1, t)/(1 − Qloss,1

heat )
� Lineoutheat(2, t) − Lineinheat(2, t) (19)

3.3 Gas Utility Grid Operation
For the gas utility grid, it is a gas power flow problem. The gas
flow can be described as follows (De Wolf and Smeers, 2000):

sign(fij) · f 2ij � C2
ij(p2i − p2j ) (20)

where fij is the gas flow between nodes i and j, pi and pj are the
pressure at nodes i and j, and Cij is a constant which depends on
the length, the diameter and the absolute rugosity of the pipe and
on the gas composition.

During the gas transportation, the pressure will drop, which is
modeled as in Eq. 21.

p1→
f dep − − −−f loss →f in p2 (21)

Based on Eqs. 20Eqs. 21, we can obtain f 2dep � C2
12(p21 − p22).

Then, the gas pressure drop can be described as:

f 2in � C2
12(p21 − p22 −H2

loss)
� C2

12(p21 − p22) − C2
12H

2
loss

� f 2dep − C2
12 ·H2

loss

(22)

Assume that the loss C2
12 ·H2

loss can be represented as
C2
12 ·H2

loss ≈ f 2dep · floss, where floss is a coefficient parameter to
describe the pressure drop. Next, we can obtain
f 2in ≈ f 2dep − f 2dep · floss, namely, fin ≈ fdep

��������(1 − floss)
√

.
In (Martinez-Mares and Fuerte-Esquivel, 2012), it shows that the

pressure drop Hloss is a complex function related to the nonlinear
effect of the pipeline distance Lpipegas and the weather conditions.
Coefficient parameter floss is also a nonlinear function. In order to
reduce the complexity, here a linearmodel is adopted to describe the
pressure drop. Assume that coefficient parameter floss is a linear
function of the gas pipeline distance, which can be shown as

floss � klossgas · Lpipe
gas (23)

where klossgas is the coefficient of the gas loss.
Then the gas power flow in the gas utility grid can be

presented. For each pipeline, two state variables (binary
variables, 0 or 1) ULineoutgas ,ULine

in
gas are defined. Then the gas

flow constraints are:
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0≤ Lineoutgas(i, t)≤ULineoutgas(i, t) · Linemax
gas (i)

0≤ Lineingas(i, t)≤ULineingas(i, t) · Linemax
gas (i)

ULineoutgas(i, t) + ULineingas(i, t)≤ 1
(24)

Herewe also use an example to explain the gasflow,which is shown
in Eq. 25. There are three nodes g1, g2, and g3. The connections are
g1↔g2, and g2↔g3. The gas flow at node g2 can be described as:

g1
Lineoutgas (1,t)
Lineingas(1,t)− − −

←
�����→g2

Lineoutgas (2,t)
Lineingas(2,t)− − −

←
�����→g3

Lineoutgas (3,t)
Lineingas(3,t)− − −

←
�����→ (25)

Lineoutgas(1, t) ·
���������(1 − f loss,1gas )√

− Lineingas(1, t)/ ���������(1 − f loss,1gas )√
� Lineoutgas(2, t) − Lineingas(2, t) (26)

The gas flow in a gas pipeline is restricted by the pressure of the
beginning and end nodes. This constraint can be described as:

−
��������������
C2
ij(p2j,max − p2i,min)√

≤ fij ≤
��������������
C2
ij(p2i,max − p2j,min)√

(27)

where pi,min, pi,max, pj,min, pj,max are the minimum and maximum
pressure at node i and j.

4 THE SEQUENTIAL OPERATION OF THE
WHOLE SYSTEM

Four microgrids are interconnected with the hybrid IEEE30 + gas20
+ heat14 network. It is actually difficult to schedule this complex
system. In this paper, we present a sequential strategy as follows: 1)
first, four microgrids run their scheduling algorithms based onMPC
or ADPmethod [section (2)], and obtain the exchanged energy with
electricity/heat/gas utility grids; 2) second, the utility grids receive the
exchanged energy, and run their power flow problem [Section (3)].

5 SYSTEM SETUP

In this paper, an IEEE-30 + gas-20 + heat-14 hybrid system is adopted
as the utility grids. Four multi-energy microgrids are connected with
the utility grids. The structure is presented in Figure 2. Microgrid
MG1 is connected at electrical node e23, gas node g7, heat node h9.
Microgrid MG2 is connected at electrical node e17, gas node g6, heat
node h10. Microgrid MG3 is connected at electrical node e14, gas
node g15, heat node h4. Microgrid MG4 is connected at electrical
node e7, gas node g10, heat node h13. The configutation of this
hybrid system is summarized in Eq. 28. Themodel is implemented in
MATLAB and solved with YALMIP (Löfberg, 2012) and Gurobi.∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Units Electrical bus Gas node Heat node
MG1 e23 g7 h9
MG2 e17 g6 h10
MG3 e14 g15 h4
MG4 e7 g10 h13

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ (28)

A typical day is chosen. Based on the forecasted load demands and
PVoutput,microgridsfirstly run their day-ahead scheduling algorithm,
and the exchanged energy results with the utility grids are obtained and
then transferred to the real-time dispatching algorithm. Secondly, the
real-time rolling horizon dispatching algorithm is solved based on the
new forecasting data and the day-ahead exchange results.

The load demands (peak load) of each microgrid and microgrid
operation parameters are presented in Supplementary Material.

6 SIMULATION RESULTS

Based on the above strategy, the simulation running is deployed.
The simulation results are presented from four aspects: 1)
scheduling results; 2) operation cost analysis; 3) exchanged
energy analysis; 4) utility grids power flow.

6.1 Scheduling Results
Different cases are presented to research about the performance of each
algorithm. CasesADPlinearb andADPlinearc are used to study the linear
regression AVF. Cases ADPnonlinearA and ADPnonlinearB are used to
study the nonlinear regressionAVF. CasesADPonline30,ADPonlineneg1,
and ADPonlineneg3 are compared to study the online process. In order
to study the influence of optimization window numbers, casesMPC12,
MPC6, and MPC1 are set. Cases ADPNNneg1, ADPNNneg5, and
ADPNNneg10 are presented to study the neural network regression
AVF. All cases are compared and concluded as follows:

1. ADPlinearb: the AVF is constructed based on linear
regression, and the coefficient is Cb � 10− 2;

2. ADPlinearc: the AVF is constructed based on linear
regression, and the coefficient is Cc � 102;

3. ADPnonlinearA: the AVF is constructed based on nonlinear
regression, and the coefficient is CA � 1.2*10− 8;

4. ADPnonlinearB: the AVF is constructed based on nonlinear
regression, and the coefficient is CB � 10− 8;

5. ADPonline30: the AVF is constructed based on linear
regression, the simulation is processed based on online
Algorithm 2, and the iteration time is 30;

6. ADPonlineneg1: the AVF is constructed based on linear
regression, the simulation is processed based on online
Algorithm 2, and the coefficient is CA

online � 10− 1;
7. ADPonlineneg3: the AVF is constructed based on linear

regression, the simulation is processed based on online
Algorithm 2, and the coefficient is CB

online � 10− 3;
8. Global: the algorithm is the MPC method, and the

optimization window is 288 (12*24 h � 288);
9. MPC12: the algorithm is the MPC method, and the

optimization window is 12;
10. MPC6: the algorithm is the MPC method, and the

optimization window is 6;
11. MPC1: the algorithm is the MPC method, and the

optimization window is 1, namely one-step decision
method, but the future costs are not considered;

12. ADPNNneg1: the AVF is constructed based on neural
network regression, the simulation is processed based on
offline algorithm, and the coefficient is CA

NN � 10− 1;
13. ADPNNneg5: the AVF is constructed based on neural

network regression, the simulation is processed based on
offline algorithm, and the coefficient is CB

NN � 10− 5;
14. ADPNNneg10: the AVF is constructed based on neural

network regression, the simulation is processed based on
offline algorithm, and the coefficient is CC

NN � 10− 10;
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The simulation results of the real-time SOC of MG4 can be
seen in Figure 4. Here SOC means the percentage of hydrogen in
tanks. It can be seen that with different algorithms, the real-time
dispatching results are significantly different. This is because in
different algorithms, the future operation value functions are
different, leading to different scheduling results.

We compare these different algorithms in the following:

•ADPInd : min
xt

uel
cost ·

∣∣∣∣∣∣∣Eel,T
grid − Zel,t

grid

∣∣∣∣∣∣∣ + uheat
cost ·

∣∣∣∣∣∣∣Eheat,T
grid − Zheat,t

grid

∣∣∣∣∣∣∣
+ VFInd(S(t + 1), Lpre) · CInd

+ α · L̃Stgas + β · L̃Stel + c · L̃Stheat;
(29)

where Ind � {linear, nonlinear,NN , online} represents different
types of ADP algorithms. Eel,T

grid is the day-ahead exchanged

electricity power at time T, Zel,t
grid is the real-time exchanged

electricity power at time t, Eheat,T
grid is the day-ahead exchanged

heat power at time T, Zheat,t
grid is the real-time exchanged heat power

at time t.
∣∣∣∣∣Eel,T

grid − Zel,t
grid

∣∣∣∣∣ is used to describe the real-time electricity
power deviation from the day-ahead results, and the unit is MW.
uelcost , u

heat
cost are the unit cost of electricity and heat power deviation

from the day-ahead results, and the unit is €/MW. L̃Stk, k �
(gas, el, heat) are the load shedding of the gas, electric, and
heat load demands, the unit is MW. α, β, γ are penalty values
of demands load shedding, the unit is €/MW.

•VFlinear(S(t + 1), Lpre) � a0 + a1 · St+1 + a2 · Lpre; (30)

where Clinear ∈ {Cb,Cc} are coefficients, which is used to adjust
the proportion of linear based AVF.

• VFnonlinear(S(t + 1), Lpre) � b0 + b1 · St+1 + b2 · Lpre
+ b3 · St+1 · Lpre + b4 · S2t+1 + b5 · L2

pre;
(31)

where Cnonlinear ∈ {CA,CB} are coefficients, which is used to
adjust the proportion of nonlinear based AVF.

• VFNN(S(t + 1), Lpre) � NN(St+1, LPVpre , Lel
pre, L

heat
pre , L

gas
pre); (32)

where CNN ∈ {CA
NN,C

B
NN,C

C
NN} are coefficients, which is used to

adjust the proportion of neural network based AVF.

• VFonline(S(t + 1), Lpre) � â0 + â1 · St+1 + â2 · Lpre; (33)

where â0, â1, â2 are changed in each iteration.
Conline ∈ {CA

online,C
B
online} are coefficients, which is used to

adjust the proportion of AVF.

•MPC : min
xt ,...,xt+sw

∑
j�0

sw

uel
cost ·

∣∣∣∣∣∣∣∣∣∣Eel,T
grid − Zel,t+j

grid

∣∣∣∣∣∣∣∣∣∣
+∑

j�0

sw

uheatcost ·
∣∣∣∣∣∣∣∣∣∣Eheat,T

grid − Zheat,t+j
grid

∣∣∣∣∣∣∣∣∣∣
+ α ·∑

j�0

sw

L̃St+jgas + β ·∑
j�0

sw

L̃St+jel + c ·∑
j�0

sw

L̃St+jheat

• Global : sw � 288;MPC12 : sw � 12;
MPC6 : sw � 6;MPC1 : sw � 1;

(34)

where sw is the optimization window number in MPC algorithm.
In Figure 4, we set the case Global as the basic case, because in

case Global, the scheduling results are “global optimization”;
however, in the other cases, the results are “local
optimization”. Compare cases ADPlinear and case Global, the
SOC curves are very different, especially, in cases ADPlinear ,

FIGURE 4 | Real-time SOC of MG4 with different optimization algorithms.
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the SOC value reaches at the maximum point. And it can also be
seen that in casesADPlinear , different coefficient valuesCb,Cc lead
to different dispatching results. Compare cases ADPnonlinear and
case Global, the SOC curves have a similar tendency, but the
values are different. Compare cases MPC and case Global, it can
be seen that with different optimization window numbers, the
SOC curves are very different. For example, in caseMPC1, it has a
similar tendency SOC; however, in case MPC12, the SOC reaches
at the minimum point.

We compare different ADPlinear cases in Figure 5A, namely,
we choose different coefficients

ADP1 : Ca � 100;ADPneg2 : Cb � 10− 2;ADPpos2 : Cc

� 102;ADPneg4 : Cd � 10− 4;ADPpos4 : Ce � 104 (35)

The linear regression of value function is shown in Figure 5B.
In fact, case ADP1 and case ADPneg2 have very similar SOC

curve, and they overlap together. It can be seen that the
scheduling results based on linear approximate value function
ADPlinear deviate from the “global optimization” curve. This
means that the linear approximate value function can not
describe the future operation cost well. One important reason
is that the dataset which is used to regress the linear value
function is not completely, the other reason is that the linear
function can not regress the value function well, and at last,
leading to inaccuracy approximate value function.

Then, we adopt the nonlinear function to regress the dataset.
And we compare different ADPnonlinear cases in Figure 6A,
namely, we choose different coefficients

ADPnonlinearA : CA � 1.2*10− 8;ADPnonlinearB : CB

� 10− 8;ADPnonlinearC : CC � 10− 9;ADPnonlinearD

: CD

� 10−10;ADPnonlinearE : Ce � 10−13.

The nonlinear regression of value function is shown in Figure 6B.
It can be seen that based on the nonlinear approximate value

function, the scheduling results have similar tendency to the
global results. And with different coefficients CA,CB,CC ,CD,CE ,
the scheduling results are similar to each other. However, the
SOC curve values are still far away from the Global optimization
results.

After that we adopt the neural network to regress the dataset.
And we compare differentADPNN cases in Figure 7A, namely, we
choose different coefficients ADPNNA : CA

NN � 10− 1;ADPNNB :
CB
NN � 10− 5;ADPNNC : CC

NN � 10− 10.
It can be seen that based on the neural network approximate

value function, if we choose the approximate coefficients, the
scheduling results are very close to the global optimization results,
which means that the neural network can regress the value
function well.

After that we develop an online simulation process, namely, at
each time, the one-step decision model is iteratively simulated 30
times. The simulated operation cost of MG4 is shown in
Figure 7B.

At each time, the one-step optimization model is solved for
30 times, and in each iteration, the parameters of the
approximate value function is updated. Based on Figure 7B,
it can be seen that at each time step, after 30 times iteration, the
operation costs keep constantly, which means that the iteration
process is convergence.

6.2 Operation Cost Analysis
In this section, we analyze the operation cost of MGs based on
different algorithms. Operation costs are the results of the
problem Eq. 29 and problem Eq. 34. We use a 2-norm error
to describe the difference between real-time operation cost of
different algorithms and global optimization. The 2-norm error
can be represented as:

FIGURE 5 | (A) Real-time SOC of MG4 with different linear value functions. (B) Linear regression of value function.
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errorrc �

������������������∑T
t�1

∣∣∣∣∣∣∣∣∣RCt
method − RCt

global
2|

√√
(37)

where errorrc is the 2-norm error of real-time operation cost,
RCt

method is the real-time operation cost under method method �
{ADPlinear ,ADPnonlinear ,ADPNN ,ADPonline,MPC} at time t,
RCt

global is the real-time operation cost under global
optimization at time t.

Table 1 shows the 2-norm error of real-time operation cost of
MG4 with different algorithms. It can be seen that ADPNNneg5
has the smallest 2-norm error, andADPlinearpos4 has the largest 2-
norm error. This means that at each time step, the real-time

operation cost of ADPNNneg5 is the closest to the Global
optimization real-time operation cost, namely, algorithm
ADPNNneg5 has the best real-time performance.

We then compare the total operation cost (total time horizon)
in Table 2 and Figure 8. It can be seen that case Global has the
minimum total operation cost, because it is the global
optimization. ADP method and the MPC method have the
similar total costs. Different coefficients in ADP and MPC
lead to different total costs, which means that choose
appropriate coefficient is important.

Then, we need to choose an index to evaluate different
algorithms. Here, we use relative error re to describe different
algorithms, namely,

FIGURE 6 | (A) Real-time SOC of MG4 with different nonlinear value functions. (B) Nonlinear regression of value function.

FIGURE 7 | (A) Neural network regression of the value function. (B) Operation cost of MG4 based on the online ADP method.
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re �
∣∣∣∣TCmethod − TCglobal

∣∣∣∣
TCglobal

(36)

where TCm, m � {ADPlinear , ADPnonlinear , ADPNN , ADPonline,
MPC} and TCglobal are the total cost under different algorithms
and global optimization.

We can then calculate the relative error with different algorithms,
which is shown inTable 2. It can be seen that in caseADPlinear , with

different coefficients the relative errors are different, especially when
the coefficients are large (for example, case ADPlinearpos2,
ADPlinearpos4), the relative errors are large, which means that the
scheduling results deviate far from the global optimization results.
In five nonlinear cases ADPnonlinear , it can be seen that the
differences are small, and the relative error is less than 4%.

In the online case ADPonline, the relative error is less than 7%,
but after adjust the coefficient, the relative error decreases to 4%

TABLE 1 | Real-time operation cost 2-norm error of MG4 with different algorithms.

Method errorrc Method errorrc

ADPlinear1 2.0947 ADPonlineneg1 2.0947
ADPlinearneg2 2.0947 ADPonlineneg3 2.0947
ADPlinearneg4 2.0947 ADPonline 2.8265
ADPlinearpos2 5.7880 MPC1 2.0797
ADPlinearpos4 6.1708 MPC12 2.4767
ADPnonlinear10 2.3044 MPC6 2.0128
ADPnonlinear13 2.0797 ADPNNneg1 2.0361
ADPnonlinear8 2.0885 ADPNNneg5 1.8526
ADPnonlinear82 2.0885 ADPNNneg10 1.9719
ADPnonlinear9 2.0872 Global –

TABLE 2 | Total operation costs.

Method Total cost re Method Total cost re

ADPlinear1 724.128 4% ADPonline 742.7882 6.68%
ADPlinearneg2 724.1274 4% ADPonlineneg1 724.1299 4%
ADPlinearneg4 724.1239 4% ADPonlineneg3 724.1254 4%
ADPlinearpos2 809.4693 16.26% MPC1 723.6257 3.93%
ADPlinearpos4 832.6848 19.59% MPC12 726.2201 4.3%
ADPnonlinear10 723.8000 3.96% MPC6 706.6236 1.49%
ADPnonlinear13 723.6257 3.93% ADPNNneg1 722.4365 3.76%
ADPnonlinear8 723.9436 3.98% ADPNNneg5 716.8263 2.95%
ADPnonlinear82 723.9376 3.98% ADPNNneg10 716.6670 2.93%
ADPnonlinear9 723.9190 3.97% Global 696.2547 –

FIGURE 8 | Total operation cost based on different algorithms.
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in cases ADPonlineneg1 and ADPonlineneg3. For the online
process, the inner value function and the iteration time are
two important factors to influence the operation cost and the
scheduling results.

For the MPC cases, the optimization window number is
important, it can be seen that when the optimization window
number is 6, the relative error is less than 1.5%; and the sliding
window is 12, the relative error is about 4.3%. For the ADPNN

cases, it can be seen that the relative error is less than 3% in cases
ADPNNneg5 and ADPNNneg10.

At last, from the post-event analysis view (total operation
cost), it can be seen that algorithm MPC6 has the best
performance (in terms of total operation cost), and the second
is the algorithm ADPNNneg5 and ADPNNneg10.

In conclusion, different algorithms have advantages and
disadvantages, we choose four indexes to compare these

FIGURE 9 | (A) Electricity power exchange with utility grid under different algorithms. (B) Heat power exchange with utility grid under different algorithms.

FIGURE 10 | (A)Gas exchange with utility grid with ADPlinear algorithms. (B)Gas exchange with utility grid with ADPnonlinear algorithms. (C)Gas exchange with utility
grid with ADPonline algorithms. (D) Gas exchange with utility grid with MPC algorithms.
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algorithms: running time, one-step simulation time τ, results, and
complexity, which can be seen in Table 3.

6.3 Exchanged Energy With Utility Grids
The exchanged electricity/heat/gas with utility grids are shown in
Figures 9, 10, 11A. In order to make these figures readable, we
calculate the 2-norm error of the exchanged energy under
different algorithms (case “Global” is set as the basic case),
which is shown in Table 4.

For the exchanged electricity, cases ADPlinearpos2 and ADPonline
have large 2-norm errors, which means that they can not effectively
follow the day-ahead exchanged electricity scheduling. However, for
cases ADPnonlinear and MPC, the 2-norm errors are zero, which
means that they can follow the day-ahead exchanged electricity well.

For the exchanged heat, it can be seen that cases ADPlinearpos2,
ADPonline and MPC12 have large 2-norm errors, and for the other
cases, the error is less than 2.1. Especially, for casesADPNNneg5 and
ADPNNneg10, the error is less than 1.9. In Figure 9, it can be seen
that only case ADPlinearpos2 deviates largely from the day-ahead
results, and other cases all can follow the day-ahead results well.

For the exchange gas, cases ADPonline, ADPlinearpos2, and
MPC6 have large 2-norm errors, and for the other cases, the
error is less than 0.0022.

At last, overall consideration of erroreleex , error
heat
ex , and errorgasex .

It can be seen that algorithm ADPNNneg5 has the best
performance (in terms of exchanged energy).

6.4 Utility Grids Power Flow
Based on the above exchanged energy, the electricity/heat/gas
utility grids then run their power flow algorithm. The voltage of
the IEEE-30 node electricity network with ADPNNneg5 is
presented in Figure 11B. Gas flow in gas-20 node network
with ADPNNneg5 is presented in Figure 11C. Heating power
flow in heat-14 node network with ADPNNneg5 is presented in
Figure 11D. The other power flow results are presented in
Supplementary Material. It can be seen that the power flow
in each utility network is within the security area and satisfy the
operation constraints.

7 CONCLUSION

In this paper, the real-time operation of grid-connectedmicrogrid
based on ADP algorithm was studied, a hybrid multi-energy
supply microgrid model was adopted. We focused on studying
the performance of different scheduling algorithms. Day-ahead
stochastic scheduling and real-time dispatching coordinated
strategy was adopted.

For the day-ahead scheduling, the scenario-based stochastic
optimization was used. For the real-time dispatching, ADP and
MPC algorithms were adopted, different parameters and
coefficients were compared to study the performance of
each algorithm.

TABLE 3 | Comparison of different algorithms.

Algorithms Running time τ(s) Results Complexity

ADPlinear one-step, fast 4.773747 depend on the coefficients and AVF MIP + LR
ADPnonlinear one-step, medium 5.572024 depend on the coefficients and AVF MINLP + NLR
ADPNN one-step, medium 26.469072 depend on coefficients and AVF MIP + NNR
ADPonline one-step, iterative, slow 114.916816 depend on iteration times and AVF MIP + LR + iteration
Global multi-step, slow 85.608173 global optimization MIP
MPC1 one-step, fast 4.400949 local optimization MIP
MPC12 multi-step, slow 11.702328 depend on sliding window numbers MIP

In Table 3, MIP means mixed-integer programming, LR, linear regression,; MINLP, mixed-integer nonlinear programming; NLR, nonlinear regression; NNR, neural network regression.

TABLE 4 | 2-norm error of the exchanged energy with different algorithms.

Method erroreleex errorheatex errorgasex

ADPlinearneg2 0 2.0947 0.0022
ADPlinearpos2 1.5891 4.8011 0.0029
ADPnonlinear82 0 2.0885 0.0020
ADPnonlinear8 0 2.0885 0.0020
ADPonline 0.6786 2.7074 0.0037
ADPonlineneg1 0 2.0947 0.0021
ADPonlineneg3 0 2.0947 0.0022
ADPNNneg1 0 2.0361 0.0020
ADPNNneg5 0 1.8526 0.0020
ADPNNneg10 0.4430 1.7997 0.0021
Global – – –

MPC1 0 2.0797 0.0020
MPC6 0 2.0128 0.0027
MPC12 0 2.4767 0.0022
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Based on the simulation results, some conclusions were
presented:

1) ADP and MPC algorithm had the ability to implement the
real-time operation. Linear function based AVF ADP algorithm,
one optimization window number MPC algorithm had a fast
running time. Nonlinear function based AVF ADP algorithm had
an average running time. Online process ADP method, global
optimization and multiple window numbers MPC algorithm had
a slow running time.

2) In the ADP method, AVF was the important parameter to
influence the dispatching results. In fact, neural network based
AVF ADP algorithm had the smallest real-time operation cost
2-norm error, less than 3% total operation cost relative error,
and the smallest exchanged energy 2-norm error, which means
that neural network based AVF ADP had the best performance.
In addition, the running time of neural network based AVF
ADP was only 31% of the Global algorithm.

3) In the online process, because there was not enough
initial dataset, the regression AVF could not better describe the

future operation cost, which leaded to an average performance.
In addition, at each time step, the real-time optimization
problem was iteratively solved for several times, which also
increased the running time. However, the online process
provided a method to make the decision when there was
not enough initial dataset.

In conclusion, we presented a neural network based ADP
real-time dispatching algorithm, which had almost the same
performance with Global optimization, while only 31%
running time of the Global algorithm. It can be directly
utilized in industry scenarios and improve the dispatching
performance compared to MPC algorithm.
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