- 1Department of Physics, Yale University, New Haven, CT, United States
- 2Energy Sciences Institute, Yale University, West Haven, CT, United States
- 3Department of Applied Physics, Yale University, New Haven, CT, United States
- 4Department of Physics, University of California San Diego, La Jolla, CA, United States
- 5Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Varennes, QC, Canada
Charge order has been a central focus in the study of cuprate high-temperature superconductors due to its intriguing yet not fully understood connection to superconductivity. Recent advances in resonant inelastic x-ray scattering (RIXS) in the soft x-ray regime have enabled the first momentum-resolved studies of dynamic charge order correlations in the cuprates. This progress has opened a window for a more nuanced investigation into the mechanisms behind the formation of charge order (CO) correlations. This review provides an overview of RIXS-based measurements of dynamic CO correlations in various cuprate materials. It specifically focuses on electron-doped cuprates and Bi-based hole-doped cuprates, where the CO-related RIXS signals may reveal signatures of the effective Coulomb interactions. This aims to explore a connection between two central phenomena in the cuprates: strong Coulomb correlations and CO-forming tendencies. Finally, we discuss current open questions and potential directions for future RIXS studies as the technique continues to improve and mature, along with other probes of dynamic correlations that would provide a more comprehensive picture.
1 Introduction
Cuprate high-temperature superconductors exhibit a variety of emergent phenomena, including antiferromagnetism, superconductivity, charge order, and strange metal phases. Charge order (CO) has been a central focus in the study of cuprates for a long time, with the initial detection of stripe order in La-based cuprates by neutron scattering in 1995 and the first evidences for charge order in Bi-based cuprates coming from scanning tunneling microscopy and spectroscopy (STM/S) measurements (Comin and Damascelli, 2016; Frano et al., 2020; Tranquada et al., 1995; Hoffman et al., 2002; Vershinin et al., 2004; Howald et al., 2003; Abbamonte et al., 2005; Wise et al., 2008; Ghiringhelli et al., 2012; Chang et al., 2012; Comin et al., 2014; da Silva Neto et al., 2014; Tabis et al., 2014; da Silva Neto et al., 2015; da Silva Neto et al., 2016). A significant breakthrough occurred in 2011 when an incommensurate CO, independent of spin modulations, was detected in
Charge order has been observed as short-range, incommensurate correlations, leading to proposals that it can be understood in terms of a Fermi surface instability or a nesting condition (Comin and Damascelli, 2016). This perspective has led many to view CO as a minor peculiarity of the normal state of underdoped cuprates, essentially an accident of the Fermi surface. However, this early astute interpretation lacked the insights into inelastic dynamical charge order correlations that later emerged with the full exploitation of the energy-resolving capability of RIXS measurements. Another view sees CO as a consequence of the strong electron correlations that are at the heart of the cuprate problem (Machida, 1989; Zaanen and Gunnarsson, 1989; Emery and Kivelson, 1993; Huang et al., 2017; Zheng et al., 2017). Given the central role of strong correlations in cuprate physics, we hypothesize, based on the evidence reviewed here, that they should be considered in any attempt to understand dynamic CO correlations.
Indeed, much of the interest in CO arose from early theoretical proposals suggesting that the formation of charge or stripe order is a natural way for the doped Mott insulator to frustrate the tendency toward phase separation (Emery and Kivelson, 1993). While short-range local Hubbard-like interactions would cause spatial phase separation into metallic and insulating regions, long-range Coulomb interactions prevent this long-wavelength phase separation and result in short-wavelength charge fluctuations instead. These fluctuations may manifest as either dynamic CO modes or incommensurate static CO, or both. Despite numerous EI-RXS and RIXS studies on CO in cuprates, connecting CO correlations to the effective Coulomb interactions has been challenging. This review will explore prominent experiments where Cu-
This review does not aim to comprehensively cover the phenomenon of charge ordering in cuprates. Several aspects, such as the CO doping dependence, differences and similarities between cuprate families, and the determination of the CO intra-unit-cell structure, are beyond its scope; for these topics, readers are directed to existing literature (Comin and Damascelli, 2016; Frano et al., 2020; Arpaia and Ghiringhelli, 2021). Instead, this focused review delves specifically into how Coulomb interactions may relate to CO. Additionally, our understanding of CO in the cuprates has evolved significantly over the past 13 years, closely tied to advancements in EI-RXS and RIXS techniques in the soft x-rays. As these techniques improve, they not only expand our knowledge but also reveal new questions and expose current experimental limitations. Therefore, this review also highlights important technical developments, discusses our present limitations, and suggests possible future directions.
2 Discussion
2.1 The cuprate Cu- RIXS spectrum
The Cu-
Figure 1. Cuprate Cu-
2.2 Dynamic electron correlations near the charge order wavevector
Given the complexity of the RIXS signal discussed above, how can we detect dynamic CO correlations within such a rich spectrum? This is typically accomplished through careful momentum mapping which reveal subtle dynamic features near the charge order wavevector,
In exploring the relationship between strong electron correlations and CO, high-energy CO features offer valuable insights. These higher energy scales, comparable to the magnetic exchange coupling
2.3 High energy dynamic CO correlations, the case of NCCO
The first indications of CO in electron-doped cuprates came from EI-RXS measurements in NCCO (da Silva Neto et al., 2015). The peak at
Figure 2. CO correlations in NCCO. (A) Temperature dependence of EI-RXS momentum scans showing the presence of a peak at
At first inspection, the experimental results on NCCO present a puzzle. On one hand, the elastic and inelastic signals appear to be linked since they occur at the same
The existence of dynamic correlations at the
Figure 3. Theory of charge and spins susceptibility in electron-doped cuprates and comparison to RIXS measurements in NCCO. (A) Charge
2.4 Quasi-circular dynamic correlations in Bi-2212
To investigate the fingerprints of the effective Coulomb interaction in cuprates, studies of Bi-2212 adopted a new approach. Traditionally, RIXS experiments, constrained by limited synchrotron beam time, focus on the two high-symmetry directions of the 2D in-plane scattering Brillouin zone. However, the
The first study compared EI-RXS measurements of the
Figure 4. (A) Doping dependence of
The second study focused on
These two studies lead to an important consideration: Given the well-known Fermi surface in Bi-2212 and the results of the static Lindhard calculations, if a quasi-circular feature were to exist in Bi-2212, it would not originate from a Fermi surface instability, necessitating an alternative explanation. Indeed, RIXS measurements of Bi-2212 found a quasi-circular pattern in the
Figure 5. Low-energy QCDCs in Bi-2212 measured using the phonon-tracking method. (A) Energy-momentum structure of the RIXS cross-section at
Given the quasi-circular pattern observed in the experiments, it is natural to ask what many-body description might produce it. Systematically going through different textbook approaches to calculating the charge susceptibility, it was first noted that a static Lindhard calculation strongly deviated from the observed quasi-circular pattern, Figure 4G. Next, to account for the finite energy resolution of the RIXS instruments, the experiments were compared to the dynamic Lindhard susceptibility integrated over an energy window comparable to the experimental resolution. Despite this adjustment, a strong qualitative disagreement persisted. It was further noted that the disagreement remained regardless of the inclusion of a pseudogap in the calculation.
Given the failure of the Lindhard (polarizability) function, directly reflecting the band structure geometry, to capture the most salient features of the experiment, the effective Coulomb interaction was considered. Within the random phase approximation (RPA) formalism, features in the susceptibility may emerge from either peaks in the Lindhard (polarizability) function or from minima in the effective Coulomb interaction. In the extreme case of a featureless polarizability function, as indicated by momentum-resolved electron energy loss spectrosocopy (MEELS) measurements of Bi-2212 (Mitrano et al., 2018; Husain et al., 2019), the RPA susceptibility is dominated by the form of the effective Coulomb interaction,
A more detailed theoretical model that simultaneously reproduces various aspects of the RIXS on Bi-2212, similar to the one for NCCO, is still being developed. Nevertheless, following the first reports of QCDCs, theoretical works have also observed similar quasi-circular structures, using the same model that reproduced the RIXS measured plasmons in cuprates (Yamase et al., 2021; Bejas et al., 2022). Interestingly, these studies converge on an important conceptual point: the QCDCs are likely the consequence of an effective Coulomb potential that must include long-range interactions.
2.5 Low-energy QCDCs as mediators of strange metal behavior
Recent combined transport and RIXS studies revealed an unexpected link between linear-in-temperature resistivity, which characterizes the strange metal behavior, and charge order (CO) in YBCO (Wahlberg et al., 2021). The linear-in-temperature resistivity (Gurvitch and Fiory, 1987; Martin et al., 1990), often associated with an isotropic scattering rate that depends solely on temperature (i.e.,
3 Open questions and future directions
3.1 Enabling technical advancements
Before addressing open questions and future directions, we briefly discuss the key instruments used to obtain the EI-RXS and RIXS results reviewed above, pointing out their key technical characteristics. This section is not intended as a comprehensive review of technical developments, but rather a brief mention of the beamlines from which these studies originated. For a more detailed and recent review of RIXS, we refer readers to (de Groot et al., 2024).
First, in the studies of charge order using EI-RXS in the soft x-rays, the UE-46 beamline at the BESSY II synchrotron (Weschke and Schierle, 2018) and the REIXS beamline at the Canadian Light Source (Hawthorn et al., 2011) were instrumental. At REIXS, measurements were conducted down to 20 K, with the capability to heat the sample stage up to 400 K. The ability to reach high temperatures was crucial for the temperature-dependent studies of electron-doped cuprate (da Silva Neto et al., 2015; 2016), such as the one presented in Figure 2B. Complementarily, the UE-46 beamline allowed access to lower temperatures, down to 10 K, and a second endstation at UE-46 enabled the application of magnetic fields at similar temperatures. These features were pivotal for studying the relationship between charge order and superconductivity (Blanco-Canosa et al., 2014), particularly in low-
Second, the evolution of RIXS, as reflected in the results presented above, was driven by advancements in energy resolution at the Cu-
Finally, despite the advancements in energy resolution for Cu-
3.2 Decomposing the high energy CO correlations with polarimetric RIXS
One of the main advantages of the soft x-ray RIXS cross-section is its sensitivity to various degrees of freedom (Ament et al., 2011; Devereaux et al., 2016), but this also presents complications. Despite the success of the phonon-tracking method, the energy profile of the QCDCs, i.e., their energy spectrum, has not been resolved. Thus, although high-energy and low-energy QCDCs appear at the same momenta, it remains possible that they have different origins. Resolving this question requires the ability to decompose the rich RIXS spectrum into its different components. For this, pol-RIXS may be the most effective technique to determine the contributions to the MIR energy scale, as demonstrated in NCCO. However, these experiments are extremely challenging. The most mature state-of-the-art polarimeter, available at the ID32 beamline of the European Synchrotron Radiation Facility, uses a mirror with an average reflection coefficient of about 0.1 (Brookes et al., 2018; Braicovich et al., 2014). Recently, pol-RIXS is also being developed at the I21 beamline at Diamond Light Source, with a similar average reflection coefficient at the Ni-
3.3 QCDCs in other cuprates and strain
It is still unclear if QCDCs exist in other cuprate families. One approach to investigate this would be to use the phonon tracking method to map the
Despite the recent successful examples of integrating soft x-ray RXS with uniaxial strain (Boyle et al., 2021; Kim et al., 2021; Wang et al., 2022; Gupta et al., 2023; Martinelli et al., 2024), we note that these measurements are extremely challenging for several reasons: (i) technical challenges associated with the integration of the strain devices into the ultra-high-vacuum chambers of the existing RIXS setups, (ii) a high-rate of broken samples upon stress application and (iii) difficulty in precisely determining the effective strain on the sample during the RIXS study. Barring advances in methods for applying uniaxial strain, more efficient RIXS would greatly benefit these studies by allowing for faster cycling of samples. Relatedly, epitaxial strain (Bluschke et al., 2018) and chemical pressure (Ruiz et al., 2022) have been shown to have significant impact on the out-of-plane coupling of the CO in YBCO. How this translates to the in-plane structure of the dynamic charge correlations remains an open question.
3.4 New experimental probes of high energy CO correlations
In recent years, the advent of free-electron lasers (FELs) has enabled the extension of EI-RXS and RIXS into the time domain, providing new insights into the light-induced dynamics and melting of CO in cuprates (Mitrano et al., 2019; Mitrano and Wang, 2020; Bluschke et al., 2024). In particular, two recent time-resolved EI-RXS studies have reported the dynamic competition between superconductivity and CO in YBCO (Wandel et al., 2022; Jang et al., 2022). Both studies show that quenching the superconducting phase with near-infrared (near-IR) light results in a transient non-thermal enhancement of the static CO coherence length and peak intensity. These results provided evidence that superconductivity is intimately intertwined with CO, disrupting its spatial coherence (Wandel et al., 2022), and that the light-driven non-thermal state of cuprates shares close similarity with that reached under the magnetic field (Jang et al., 2022). Regarding the response of CO above
Building up on the recent report of the ultrafast renormalization of the on-site Coulomb interaction in cuprates via time-resolved X-ray absorption (Baykusheva et al., 2022), we highlight the potential of TR-RIXS to investigate
The experimental strategy discussed above relies on the combination of two experimental probes to obtain direct insights into the momentum transfer
Author contributions
ES: Writing–original draft, Writing–review and editing. AF: Writing–original draft, Writing–review and editing. FB: Writing–original draft, Writing–review and editing.
Funding
The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. ES was supported by the Alfred P. Sloan Fellowship and the National Science Foundation under Grant No. DMR-2034345. AF was supported by the CIFAR Azrieli Global Scholars program and by the National Science Foundation under Grant No. DMR-2145080. FB was supported by the Natural Sciences and Engineering Research Council of Canada, the Canada Research Chairs Program, the Fonds de recherche du Québec–Nature et Technologies, and the Ministère de l’Économie, de l’Innovation et de l’Énergie - Québec.
Acknowledgments
We thank Kirsty Scott, Matteo Minola and Yu He for the careful reading of the manuscript and insightful comments.
Conflict of interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
The Handling Editor JP declared a past co-authorship/collaboration with the authors.
Publisher’s note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
References
Abbamonte, P., Rusydi, A., Smadici, S., Gu, G. D., Sawatzky, G. A., and Feng, D. L. (2005). Spatially modulated ‘Mottness’ in La2−xBaxCuO4. Nat. Phys. 1, 155–158. doi:10.1038/nphys178
Aji, V., and Varma, C. M. (2007). Theory of the quantum critical fluctuations in cuprate superconductors. Phys. Rev. Lett. 99, 067003. doi:10.1103/PhysRevLett.99.067003
Ament, L. J. P., van Veenendaal, M., Devereaux, T. P., Hill, J. P., and van den Brink, J. (2011). Resonant inelastic x-ray scattering studies of elementary excitations. Rev. Mod. Phys. 83, 705–767. doi:10.1103/revmodphys.83.705
Arpaia, R., Caprara, S., Fumagalli, R., De Vecchi, G., Peng, Y. Y., Andersson, E., et al. (2019). Dynamical charge density fluctuations pervading the phase diagram of a Cu-based high-Tc superconductor. Science 365, 906–910. doi:10.1126/science.aav1315
Arpaia, R., and Ghiringhelli, G. (2021). Charge order at high temperature in cuprate superconductors. J. Phys. Soc. Jpn. 90, 111005. doi:10.7566/JPSJ.90.111005
Arpaia, R., Martinelli, L., Sala, M. M., Caprara, S., Nag, A., Brookes, N. B., et al. (2023). Signature of quantum criticality in cuprates by charge density fluctuations. Nat. Commun. 14, 7198. doi:10.1038/s41467-023-42961-5
Baykusheva, D. R., Jang, H., Husain, A. A., Lee, S., TenHuisen, S. F. R., Zhou, P., et al. (2022). Ultrafast renormalization of the on-site coulomb repulsion in a cuprate superconductor. Phys. Rev. X 12, 011013. doi:10.1103/PhysRevX.12.011013
Becca, F., Tarquini, M., Grilli, M., and Di Castro, C. (1996). Charge-density waves and superconductivity as an alternative to phase separation in the infinite-u hubbard-holstein model. Phys. Rev. B 54, 12443–12457. doi:10.1103/PhysRevB.54.12443
Bejas, M., Zeyher, R., and Greco, A. (2022). Ring-like shaped charge modulations in the t–j model with long-range coulomb interaction. Phys. Rev. B 106, 224512. doi:10.1103/PhysRevB.106.224512
Betto, D., Fumagalli, R., Martinelli, L., Rossi, M., Piombo, R., Yoshimi, K., et al. (2021). Multiple-magnon excitations shape the spin spectrum of cuprate parent compounds. Phys. Rev. B 103, L140409. doi:10.1103/PhysRevB.103.L140409
Blanco-Canosa, S., Frano, A., Schierle, E., Porras, J., Loew, T., Minola, M., et al. (2014). Resonant x-ray scattering study of charge-density wave correlations in YBa2Cu3O6+x. Phys. Rev. B 90, 054513. doi:10.1103/physrevb.90.054513
Bluschke, M., Frano, A., Schierle, E., Putzky, D., Ghorbani, F., Ortiz, R., et al. (2018). Stabilization of three-dimensional charge order in YBa2Cu3O6+x via epitaxial growth. Nat. Commun. 9, 2978. doi:10.1038/s41467-018-05434-8
Bluschke, M., Gupta, N. K., Jang, H., Husain, A. A., Lee, B., Kim, M., et al. (2024). “Orbital-selective time-domain signature of nematicity dynamics in the charge-density-wave phase of La1.65Eu0.2Sr0.15CuO4,” in Proceedings of the National Academy of Sciences 121.e2400727121
Boschini, F., Minola, M., Sutarto, R., Schierle, E., Bluschke, M., Das, S., et al. (2021). Dynamic electron correlations with charge order wavelength along all directions in the copper oxide plane. Nat. Commun. 12, 597–598. doi:10.1038/s41467-020-20824-7
Boschini, F., Zonno, M., and Damascelli, A. (2024). Time-resolved arpes studies of quantum materials. Rev. Mod. Phys. 96, 015003. doi:10.1103/revmodphys.96.015003
Boyle, T. J., Walker, M., Ruiz, A., Schierle, E., Zhao, Z., Boschini, F., et al. (2021). Large response of charge stripes to uniaxial stress in La1.475Nd0.4Sr0.125CuO4. Phys. Rev. Res. 3, L022004. doi:10.1103/PhysRevResearch.3.L022004
Braicovich, L., Minola, M., Dellea, G., Le Tacon, M., Moretti Sala, M., Morawe, C., et al. (2014). The simultaneous measurement of energy and linear polarization of the scattered radiation in resonant inelastic soft x-ray scattering. Rev. Sci. Instrum. 85, 115104. doi:10.1063/1.4900959
Braicovich, L., Rossi, M., Fumagalli, R., Peng, Y., Wang, Y., Arpaia, R., et al. (2020). Determining the electron-phonon coupling in superconducting cuprates by resonant inelastic x-ray scattering: methods and results on Nd+XBa2−xCu3O7−δ. Phys. Rev. Res. 2, 023231. doi:10.1103/physrevresearch.2.023231
Braicovich, L., van den Brink, J., Bisogni, V., Sala, M. M., Ament, L. J. P., Brookes, N. B., et al. (2010). Magnetic excitations and phase separation in the underdoped La2−xSrxCuO4 superconductor measured by resonant inelastic x-ray scattering. Phys. Rev. Lett. 104, 077002. doi:10.1103/PhysRevLett.104.077002
Brookes, N., Yakhou-Harris, F., Kummer, K., Fondacaro, A., Cezar, J., Betto, D., et al. (2018). The beamline ID32 at the esrf for soft x-ray high energy resolution resonant inelastic x-ray scattering and polarisation dependent x-ray absorption spectroscopy. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 903, 175–192. doi:10.1016/j.nima.2018.07.001
Caprara, S., Castro, C. D., Mirarchi, G., Seibold, G., and Grilli, M. (2022). Dissipation-driven strange metal behavior. Commun. Phys. 5, 10–17. doi:10.1038/s42005-021-00786-y
Caprara, S., Grilli, M., Di Castro, C., and Seibold, G. (2017). Pseudogap and (an)isotropic scattering in the fluctuating charge-density wave phase of cuprates. J. Supercond. Nov. Magnetism 30, 25–30. doi:10.1007/s10948-016-3775-9
Chaix, L., Ghiringhelli, G., Peng, Y. Y., Hashimoto, M., Moritz, B., Kummer, K., et al. (2017). Dispersive charge density wave excitations in Bi2Sr2CaCu2O8+δ. Nat. Phys. 13, 952–956. doi:10.1038/nphys4157
Chang, J., Blackburn, E., Holmes, A. T., Christensen, N. B., Larsen, J., Mesot, J., et al. (2012). Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67. Nat. Phys. 8, 871–876. doi:10.1038/nphys2456
Chen, X., Choi, J., Jiang, Z., Mei, J., Jiang, K., Li, J., et al. (2024). “Electronic and magnetic excitations in La3Ni2O7,”. Available at: https://arxiv.org/abs/2401.12657
Chuang, Y.-D., Feng, X., Cruz, A., Hanzel, K., Brown, A., Spucces, A., et al. (2022). Momentum-resolved resonant inelastic soft X-ray scattering (qRIXS) endstation at the ALS. J. Electron Spectrosc. Relat. Phenom. 257, 146897. doi:10.1016/j.elspec.2019.146897
Comin, R., and Damascelli, A. (2016). Resonant x-ray scattering studies of charge order in cuprates. Annu. Rev. Condens. Matter Phys. 7, 369–405. doi:10.1146/annurev-conmatphys-031115-011401
Comin, R., Frano, A., Yee, M. M., Yoshida, Y., Eisaki, H., Schierle, E., et al. (2014). Charge order driven by fermi-arc instability in Bi2Sr2−xLaxCuO6+δ. Science 343, 390–392. doi:10.1126/science.1242996
da Silva Neto, E. H., Aynajian, P., Frano, A., Comin, R., Schierle, E., Weschke, E., et al. (2014). Ubiquitous interplay between charge ordering and high-temperature superconductivity in cuprates. Science 343, 393–396. doi:10.1126/science.1243479
da Silva Neto, E. H., Comin, R., He, F., Sutarto, R., Jiang, Y., Greene, R. L., et al. (2015). Charge ordering in the electron-doped superconductor Nd2−xCexCuO4. Science 347, 282–285. doi:10.1126/science.1256441
da Silva Neto, E. H., Minola, M., Yu, B., Tabis, W., Bluschke, M., Unruh, D., et al. (2018). Coupling between dynamic magnetic and charge-order correlations in the cuprate superconductor superconductor Nd2−xCexCuO4. Phys. Rev. B 98, 161114. doi:10.1103/PhysRevB.98.161114
da Silva Neto, E. H., Yu, B., Minola, M., Sutarto, R., Schierle, E., Boschini, F., et al. (2016). Doping-dependent charge order correlations in electron-doped cuprates. Sci. Adv 2, e1600782. doi:10.1126/sciadv.1600782
de Groot, F. M. F., Haverkort, M. W., Elnaggar, H., Juhin, A., Zhou, K.-J., and Glatzel, P. (2024). Resonant inelastic x-ray scattering. Nat. Rev. Methods Prim. 4, 45. doi:10.1038/s43586-024-00322-6
Devereaux, T. P., Claassen, M., Huang, X.-X., Zaletel, M., Moore, J. E., Morr, D., et al. (2023). Angle-resolved pair photoemission theory for correlated electrons. Phys. Rev. B 108, 165134. doi:10.1103/physrevb.108.165134
Devereaux, T. P., Shvaika, A. M., Wu, K., Wohlfeld, K., Jia, C. J., Wang, Y., et al. (2016). Directly characterizing the relative strength and momentum dependence of electron-phonon coupling using resonant inelastic X-ray scattering. Phys. Rev. X 6, 041019. doi:10.1103/PhysRevX.6.041019
Drozdov, I. K., Pletikosić, I., Kim, C.-K., Fujita, K., Gu, G. D., Davis, J. C. S., et al. (2018). Phase diagram of Bi2Sr2CaCu2O8+δ revisited. Nat. Commun. 9, 5210. doi:10.1038/s41467-018-07686-w
Dvorak, J., Jarrige, I., Bisogni, V., Coburn, S., and Leonhardt, W. (2016). Towards 10 mev resolution: the design of an ultrahigh resolution soft x-ray rixs spectrometer. Rev. Sci. Instrum. 87, 115109. doi:10.1063/1.4964847
Emery, V., and Kivelson, S. (1993). Frustrated electronic phase separation and high-temperature superconductors. Phys. C. Supercond. 209, 597–621. doi:10.1016/0921-4534(93)90581-A
Frano, A., Blanco-Canosa, S., Keimer, B., and Birgeneau, R. J. (2020). Charge ordering in superconducting copper oxides. J. Phys. Condens. Matter 32, 374005. doi:10.1088/1361-648X/ab6140
Fumagalli, R., Braicovich, L., Minola, M., Peng, Y. Y., Kummer, K., Betto, D., et al. (2019). Polarization-resolved cu L3-edge resonant inelastic x-ray scattering of orbital and spin excitations in NdBa2Cu3O7−δ. Phys. Rev. B 99, 134517. doi:10.1103/PhysRevB.99.134517
Ghiringhelli, G., Le Tacon, M., Minola, M., Blanco-Canosa, S., Mazzoli, C., Brookes, N. B., et al. (2012). Long-range incommensurate charge fluctuations in (Y,Nd)Ba2Cu3O6+x. Science 337, 821–825. doi:10.1126/science.1223532
Ghiringhelli, G., Piazzalunga, A., Dallera, C., Trezzi, G., Braicovich, L., Schmitt, T., et al. (2006). SAXES, a high resolution spectrometer for resonant x-ray emission in the 400–1600eV energy range. Rev. Sci. Instrum. 77, 113108. doi:10.1063/1.2372731
Grissonnanche, G., Fang, Y., Legros, A., Verret, S., Laliberté, F., Collignon, C., et al. (2021). Linear-in temperature resistivity from an isotropic planckian scattering rate. Nature 595, 667–672. doi:10.1038/s41586-021-03697-8
Gupta, N. K., Sutarto, R., Gong, R., Idziak, S. H. J., Hale, H., Kim, Y.-J., et al. (2023). Tuning charge density wave order and structure via uniaxial stress in a stripe-ordered cuprate superconductor. Phys. Rev. B 108, L121113. doi:10.1103/PhysRevB.108.L121113
Gurvitch, M., and Fiory, A. T. (1987). Resistivity of La1.825Sr0.175CuO4 and YBa2Cu3O7 to 1100 k: Absence of saturation and its implications. Phys. Rev. Lett. 59, 1337–1340. doi:10.1103/PhysRevLett.59.1337
Hawthorn, D. G., He, F., Venema, L., Davis, H., Achkar, A. J., Zhang, J., et al. (2011). An in-vacuum diffractometer for resonant elastic soft x-ray scattering. Rev. Sci. Instrum. 82, 073104. doi:10.1063/1.3607438
Hepting, M., Bejas, M., Nag, A., Yamase, H., Coppola, N., Betto, D., et al. (2022). Gapped collective charge excitations and interlayer hopping in cuprate superconductors. Phys. Rev. Lett. 129, 047001. doi:10.1103/PhysRevLett.129.047001
Hepting, M., Boyko, T. D., Zimmermann, V., Bejas, M., Suyolcu, Y. E., Puphal, P., et al. (2023). Evolution of plasmon excitations across the phase diagram of the cuprate superconductor La2−xSrxCuO4. Phys. Rev. B 107, 214516. doi:10.1103/PhysRevB.107.214516
Hepting, M., Chaix, L., Huang, E. W., Fumagalli, R., Peng, Y. Y., Moritz, B., et al. (2018). Three-dimensional collective charge excitations in electron-doped copper oxide superconductors. Nature 563, 374–378. doi:10.1038/s41586-018-0648-3
Hill, J. P., Blumberg, G., Kim, Y.-J., Ellis, D. S., Wakimoto, S., Birgeneau, R. J., et al. (2008). Observation of a 500 mev collective mode in La2−xSrxCuO4 and Nd2CuO4 using resonant inelastic x-ray scattering. Phys. Rev. Lett. 100, 097001. doi:10.1103/PhysRevLett.100.097001
Hoffman, J. E., Hudson, E. W., Lang, K. M., Madhavan, V., Eisaki, H., Uchida, S., et al. (2002). A four unit cell periodic pattern of quasi-particle states surrounding vortex cores in Bi2Sr2CaCu2O8+δ. Science 295, 466–469. doi:10.1126/science.1066974
Howald, C., Eisaki, H., Kaneko, N., and Kapitulnik, A. (2003). Coexistence of periodic modulation of quasiparticle states and superconductivity in in Bi2Sr2CaCu2O8+δ. Proc. Natl. Acad. Sci. 100, 9705–9709. doi:10.1073/pnas.1233768100
Huang, E. W., Mendl, C. B., Liu, S., Johnston, S., Jiang, H.-C., Moritz, B., et al. (2017). Numerical evidence of fluctuating stripes in the normal state of high-Tc cuprate superconductors. Science 358, 1161–1164. doi:10.1126/science.aak9546
Huang, H. Y., Singh, A., Mou, C. Y., Johnston, S., Kemper, A. F., van den Brink, J., et al. (2021). Quantum fluctuations of charge order induce phonon softening in a superconducting cuprate. Phys. Rev. X 11, 041038. doi:10.1103/PhysRevX.11.041038
Husain, A. A., Mitrano, M., Rak, M. S., Rubeck, S., Uchoa, B., March, K., et al. (2019). Crossover of charge fluctuations across the strange metal phase diagram. Phys. Rev. X 9, 041062. doi:10.1103/PhysRevX.9.041062
Hwang, J., Timusk, T., and Gu, G. D. (2007). Doping dependent optical properties of Bi2Sr2CaCu2O8+δ. J. Phys. Condens. Matter 19, 125208. doi:10.1088/0953-8984/19/12/125208
Ishii, K., Fujita, M., Sasaki, T., Minola, M., Dellea, G., Mazzoli, C., et al. (2014). High-energy spin and charge excitations in electron-doped copper oxide superconductors. Nat. Commun. 5, 3714. doi:10.1038/ncomms4714
Jang, H., Song, S., Kihara, T., Liu, Y., Lee, S.-J., Park, S.-Y., et al. (2022). Characterization of photoinduced normal state through charge density wave in superconducting YBa2Cu3O6.67. Sci. Adv. 8, eabk0832. doi:10.1126/sciadv.abk0832
Jarrige, I., Bisogni, V., Zhu, Y., Leonhardt, W., and Dvorak, J. (2018). Paving the way to ultra-high-resolution resonant inelastic x-ray scattering with the six beamline at NSLS-II. Synchrotron Radiat. News 31, 7–13. doi:10.1080/08940886.2018.1435949
Kang, M., Pelliciari, J., Frano, A., Breznay, N., Schierle, E., Weschke, E., et al. (2019). Evolution of charge order topology across a magnetic phase transition in cuprate superconductors. Nat. Phys. 15, 335–340. doi:10.1038/s41567-018-0401-8
Kim, H.-H., Lefrançois, E., Kummer, K., Fumagalli, R., Brookes, N. B., Betto, D., et al. (2021). Charge density waves in YBa2Cu3O6.67 probed by resonant x-ray scattering under uniaxial compression. Phys. Rev. Lett. 126, 037002. doi:10.1103/PhysRevLett.126.037002
Kivelson, S. A., Bindloss, I. P., Fradkin, E., Oganesyan, V., Tranquada, J. M., Kapitulnik, A., et al. (2003). How to detect fluctuating stripes in the high-temperature superconductors. Rev. Mod. Phys. 75, 1201–1241. doi:10.1103/RevModPhys.75.1201
Lee, W. S., Lee, J. J., Nowadnick, E. A., Gerber, S., Tabis, W., Huang, S. W., et al. (2014). Asymmetry of collective excitations in electron- and hole-doped cuprate superconductors. Nat. Phys. 10, 883–889. doi:10.1038/nphys3117
Lee, W. S., Zhou, K.-J., Hepting, M., Li, J., Nag, A., Walters, A. C., et al. (2021). Spectroscopic fingerprint of charge order melting driven by quantum fluctuations in a cuprate. Nat. Phys. 17, 53–57. doi:10.1038/s41567-020-0993-7
Le Tacon, M., Ghiringhelli, G., Chaloupka, J., Sala, M. M., Hinkov, V., Haverkort, M. W., et al. (2011). Intense paramagnon excitations in a large family of high-temperature superconductors. Nat. Phys. 7, 725–730. doi:10.1038/nphys2041
Li, J., Nag, A., Pelliciari, J., Robarts, H., Walters, A., Garcia-Fernandez, M., et al. (2020). Multiorbital charge-density wave excitations and concomitant phonon anomalies in Bi2Sr2LaCuO6+δ. Proc. Natl. Acad. Sci. 117, 16219–16225. doi:10.1073/pnas.2001755117
Lin, J., Yuan, J., Jin, K., Yin, Z., Li, G., Zhou, K.-J., et al. (2020a). Doping evolution of the charge excitations and electron correlations in electron-doped superconducting La2−xCexCuO4. npj Quantum Mater. 5, 4. doi:10.1038/s41535-019-0205-9
Lin, J. Q., Miao, H., Mazzone, D. G., Gu, G. D., Nag, A., Walters, A. C., et al. (2020b). Strongly correlated charge density wave in La2−xSrxCuO4 evidenced by doping-dependent phonon anomaly. Phys. Rev. Lett. 124, 207005. doi:10.1103/PhysRevLett.124.207005
Lu, H., Hashimoto, M., Chen, S.-D., Ishida, S., Song, D., Eisaki, H., et al. (2022). Identification of a characteristic doping for charge order phenomena in Bi-2212 cuprates via rixs. Phys. Rev. B 106, 155109. doi:10.1103/physrevb.106.155109
Machida, K. (1989). Magnetism in Bi2+xSr2−yCuO6+δ based compounds. Phys. C. Supercond. 158, 192–196. doi:10.1016/0921-4534(89)90316-X
Mahmood, F., Devereaux, T., Abbamonte, P., and Morr, D. K. (2022). Distinguishing finite-momentum superconducting pairing states with two-electron photoemission spectroscopy. Phys. Rev. B 105, 064515. doi:10.1103/physrevb.105.064515
Martin, S., Fiory, A. T., Fleming, R. M., Schneemeyer, L. F., and Waszczak, J. V. (1990). Normal-state transport properties of Bi2+xSr2−yCuO6+δ crystals. Phys. Rev. B 41, 846–849. doi:10.1103/PhysRevB.41.846
Martinelli, L., Biało, I., Hong, X., Oppliger, J., Lin, C., Schaller, T., et al. (2024). “Decoupled static and dynamical charge correlations in La2−xSrxCuO4,”. doi:10.48550/arXiv.2406.15062
Merzoni, G., Martinelli, L., Braicovich, L., Brookes, N. B., Lombardi, F., Rosa, F., et al. (2024). Charge response function probed by resonant inelastic x-ray scattering: signature of electronic gaps of YBa2Cu3O7−δ. Phys. Rev. B 109, 184506. doi:10.1103/PhysRevB.109.184506
Miao, H., Fumagalli, R., Rossi, M., Lorenzana, J., Seibold, G., Yakhou-Harris, F., et al. (2019). Formation of incommensurate charge density waves in cuprates. Phys. Rev. X 9, 031042. doi:10.1103/PhysRevX.9.031042
Miao, H., Lorenzana, J., Seibold, G., Peng, Y. Y., Amorese, A., Yakhou-Harris, F., et al. (2017). Precursor charge density waves in La1.875Ba0.125CuO4. ArXiv e-prints
Minola, M., Dellea, G., Gretarsson, H., Peng, Y. Y., Lu, Y., Porras, J., et al. (2015). Collective nature of spin excitations in superconducting cuprates probed by resonant inelastic x-ray scattering. Phys. Rev. Lett. 114, 217003. doi:10.1103/PhysRevLett.114.217003
Mitrano, M., Husain, A. A., Vig, S., Kogar, A., Rak, M. S., Rubeck, S. I., et al. (2018). Anomalous density fluctuations in a strange metal. Proc. Natl. Acad. Sci. 115, 5392–5396. doi:10.1073/pnas.1721495115
Mitrano, M., Lee, S., Husain, A. A., Delacretaz, L., Zhu, M., de la Peña Munoz, G., et al. (2019). Ultrafast time-resolved x-ray scattering reveals diffusive charge order dynamics in La2−xBaxCuO4. Sci. Adv. 5, eaax3346. doi:10.1126/sciadv.aax3346
Mitrano, M., and Wang, Y. (2020). Probing light-driven quantum materials with ultrafast resonant inelastic x-ray scattering. Commun. Phys. 3, 184. doi:10.1038/s42005-020-00447-6
Nag, A., Zhu, M., Bejas, M., Li, J., Robarts, H. C., Yamase, H., et al. (2020). Detection of acoustic plasmons in hole-doped lanthanum and bismuth cuprate superconductors using resonant inelastic x-ray scattering. Phys. Rev. Lett. 125, 257002. doi:10.1103/PhysRevLett.125.257002
Patel, A. A., Guo, H., Esterlis, I., and Sachdev, S. (2023). Universal theory of strange metals from spatially random interactions. Science 381, 790–793. doi:10.1126/science.abq6011
Patel, A. A., McGreevy, J., Arovas, D. P., and Sachdev, S. (2018). Magnetotransport in a model of a disordered strange metal. Phys. Rev. X 8, 021049. doi:10.1103/physrevx.8.021049
Patel, A. A., and Sachdev, S. (2019). Theory of a planckian metal. Phys. Rev. Lett. 123, 066601. doi:10.1103/PhysRevLett.123.066601
Peng, Y., Martinelli, L., Li, Q., Rossi, M., Mitrano, M., Arpaia, R., et al. (2022). Doping dependence of the electron-phonon coupling in two families of bilayer superconducting cuprates. Phys. Rev. B 105, 115105. doi:10.1103/PhysRevB.105.115105
Peng, Y. Y., Hashimoto, M., Sala, M. M., Amorese, A., Brookes, N. B., Dellea, G., et al. (2015). Magnetic excitations and phonons simultaneously studied by resonant inelastic x-ray scattering in optimally doped Bi1.5Pb0.55Sr1.6La0.4CuO6+δ. Phys. Rev. B 92, 064517. doi:10.1103/PhysRevB.92.064517
Peng, Y. Y., Husain, A. A., Mitrano, M., Sun, S. X.-L., Johnson, T. A., Zakrzewski, A. V., et al. (2020). Enhanced electron-phonon coupling for charge-density-wave formation in La1.8−xEu0.2SrxCuO4+δ. Phys. Rev. Lett. 125, 097002. doi:10.1103/PhysRevLett.125.097002
Phillips, P. W., Hussey, N. E., and Abbamonte, P. (2022). Stranger than metals. Science 377, eabh4273. doi:10.1126/science.abh4273
Riegler, D., Seufert, J., da Silva Neto, E. H., Wölfle, P., Thomale, R., and Klett, M. (2023). Interplay of spin and charge order in the electron-doped cuprates. Phys. Rev. B 108, 195141. doi:10.1103/PhysRevB.108.195141
Rossi, M., Arpaia, R., Fumagalli, R., Moretti Sala, M., Betto, D., Kummer, K., et al. (2019). Experimental determination of momentum-resolved electron-phonon coupling. Phys. Rev. Lett. 123, 027001. doi:10.1103/PhysRevLett.123.027001
Ruiz, A., Gunn, B., Lu, Y., Sasmal, K., Moir, C. M., Basak, R., et al. (2022). Stabilization of three-dimensional charge order through interplanar orbital hybridization in PrxY1−xBa2Cu3O6+δ. Nat. Commun. 6197, 6197. doi:10.1038/s41467-022-33607-z
Sala, M. M., Bisogni, V., Aruta, C., Balestrino, G., Berger, H., Brookes, N. B., et al. (2011). Energy and symmetry of dd excitations in undoped layered cuprates measured by Cu−L3 resonant inelastic x-ray scattering. New J. Phys. 13, 043026. doi:10.1088/1367-2630/13/4/043026
Scott, K., Kisiel, E., Boyle, T. J., Basak, R., Jargot, G., Das, S., et al. (2023). Low-energy quasi-circular electron correlations with charge order wavelength in Bi2Sr2CaCu2O8+δ. Sci. Adv. 9, eadg3710. doi:10.1126/sciadv.adg3710
Scott, K., Kisiel, E., Yakhou, F., Agrestini, S., Garcia-Fernandez, M., Kummer, K., et al. (2024). Detection of a two-phonon mode in a cuprate superconductor via polarimetric resonant inelastic x-ray scattering. Phys. Rev. B 109, 125126. doi:10.1103/PhysRevB.109.125126
Seibold, G., Arpaia, R., Peng, Y. Y., Fumagalli, R., Braicovich, L., Di Castro, C., et al. (2021). Strange metal behaviour from charge density fluctuations in cuprates. Commun. Phys. 4, 7–6. doi:10.1038/s42005-020-00505-z
Seibold, G., Becca, F., Bucci, F., Castellani, C., Di Castro, C., and Grilli, M. (2000). Spectral properties of incommensurate charge-density wave systems. Eur. Phys. J. B - Condens. Matter Complex Syst. 13, 87–97. doi:10.1007/s100510050013
Singh, A., Huang, H. Y., Lane, C., Li, J. H., Okamoto, J., Komiya, S., et al. (2022). Acoustic plasmons and conducting carriers in hole-doped cuprate superconductors. Phys. Rev. B 105, 235105. doi:10.1103/PhysRevB.105.235105
Stahl, C., and Eckstein, M. (2019). Noise correlations in time-and angle-resolved photoemission spectroscopy. Phys. Rev. B 99, 241111. doi:10.1103/physrevb.99.241111
Strocov, V. N., Schmitt, T., Flechsig, U., Schmidt, T., Imhof, A., Chen, Q., et al. (2010). High-resolution soft X-ray beamline ADRESS at the Swiss Light Source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies. J. Synchrotron Radiat. 17, 631–643. doi:10.1107/S0909049510019862
Su, Y., and Zhang, C. (2020). Coincidence angle-resolved photoemission spectroscopy: proposal for detection of two-particle correlations. Phys. Rev. B 101, 205110. doi:10.1103/physrevb.101.205110
Suzuki, H., Minola, M., Lu, Y., Peng, Y., Fumagalli, R., Lefrançois, E., et al. (2018). Probing the energy gap of high-temperature cuprate superconductors by resonant inelastic x-ray scattering. npj Quantum Mater. 3, 65. doi:10.1038/s41535-018-0139-7
Tabis, W., Li, Y., Le Tacon, M., Braicovich, L., Kreyssig, A., Minola, M., et al. (2014). Charge order and its connection with Fermi-liquid charge transport in a pristine high-Tc cuprate. Nat. Comm. 5, 5875. doi:10.1038/ncomms6875
Takayanagi, T., Kogure, M., and Terasaki, I. (2002). Out-of-plane dielectric constant and insulator-superconductor transition in Bi2Sr2Dy1−xErxCu2O8 single crystals. J. Phys. Condens. Matter 14, 1361–1370. doi:10.1088/0953-8984/14/6/321
Tranquada, J. M., Sternlieb, B. J., Axe, J. D., Nakamura, Y., and Uchida, S. (1995). Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375, 561–563. doi:10.1038/375561a0
Trützschler, A., Huth, M., Chiang, C.-T., Kamrla, R., Schumann, F. O., Kirschner, J., et al. (2017). Band-resolved double photoemission spectroscopy on correlated valence electron pairs in metals. Phys. Rev. Lett. 118, 136401. doi:10.1103/physrevlett.118.136401
Varma, C. M., Littlewood, P. B., Schmitt-Rink, S., Abrahams, E., and Ruckenstein, A. E. (1989). Phenomenology of the normal state of cu-o high-temperature superconductors. Phys. Rev. Lett. 63, 1996–1999. doi:10.1103/physrevlett.63.1996
Vershinin, M., Misra, S., Ono, S., Abe, Y., Ando, Y., and Yazdani, A. (2004). Local ordering in the pseudogap state of the high-Tc superconductor Bi2Sr2CaCu2O8+δ. Science 303, 1995–1998. doi:10.1126/science.1093384
Wahlberg, E., Arpaia, R., Seibold, G., Rossi, M., Fumagalli, R., Trabaldo, E., et al. (2021). Restored strange metal phase through suppression of charge density waves in underdoped YBa2Cu3O7−δ. Science 373, 1506–1510. doi:10.1126/science.abc8372
Wandel, S., Boschini, F., da Silva Neto, E., Shen, L., Na, M., Zohar, S., et al. (2022). Enhanced charge density wave coherence in a light-quenched, high-temperature superconductor. Science 376, 860–864. doi:10.1126/science.abd7213
Wang, Q., von Arx, K., Horio, M., Mukkattukavil, D. J., Küspert, J., Sassa, Y., et al. (2021). Charge order lock-in by electron-phonon coupling in La1.675Eu0.2Sr0.125CuO4. Sci. Adv. 7, eabg7394. doi:10.1126/sciadv.abg7394
Wang, Q., von Arx, K., Mazzone, D. G., Mustafi, S., Horio, M., Küspert, J., et al. (2022). Uniaxial pressure induced stripe order rotation in La1.88Sr0.12CuO4. Nat. Commun. 13, 1795. doi:10.1038/s41467-022-29465-4
Weschke, E., and Schierle, E. (2018). The ue46 pgm-1 beamline at bessy ii. J. large-scale Res. Facil. JLSRF 4, A127. doi:10.17815/jlsrf-4-77
Wise, W. D., Boyer, M. C., Chatterjee, K., Kondo, T., Takeuchi, T., Ikuta, H., et al. (2008). Charge-density-wave origin of cuprate checkerboard visualized by scanning tunnelling microscopy. Nat. Phys. 4, 696–699. doi:10.1038/nphys1021
Wu, T., Mayaffre, H., Kramer, S., Horvatic, M., Berthier, C., Hardy, W. N., et al. (2011). Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy. Nature 477, 191–194. doi:10.1038/nature10345
Yamase, H., Bejas, M., and Greco, A. (2021). Electron self-energy from quantum charge fluctuations in the layered t-j model with long-range coulomb interaction. Phys. Rev. B 104, 045141. doi:10.1103/PhysRevB.104.045141
Yazdani, A., da Silva Neto, E. H., and Aynajian, P. (2016). Spectroscopic imaging of strongly correlated electronic states. Annu. Rev. Condens. Matter Phys. 7, 11–33. doi:10.1146/annurev-conmatphys-031214-014529
Yu, B., Tabis, W., Bialo, I., Yakhou, F., Brookes, N. B., Anderson, Z., et al. (2020). Unusual dynamic charge correlations in simple-tetragonal HgBa2 CuO4+δ. Phys. Rev. X 10, 021059. doi:10.1103/PhysRevX.10.021059
Zaanen, J., and Gunnarsson, O. (1989). Charged magnetic domain lines and the magnetism of high-Tc oxides. Phys. Rev. B 40, 7391–7394. doi:10.1103/PhysRevB.40.7391
Zheng, B.-X., Chung, C.-M., Corboz, P., Ehlers, G., Qin, M.-P., Noack, R. M., et al. (2017). Stripe order in the underdoped region of the two-dimensional Hubbard model. Science 358, 1155–1160. doi:10.1126/science.aam7127
Keywords: superconductivity, charge order, charge density wave, cuprates, strong electron correlations
Citation: da Silva Neto EH, Frano A and Boschini F (2024) Dynamic charge order from strong correlations in the cuprates. Front. Electron. Mater. 4:1473324. doi: 10.3389/femat.2024.1473324
Received: 30 July 2024; Accepted: 17 October 2024;
Published: 13 November 2024.
Edited by:
Jonathan Pelliciari, Brookhaven National Laboratory (DOE), United StatesReviewed by:
Nikolai Zhigadlo, CrystMat Company, SwitzerlandJianlin Luo, Chinese Academy of Sciences (CAS), China
Copyright © 2024 da Silva Neto, Frano and Boschini. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
*Correspondence: Eduardo H. da Silva Neto, ZWR1YXJkby5kYXNpbHZhbmV0b0B5YWxlLmVkdQ==