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The proliferation of machine learning algorithms in everyday applications such as
image recognition or language translation has increased the pressure to adapt
underlying computing architectures towards these algorithms. Application
specific integrated circuits (ASICs) such as the Tensor Processing Units by
Google, Hanguang by Alibaba or Inferentia by Amazon Web Services were
designed specifically for machine learning algorithms and have been able to
outperform CPU based solutions by great margins during training and inference.
As newer generations of chips allow handling of and computation onmore andmore
data, the size of neural networks has dramatically increased, while the challenges
they are trying to solve have becomemore complex. Neuromorphic computing tries
to take inspiration from biological information processing systems, aiming to further
improve the efficiencywithwhich these networks can be trained or the inference can
be performed. Enhancing neuromorphic computing architectures with memristive
devices as non-volatile storage elements could potentially allow for even higher
energy efficiencies. Their ability to mimic synaptic plasticity dynamics brings
neuromorphic architectures closer to the biological role models. So far,
memristive devices are mainly investigated for the emulation of the weights of
neural networks during training and inference as their non-volatility would enable
both processes in the same location without data transfer. In this paper, we explore
realisations of different synapses build frommemristive ReRAMdevices, based on the
Valence ChangeMechanism. These synapses are the 1R synapse, the NR synapse and
the 1T1R synapse. For the 1R synapse, we propose three dynamical regimes and
explore their performance through different synapse criteria. For the NR synapse, we
discuss how the same dynamical regimes can be addressed in a more reliable way.
We also show experimental results measured on ZrOx devices to support our
simulation based claims. For the 1T1R synapse, we explore the trade offs between
the connection direction of the ReRAM device and the transistor. For all three
synapse concepts we discuss the impact of device-to-device and cycle-to-cycle
variability. Additionally, the impact of the stimulationmode on the observed behavior
is discussed.
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1 Introduction

Computer engineering based on neuromorphic computing
principles has its roots in using analog circuits to emulate structure
and functionality of biological information processing systems (Mead
(1990); Mead and Ismail (1989)). It is based on the belief, that
computation systems built bottom up from evolved, biological
principles, will ultimately surpass designed, artificial systems with
regard to the cost of computation. One challenge neuromorphic
computing faces, is the large footprint when building basic blocks
such as neurons and synapses using analog CMOS circuitry. This issue
may be remedied via memristive devices (Chua and Kang (1976);
Strukov et al. (2008)), also called resistive switching devices (Waser
et al. (2009); Waser and Aono (2007)). Different types of memristive
devices are explored for their use in neuromorphic architectures.
Among the most prominent ones are Phase Change Memory
(PCM) (Boybat et al. (2018a); Mehonic et al. (2020)), Spin-
Transfer Torque Magnetoresistive Random Access Memory (STT-
MRAM) (Jung et al. (2022); Ham et al. (2021)) and Redox-based
Random Access Memories (ReRAM) (Kim et al., 2021); Ziegler et al.
(2020); Bengel et al. (2021a); Covi et al. (2016); Park et al. (2012)). For
redox based resistive switches one can further differentiate between
electrochemical metallization mechanism (ECM) cells and valence
change mechanism (VCM) cells. Depending on the computational
application, each device type can have certain advantages and
disadvantages. Generally speaking, for single devices VCM and
PCM devices enable a more gradual tuning of the resistance states,
while STT-MRAM and ECM switchmore abruptly (Burr et al. (2017)).
The resistance change in PCM devices is based on the large difference
in electrical resistivity between amorphous and crystalline phases of
phase change material systems. The HRS of PCM cells suffers from
resistance drift over time towards even higher resistances, which could
limit their multilevel capabilities (Li et al. (2012)). On the other hand,
VCM devices relying on the movement of charged ions for the
resistance change suffer from read noise, especially in the HRS due
to ionic reconfigurations (Wiefels et al. (2020)).

In this work, we will focus on filamentary ReRAM cells based on
the valence change mechanism (Dittmann et al. (2022); Waser et al.
(2009)). These two terminal devices with a switchable resistance that
have been shown to be integrable on a nanometer scale, offer low
power operation, non-volatility and a good reliability (Govoreanu
et al. (2011)). The resistance can be varied between a Low Conductive
State (LCS) and a High Conductive State (HCS). An increase in the
conductance is called a SET process, while a decrease of the
conductance is called a RESET process. In the context of
neuromorphic computing, a conductance increase is also termed
potentiation, while a conductance decrease is termed depression to
signal the similarity to the biological synapse role models. The
conductance can be switched in an abrupt or gradual fashion
depending on the applied voltage or current pulses of different
amplitudes Cüppers et al. (2019). The resistive switching
mechanism in these devices is based on the migration of donor-
type defects such as oxygen vacancies inside an oxide layer sandwiched
between two metal electrodes (Waser et al. (2009; 2016)). Currently,
the most investigated idea in the field of memristive neuromorphic
computing is how to utilize VCM devices as synapses due to the
presumed advantages such as non-volatility, and the ability to perform
computation and storage in the same location. As potential synapse
emulators, VCM devices offer a range of possible weight evolution

dynamics brought forth from the way they are integrated (as single
devices, crossbars or in a 1T1R configuration in series with a
transistor), as well as the way they are controlled through external
stimuli.

The focus of this paper will be in understanding, how to bring out
certain dynamics and classifying those through categories such as
linearity, symmetry, graduality and dynamic range. This is achieved
through a simulative investigation using a physics-based device
model, the JART VCM v1b model (Bengel and Menzel (2019)),
which was verified via extensive experimental studies (Bengel et al.,
2020; Bengel et al., 2021a); Cüppers et al. (2019); Bengel et al. (2022))
to be able to reproduce a wide range of VCM device behaviors
regarding device switching dynamics on various time scales and
device-to-device (d2d) and cycle-to-cycle (c2c) variability. The
possibility to study the effects of d2d and c2c variability is
especially intriguing in the neuromorphic context. The use of a
circuit level model allows a precise investigation in a controlled
environment, thereby leading to deeper insights into the reasons for
the devices behavior. In Section 2 we will explain the main features of
the simulation model and the experimental setup. In addition, we
introduce the synapse evaluation criteria which are used to analyze
the 1R synapse Sections 3–Sections 5 will explain the different
synapse concepts starting from the simplest 1R synapse. In
addition, the NR synapse and the 1T1R synapse will be covered
and related to the 1R synapse. After the 1T1R synapse section we will
discuss the results of the paper (Section 6) and give a conclusion
(Section 7).

2 Methods

2.1 Simulation model

For the theoretical investigations via simulation, the Jülich Aachen
Resistive Switching Tool (JART) v1b model (Bengel and Menzel
(2019)) is utilized, which is a SPICE-level, physics based compact
model describing bipolar, VCM type resistive switching devices
(Bengel et al. (2020); Cüppers et al. (2019); Bengel et al., 2021a;
Bengel et al., 2022). All Simulations were performed using Cadence
Spectre. An equivalent circuit diagram of the model is shown in
Figure 1A. The VCM cell stack consists of a metal/insulating metal-
oxide/metal structure. The electronically active electrode forms a
Schottky-like interface between the metal electrode and the metal
oxide and is called the active electrode (AE). The ohmic electrode (OE)
is formed by the other interface between the metal oxide and the metal.
In VCM devices, the main resistance change is induced through the
migration of oxygen vacancies between the AE and OE.

Our model has been expanded with a device-to-device (d2d) and
cycle-to-cycle (c2c) variability module (Bengel et al. (2020)), which
was slightly modified in (Bengel et al. (2021a)) and is used here in the
modified version. In the modified version d2d variability can be
tuned independently form the c2c variability. The d2d variability is
controlled via the variation coefficient varK and the c2c variability
can be controlled through c2c% andmaximumstepsize. The complete
parameter set is taken from (Bengel et al. (2022)), as the same devices
were used and it is given in Supplementary Table S1. The only
difference is that Rth, SET was increased to 1 · 106 K/W and Rth, RESET
was increased to 8 · 105 K/W. In this work, the change of the radius of
the active region in the filament termed as disc, rdisc, var and the

Frontiers in Electronic Materials frontiersin.org02

Bengel et al. 10.3389/femat.2023.1061269

https://www.frontiersin.org/journals/electronic-materials
https://www.frontiersin.org
https://doi.org/10.3389/femat.2023.1061269


length of the filament ldisc, var are decoupled from the oxygen vacancy
concentration change in the disc Ndisc, as opposed to the original
JART VCM v1b var model in order to better depict the c2c behavior
of the conductance evolution for small concentration changes. With
those parameters we could match the experimental characteristics in
Section 4. With the parameters fitted to the SET and RESET
switching percentages, we generally faced the issue that the d2d
variability was too significant to achieve reproducible synaptic
behavior. Therefore, we have introduced a new variability
parameter set in which we reduce the variation coefficient for the
d2d variability to 0.01 and reduce the truncation values of the
variability parameters, while keeping the median values the same.
The truncation borders were changed to.

• Ndisc,min, var ∈ [9, 11] · 1023 1
m3

• Ndisc,max, var ∈ [140, 160] · 1026 1
m3

• rfil, var ∈ [25, 35]nm
• ldisc, var ∈ [0.7, 0.9]nm

The c2c variability (c2c%) was not changed. This device can then
be viewed as an optimised device with a smaller d2d variability, which
should be available in industrial production. For simulations in which
additional parameters were modified, we have explained the
modifications and the new values in the text.

By utilizing this compact model, the 1R synapse can be realized
as shown in Figure 1B, where the VCM cell is connected via the
Sourceline (SL) and the Bitline (BL) in the respective crossbar array
with the solid rectangle marking the AE. The potentiation is
performed, when a positive bias is applied to the BL, while the
SL is grounded and vice versa for depression. To simplify matters,

the evaluation for the 1R and NR concepts, has been performed by
grounding the BL and only applying the negative and positive
voltages on the SL to induce potentiation or depression,
respectively. Several VCM cells can also be arranged in parallel
to form the NR synapse, which is schematically depicted in
Figure 1C. This configuration mitigates the shortcomings of the
1R synapse, for instance the poor stability against variability and
the small conduction window. The next synapse concept
considered in this evaluation is the 1T1R synapse, where an
NMOS transistor is connected in series with the VCM cell. The
transistor serves as a selection transistor, which removes the sneak
path problem as well a the unintentional switching problem
occurring in passive crossbar arrays (Zidan et al. (2013)). It can
also be utilized to alter the synaptic dynamics of the respective
synapse concept. The bipolar VCM cell allows for two possible
configurations, namely the AE connected to the transistor shown in
Figure 1D and the OE connected to the transistor Figure 1E. The
bulk connection of the transistor is set to ground. The choice of the
configuration will lead to different synaptic dynamics, since the
body effect will either arise during potentiation or during
depression.

2.2 Experimental procedure and
measurement setup

To characterize the synapse properties experimentally, we
fabricated VCM ReRAM cells consisting of a 30 nm Pt/5 nm ZrOx/
20 nm Ta/30 nm Pt stack in a 32 × 1 structure with ZrOx representing
the switching layer. A schematic of this structure is shown in

FIGURE 1
(A) Equivalent Circuit Diagram (ECD) of the JART VCM v1b model and the different considered synapse structures (B–F). (B) shows the 1R synapse (C)
shows the NR synapse, (D) shows the 1T1R in configuration AE at transistor and (E) shows the 1T1R configuration OE at the transistor. For the synapses
containing a transistor the Bulk connections of the transistors are connected to GND. (F) shows the device structure used for the experimental
characterization.

Frontiers in Electronic Materials frontiersin.org03

Bengel et al. 10.3389/femat.2023.1061269

https://www.frontiersin.org/journals/electronic-materials
https://www.frontiersin.org
https://doi.org/10.3389/femat.2023.1061269


Figure 1F. The fabrication and measurement procedure are described
in the Supplementary Material. Generally, for the experiments shown
in Section 4, we use a program verify scheme to initialise the cells in a
specific resistance range.

2.3 Synapse evaluation criteria

In the past years, many authors have discussed the capabilities of
employing various types of filamentary ReRAM devices as synapses
and employed different strategies for achieving favourable behavior
(Moon et al. (2019); Covi et al. (2016); Vaccaro et al. (2022);
Christensen et al. (2022)). One essential characteristic of the
memristive artificial synapse is the evolution of the conductance as
a function of the applied pulses in time, representing the weight
evolution, which will be termed as synaptic dynamics in the following.
The weight of the synapse refers to the physical property of the
conductance of the synapse, which is normalized between a minimum
conductance Gmin and a maximum conductance Gmax. The choice of
both values can be quite arbitrary and has to be individually
considered for the respective synapse and the chosen operation
mode. To update the weight, voltage pulse trains are applied to the
synapse terminals to either induce potentiation or depression.
Figure 2A schematically depicts different synaptic dynamics. For
deep neural network applications based on the backpropagation
algorithm, a symmetric, linear weight evolution (orange line) is
favoured. However, non-linear synaptic dynamics are typically
present (blue, red, green), owing to the intrinsic non-linear kinetics
of the VCM cells. In most experimentally reported synaptic dynamics
for the 1R synapse, a combination of the red curve for potentiation and
the blue curve for depression is seen (Cüppers et al. (2019); Covi et al.
(2016); Yang et al. (2020)). However, this is not completely an intrinsic
physical property of filamentary VCM devices, but rather also a
consequence of the experimental conditions. Intrinsically, i.e.
meaning that the experimental conditions affect the device
behavior as little as possible, the green curves are a better
representation of the device dynamics (Cüppers et al. (2019); Fleck
et al. (2016)). As for Spiking Neural Network (SNN) applications, the

ideal synapse dynamics might differ. Brivio et al. demonstrated that a
SNN based on non-linear synaptic dynamics performs better
compared to one based on linear synaptic dynamics in terms of
the classification accuracy (Brivio et al. (2021)). The difference
between DNN and SNN with regard to the required synapse
characteristics has also been studied by (Kim et al., 2021). Kim
et al. found SNN to be more tolerant towards non-linear weights.
As the main focus of research is based on DNN utilizing error
backpropagation during the training, the non-linear synaptic
dynamics are often not favored. Still, due to the rapid development
of SNNs, it is sensible not to limit the focus of research towards a single
type of device behavior. As we will show, through experiment and
simulation, different device behaviors can be achieved in the same
device, via different stimuli. As part of the synaptic behavior, the
bound behavior describes the behavior of the synapse towards the end
of the applied pulse train. In the past, various bound behaviors of the
synaptic dynamics (Fusi and Abbott (2007); Brivio et al. (2021)) were
introduced, which are schematically depicted in Figure 2B for the
potentiation. The bound behavior can be classified into a soft bound
behavior (blue curve), where the weight value asymptotically
approaches a saturation weight value, and a hard bound (red,
orange and green curve) behavior, where the dynamics are
truncated after reaching a boundary value. Analogously, this
behavior is also present for the depression. The bound behavior
will also have an impact on the accuracy of the neural network, as
shown by Brivio et al. (Brivio et al. (2021)).

In order to analyze and evaluate the behavior of the 1R synapse
with respect to its dynamics, it is sensible to introduce certain
performance metrics. The literature provides an abundance of
information regarding properties of ideal memristive synapses (Xia
and Yang (2019); Kuzum et al. (2013); Sung et al. (2018); Fouda et al.
(2020); Zhao et al. (2020); Moon et al. (2019)). It should be noted, that
not all properties can be fulfilled simultaneously, as the improvement
of one characteristic might result in the worsening of another
characteristic, which will be discussed more thoroughly in the
following sections. Furthermore, the definitions of the “ideal” for
some metrics are biased towards DNN application instead of a more
open consideration. In this work, we try to take a neutral stance on the

FIGURE 2
Schematic depiction of different types of synapse behavior (A) and different bounding behaviors (B).
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performance metrics from the device level perspective. The weight
update rules and the synapse evaluation criteria are taken from (Brivio
et al. (2021); Fusi and Abbott (2007)). They are shown in Table 1 and
will only be discussed here briefly. The fitting procedure used to match
the simulation results with the analytical equations can be found in the
Supplementary Material. For a quantitative description, weight update
rules are chosen from literature, describing the incremental change of
the weight dw within an incremental pulse number dn. In practice, dn
is set to 1, as discrete pulses are applied. A distinction of the weight
update rules can be made with respect to their bound behavior as well
as their linearity. For the weight update rules we differentiate between
the linear hard bound (L-HB) case and the non-linear soft bound (NL-
SB) case. The indices + and − denote potentiation and depression
respectively. The L-HB rule is depicted as the orange curve in
Figure 2A for the potentiation. α± describes the rate of change and
is used as a fit parameter in this work. The pulse stop numberNstop,± is
introduced, which describes the pulse number at which the maximum
bound is reached (w+ = 1 or w− = 0). A scheme to achieve this kind of
potentiation behavior was proposed by Cüppers et al. (Cüppers et al.
(2019)) and will be revisited in Subsection 3.1.1. The NL-SB case is
shown as the blue line in Figure 2B. In this update rule, a second fit
parameter γ± ∈ [1, ∞] is introduced, which contributes to the shape,
and thus, the non-linearity of the synaptic dynamics. w0 denotes the
initial weight. Non-linear soft bound behavior is the most commonly
occurring behavior for filamentary VCM devices (Cüppers et al.
(2019); Covi et al. (2016); Frascaroli et al. (2018)). In addition to
these update rules, a non-linear hardbound update rule has also been
proposed (Brivio et al. (2021)). However, a hardbound in the synapse
is generated by external means such as a current compliance limiting
the conductance change of the VCM cell. As we use the here defined
criteria for the 1R synapse, the focus must lie on properties of the VCM
cells themselves, where a hardbound synapse dynamics is not
physically sensible.

Following the definition of the update rules, we use the
quantitatively defined synapse criteria non-linearity, resolution,
imbalance, dynamic range and the qualitative criteria variability

tolerance. The first performance metric is the degree of the non-
linearity, defined as the average radius of the curvature of the synapse
dynamics for the potentiation and the depression Brivio et al. (2021).
The non-linearity will be analysed in section 3.1.2. The second
performance metric, directly related to the non-linearity is the
resolution, measuring the number of effective states the synapse
can provide Brivio et al. (2021). The resolution will be investigated
for the NL-SB case in section 3.1.2. The term effective states covers two
aspects. On the one hand the number of addressable states and on the
other hand the distribution of the accessible states within the
considered dynamic range. When the L-HB and NL-SB are
compared, both dynamics exhibit the same number of accessible
states given by the number of pulses. For the linear case, however,
the conductance change between two pulses is constant, while this is
not the case for the non-linear case, where the distinguishable
conductance states starts to narrow down when approaching the
saturation value. Consequently, for the same range of
conductances, linear weight dynamics will have a higher effective
number of states compared to non-linear weight dynamics. The third
performance metric is the imbalance κ between the potentiation and
depression, which is calculated as the mean squared error between the
potentiation pulses and the depression pulses. N is the total number of
pulses for potentiation and depression. For convenience, the
simulation of the synapse dynamics has been chosen in such a way
that the potentiation precedes the depression. Hence, the conductance
values at pulse n for the potentiation correspond to the conductance
values at pulse N − n for the depression. One cycle is defined as one
sequence of potentiation and depression. For the imbalance, the
normalization of the conductance value is determined by the
highest (Gmax) and lowest (Gmin) conductance within each cycle.
The imbalance will be quantified in section 3.1.1 and section 3.1.2.
While the previous metrics were defined based on the weight, which is
a value between 0 and 1, the dynamic range is defined via the
conductances. Generally, it is favourable to obtain a large dynamic
range at very low conductances, which on the one side provides a
proper reading window and on the other side would reduce the power
consumption during training and inference. The dynamic range will
be analysed in section 3.1.1 and section 3.1.2. While previous concepts
are expressed quantitatively, the variability tolerance, is described
qualitatively. By using the variability module included in the
compact model, it is possible to investigate the effect of d2d and
c2c variability. To capture the gradual characteristics of the synaptic
dynamics in the presence of c2c variability, the change in the radius of
the filament as well as the change in the length of the disc region no
longer depend on the oxygen vacancy concentration in the disc region.
This implementation ensures a c2c variability throughout the course
of potentiation and depression, which is in accordance to the
experimental observations (Cüppers et al. (2019); Frascaroli et al.
(2018). The variability tolerance will be investigated for every
synapse concept in the following sections.

3 1R synapse

3.1 Pulse operation and range of the synapse
dynamics

The 1R synapse forms the basic resistive synapse concept. The
synaptic dynamics solely depend on the physical processes governing

TABLE 1 Overview of the synapse criteria.

Weight update rules

L-HB dw±
dn � α+,− , n≤Nstop,±

0, n>Nstop,±
{ 0w±(n) � α±n, w ∈ [0, 1]

NL-SB dw+
dn � α+(1 − w+)γ+0w+(n) � 1 − [α+n(γ+ − 1) + 1] 1

1−γ+

dw−
dn � −α−wγ−− 0w−(n) � [w1−γ−

0 − α−n(1 − γ−)]
1

1−γ−

γ± ∈ [0, 1]

General Criteria

Non-linearity λ± � 4
π ∫∞

0
|w′′

±(n)|
(1+[w±′(n)2])32

dn, with w′′
±(n) � d2w±

dn2

Resolution η± � [∫∞
0
(dw±

dn )2dn]−1 � [∫∞
0
w±′(n)2dn]−1

η± � 1
α±

for L-HB

η± � γ±+1
α±

for NL-SB

Imbalance κ � 1
N∑N

n�0[w+(n) − w−(N − n)]2

Dynamic Range ΔG � Gmax
Gmin
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the VCM cell and the experimental conditions. One can distinguish
between a strong programming and a weak programming mode,
which are both depicted in Figure 3 for potentiation (A and B) and
depression (C and D) simulation, respectively. In Figure 3A, the strong
programming is shown for the SET, which involves a single pulse
of −600 mV for tSET = 1 m. The initial conductance state and the pulse
amplitude are chosen to have a good resolution of the transition region
during the applied pulse. After a certain delay time tdelay, the SET starts
at around 380 µs? In Figure 3B a weak programming is shown, where a
partial conductance increase is obtained by applying a SET pulse train
with tSET = 10 µs for 100 pulses at the same voltage amplitude. The
conductances in both cases are evaluated at the same voltage because
of the device non-linearity. As we did not want to interrupt the strong
programming pulse, the reading voltage was chosen as the SET
voltage. In the weak programming case, the conductance was
evaluated at the end of each weak programming pulse. The strong
and weak programming scheme also applies for the RESET, which is
shown in Figures 3C, D, respectively. In these cases, the RESET pulse
amplitude was 800 mV.

While the strong programming is associated with a large, binary
change of conductance, where the whole dynamic range of the VCM
device is traversed within one single pulse, weak programming induces
gradual conductance changes by performing pulse operations with

pulses on a smaller time scale. Thereby, an approximation can be
made, where the conductance change induced by a single pulse is
equivalent to N incremental pulses with a pulse width being 1

N of the
single pulse width, while the voltage stays the same. This phenomenon
has already been verified experimentally (Fleck et al. (2016);
Stathopoulos et al. (2017)). This approximation will be less
accurate for very fast pulses at which the time constant of the self
heating of the VCM device becomes larger than the pulse length. In
this case, the weak programming scheme will lead to lower
temperatures in the cell, leading to a more gradual switching. In
(Stathopoulos et al. (2017)) it was shown that this approximation can
still be made for a pulse length of 100 ns. In (von Witzleben et al.
(2021a); Menzel et al. (2019)) it was suggested that the heating time of
VCM devices will only become relevant for pulse lengths below 10 ns.
Given, that the rise time trise and fall time tfall of the pulses are
sufficiently small, compared to the pulse hold time, the transient of the
strong programming pulse can be sampled, which allows us to access
the different synaptic dynamics for the VCM cell. The possibility of a
weak programming scheme facilitates the accessibility of intermediate
conductance states in the VCM device, which is the one key
requirement for the analog VCM-based synapse.

It is now possible to distinguish between three different trends
of synaptic dynamics by providing a proper truncation of the

FIGURE 3
Simulated strong and weak programming of the VCM device. The transient obtained for one single pulse can be can be divided into a corresponding
pulsed conductance evolution by utilizing weak programming. (A) Strong programming transient of a SET obtained for one pulse at −600 mV for tSET = 1 ms.
(B) Weak programming pulse equivalent of the SET transient by utilizing a pulse train with 1

100 of the single pulse width and the same amplitude. (C) Strong
programming transient of the RESET depicted for one pulse at 800 mV for tRESET = 1 ms. (D) Corresponding weak programming pulse equivalent of the
RESET transient utilizing a pulse train with 1

100 of the single pulse width and the same amplitude. The pulse rise and fall times were chosen as trise, fall = 10–11 s to
be significantly shorter than the pulses themselves.
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dynamic range, which based on their underlying physical
principles are termed as the delay regime, linear regime and
saturation regime (Figure 3). While the conductance range for
the gradual regime remains the same, the delay regime and
saturation regime are reversed for potentiation and depression,
e.g. the delay regime for potentiation starts within the LCS of the
VCM cell, and conversely the delay regime of the depression starts
within the HCS. In the following two subsections we will discuss the

linear and saturation regime in more detail. The delay regime
which describes the LCS behavior in the potentiation and the HCS
behavior in the depression direction is not considered as in most
literature studies focusing on synaptic behavior. For this there are
several reasons such as the difficulty to address the regime in a
controlled fashion. Especially in the potentiation direction the
thermal runaway can not be prevented reliably. Additionally, for
the potentiation, the range of the delay regime strongly depends on

FIGURE 4
Simulations of the synaptic dynamics of the linear regime (A)with its calculated normalized DRM (B). (C) shows the simulated effect of d2d variability on
the conductance evolution during potentiation and depression, within the linear regime. (D) shows the simulated deterioration of the operation in the linear
regime due to the c2c percentage. For (C) and (D)we used the optimized device with reduced d2d variability (section 2.1). Simulations of the cyclability of the
linear regime for the case of a slightly too strong SET operation (E) resulting in a decreased dynamic range and a reduced imbalance (F).
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the LCS which is known to suffer more from inaccuracies such as
read noise Wiefels et al. (2020).

3.1.1 Linear regime
A linear synaptic dynamic, both for potentiation and

depression, can be achieved by exploiting the switching kinetics
of the VCM device. Cüppers et al. have already performed an
extensive study on this matter and this subsection will be based on
the concepts introduced in their work (Cüppers et al. (2019)). The
switching kinetics itself refer to the exponential relationship
between SET/RESET time and the applied voltage, where a
linear change in the applied voltage leads to an exponential
change of the switching time. The switching time itself can be
split into the delay time, dependent on the initial state, describing
the time until the onset of the SET/RESET event and the transition
time, independent of the initial state, which marks the time interval
in which the conductance changes abruptly Cüppers et al. (2019).
These times are defined based on the definition of the conductance
window for the linear regime, truncating delay and saturation
regime. A theoretical tool to help in the analysis is the dynamic
route map (DRM) (Chua (2018); Ascoli et al. (2018); Marrone et al.
(2022)), which tracks the change of the state variable over time.
This theoretical concept has already been successfully applied to
describe the switching characteristics of ReRAMs (Maldonado et al.
(2020); Ascoli et al. (2022)) and PCM (Marrone et al. (2022)). In
the deterministic view, the DRM (as the transition time) is
independent of the initial value of the state variable. On the
other hand, the delay time shifts to higher values when the
initial conductance state is decreased (SET) or increased
(RESET). The delay time itself arises from the fact, that the self
accelerating temperature and field contributions of the voltage
pulse need a certain time to reach the runaway point. For the
SET, a decrease of the oxygen vacancy concentration leads to a
larger voltage mainly across the Schottky contact, whereas for the
RESET, when the concentration is increased, the voltage drop will
mainly be across the series resistance. Both of these model elements
do not contribute to the respective electric fields driving the ionic
current.

Using the insights provided by the DRM, the conductance window
for the gradual regime can be further narrowed down. The goal here is to
maximize the dynamic range in the linear region without loosing too
much symmetry between the SET and the RESET by including the delay
or saturation regimes. Under these requirements, the linear window has
been determined to Nlinear ∈ [8, 20] · 1026 1

m3 0 Glinear ∈ [2, 3]mS.
The accessing of this regime through weak programming is shown
in Figure 4. For the weak programming scheme, we divided the
transition time of 1 µs into 100 identical pulses. The voltage
amplitudes were −0.6781 V for the SET pulses and 0.8545 V for the
RESET voltages. The requirement for such a high accuracy of the voltage
is due to the high slope of the transition time in SET and RESET
direction with regard to the applied voltage (Cüppers et al. (2019)). The
synaptic dynamics for potentiation and depression together with the
linear fits (black solid lines) are shown in Figure 4A depicting a very
linear and symmetric potentiation and depression. The DRM calculated
from the linear synaptic dynamics and normalized with Ndisc is shown
in Figure 4B. As expected, this DRM is very symmetrical for both
directions due to the choice of the conductance window. A symmetrical
DRM is a requirement for a symmetric potentiation and depression.

Since the achievable dynamic range is truncated between
Glinear,min and Glinear,max, to provide the linearity, this results in
ΔG � Glinear,max

Glinear,min
� 1.5 at a read voltage of −0.1 V. Compared to the

minimum dynamic range requirements posed in literature (Kuzum
et al. (2013)), it is clear that the ΔG in the linear regime of the 1R
synapse is too small. Up until now, the synaptic dynamics have only
been considered in a deterministic manner. Next, the effect of the
variability on the operation of the 1R synapse is investigated. In
Figure 4C, the synaptic dynamics of four devices affected by d2d
variability are shown. While the devices were initialized according
to the parameter ranges of the optimized device from section 2.1,
they still show a significant d2d variability, suggesting that reliably
accessing the linear mode is not possible for variable devices.
Figure 4D shows a similar simulation of different synapses, in
which different amounts of c2c variability are compared. To do
this, all four devices were initialized with the same variability
parameter values, but c2c% was changed from 1% to 30%.
Starting out at the same conductance value, they quickly deviate
from a linear course, with the amount of deviation depending on
the amount of c2c variability. As the fitted c2c percentage value was
30% it can be seen that this case no longer shows a linear behavior.
Finally, the cyclability of the synapse needs to be considered, which
refers to the stability of the synaptic dynamics over multiple
potentiation-depression cycles. The synaptic dynamics shown in
Figure 4E were obtained upon applying 20 potentiation and
depression cycles with a SET voltage slightly increased above
the 1 μs transition time voltage (−0.7 V instead of −0.6781 V).
One SET/RESET cycle consists of 100 SET/RESET pulses. After
each cycle, the imbalance and the dynamic range of the
potentiation and depression curve are evaluated and shown in
Figure 4F. The synaptic dynamics experience a drift into a higher
conductance region. After approximately five cycles (potentiation
+ depression), the behavior stabilizes, meaning that potentiation
and depression become symmetrical again. At this point the
dynamic range and imbalance are reduced. Already for the
deterministic simulation, the pulse voltages have to be chosen
very precisely ( < 5% deviation) to prevent the synaptic
dynamics from drifting out of the linear regime. The
convergence of the potentiation and depression behavior,
towards a stable conductance range, is very similar to the
symmetry point observed for alternating potentiation and
depression pulses observed by Gokmen et al. (Gokmen and
Haensch (2020)). To conclude, the kinetics of a 1R synapse
coupled with the DRM can be exploited to determine an
conductance range for performing linear potentiation and
depression. The linearity comes at the expense of a reduced
dynamic range. As this operation mode depends on finding the
voltage which corresponds to a specific transition time, which are
related exponentially with each other, it becomes very sensible
towards d2d and c2c variability. In addition, the cyclability of the
operation mode is challenging as well. Small voltage deviations will
either lead to a stronger SET or RESET, or alternatively to a
degradation of the linear behavior in which the saturation or
delay regimes are included. Another disadvantage of the linear
regime is its accessibility, i.e. the challenge of not moving into the
saturation regimes. As this is a difficult problem for the 1R synapse,
the main observed dynamic is the traversion of the linear range
over the first very few pulses of the total pulse train after which the
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synapse is operated in the saturation regime for the remaining
pulses.

3.1.2 Saturation regime
Next, the synaptic dynamics in the saturation regime are considered.

In Figures 5A, B, the synaptic dynamics for the potentiation and
depression are shown for pulse trains of different pulse voltages for a

pulse length of 1 μs The VCM cell is initialized at the conductance values
Glinear, max = 3 mS for potentiation and Glinear, min = 2 mS for depression.
Those values are read out at −0.1 V to be consistent with the ranges in
Figure 4. Due to the initialization, we are purposefully excluding the linear
region to characterize only the saturation part of the dynamics. This has of
course an effect on the synapse evaluation criteria such as the dynamic
range which will be smaller as large parts of the conductance change

FIGURE 5
Simulated synaptic dynamics of the saturation regime of the 1R synapse for different applied pulse voltages for (A) potentiation and (B) depression. The
voltages in potentiation directionwere between −0.4 V and −0.9 Vwith 25 mV steps and the voltages in depression direction were between 0.4 V and 1 Vwith
50 mV steps. The VCM cell is initialized atGlinear, min = 2 mS (for depression) andGlinear, max = 3 mS (for potentiation). The corresponding dynamic ranges, non-
linearity and resolution are shown in (C) for potentiation and (D) for depression. In (E) and (F)we have simulated ten potentiation and depression curves
with the variability of the improved device as explained in section 2.1. The deterministic curve is shown as the thicker black curve. The potentiation voltage
was −0.5 V and the depression voltage was 0.8 V.
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happen in the linear region. In the experiment, this precise differentiation
is not possible due to the variability. The trends of the synaptic dynamics
upon receiving an increased pulse voltage is the same in Figures 5A, B.
The conductance evolution shows a small but linear change over the
course of the pulse train for small voltages and becomes less linear upon
receiving higher pulse voltages. The term saturation relates to the
asymptotic approximation of a certain conductance value for an
infinite number of pulses. This description also coincides with the
definition of the soft bound behavior of the synaptic dynamics. For

the potentiation, the saturation conductance value is equivalent to the
HCS of the VCM cell, while for the depression, the LCS would be
achieved. Since we considered here the deterministic case with our
simulation model, LCS and HCS will be determined by the median
values for Ndisc, min, var and Ndisc, max, var, for high enough voltages.

Figures 5C, D shows the performance metrics dynamic range ΔG±,
non-linearity λ± and resolution η±. The dynamic range for the
potentiation direction is capped at around ΔG+ = 1.53 which is
given by the series resistance serving as an inherent limit, given

FIGURE 6
Parameter study involving the variation of the pulse width and pulse voltage and its effect on the performance metrics: Resolution η± for (A) potentiation
and (B) depression, non-linearity λ± for (C) potentiation and (D) depression, dynamic range ΔG± for (E) potentiation and (F) depression. The results were
obtained by fitting the analytical equations in Table 1 to the deterministic simulation results.
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that the disc is becoming more and more conductive. This is different
for the depression direction, where the dynamic range can reach
ΔG− > 5, since the disc resistance contributes the most to the overall
conductance in the low conductive regime. Consequently, the VCM
cell can be further RESET, as long as the field and temperature
contributions are sufficient to drive the ionic oxygen vacancy
current. As indicated in the introduction of the performance
metrics, both the resolution and the linearity are interdependent. A
high resolution is characterized by a low non-linearity. This case is
typically achieved for small voltages, however, the dynamic range is
significantly reduced, as only marginal oxygen vacancy changes occur.
For higher voltages, the resolution decreases and the non-linearity
increases. For sufficiently large voltages in both potentiation and
depression direction, the resolution becomes η± = 2, which
represents a degradation into the binary case. Figures 5E, F each
show ten exemplary potentiation and depression curves with the
variability parameters of the optimised device (section 2.1). The
potentiation voltage was 0.5 V and the depression voltage was
0.8 V. The deterministic curve is shown as the thicker black curve.
The different initial conductances are an effect of the d2d variability,
the noisiness of the different curves is a consequence of the choice of
c2c variability.

Similarly, instead of adjusting the pulse voltage, the pulse width
can be changed. A summary of the performance metrics resolution η±,
non-linearity λ±, and dynamic range ΔG as a function of the pulse
width and voltage is provided in Figure 6. These performance metrics
are obtained for a pulse train consisting of 100 pulses. Note, that the
pulse width is plotted on a logarithmic scale. Starting with the
resolution shown in Figure 6A for potentiation and Figure 6B for
depression, the voltage asymmetry between both directions is visible.
Furthermore, the non-linear kinetics governing the device can also be
seen: while changing the pulse widths achieves a similar effect as with
changing the pulse voltage, in order to traverse the resolution range,
the pulse width has to change orders of magnitude, whereas the same
effect can be accomplished adjusting the pulse voltage by a couple
hundred of millivolts. The interdependence between the non-linearity
shown in Figure 6C and Figure 6D and the resolution is also clearly
visible. The dynamic range in the potentiation direction, shown in
Figure 6E, reveals the maximum obtainable dynamic range capped at
ΔG = 1.53, originating from the inherent limit of the series resistance,
whereas in Figure 6F, the dynamic range can become much larger. The
more abrupt behavior of the dynamic range for the potentiation
direction can be explained via the device physics as well. At low
voltages and short pulse lengths the device is barely switching at all. As
soon as the combination of pulse length and amplitude is sufficient,
however, the switching self-accelerates as explained in section 2.1. The
series resistance represents then the upper bound for the dynamic
range. In the depression direction this upper bound exists as the drift
requires ever higher voltages to accelerate the ionic movement.
Therefore, at each voltage, a minimal conductance exists, which
will be approached for the longer pulse lengths. The saturation
characteristics of the VCM cell and the associated soft bound
behavior is a commonly observed feature of VCM based cells and
has been experimentally verified by earlier works Frascaroli et al.
(2018). The simulation results depicted here demonstrate that the soft
bound nature of the 1R synapse can be explained by the compact
model and shows an adequate match to the experimental data. The
maximum dynamic range for the potentiation is considerably smaller
compared to the maximum experimental dynamic range, which is

around ΔG = 5. The reason for this deviation lies in the separated
investigation of the respective regimes provided here as mentioned
above. While it is sensible to exclude the delay regime, the saturation
regime can also be well depicted, when the linear regime is included for
both potentiation and depression. The initialization values will thereby
shift towardsGtrans, min = 0.26 mS for potentiationGtrans, max = 0.35 mS
for depression. For potentiation, this would enable a dynamic range of
ΔG+ = 2.5. To summarize the results from the saturation regime, it is
important to consider multiple evaluation criteria as improvements
made for one might result in worsening of another. For the criteria
which we investigated, this is for example the case if one tries to
increase the dynamic range which leads to an increased non-linearity.
Another example of this trade off is the relationship between the
resolution and the dynamic range.

4 NR synapse

Extending the 1R synapse concept by using multiple cells in parallel,
one reaches theNR synapse. This concept has been explored in the past in
detail and exploits the intrinsic variability of ReRAMdevices (Bengel et al.
(2021a); Garbin et al. (2015); Gaba et al. (2013)). It has also been
demonstrated for other memristive devices like Phase Change
Memory (PCM) (Boybat et al. (2018b)). In this work, we will focus
on how to operate a NR synapse based on VCM cells in order to achieve
different switching and thereby synaptic dynamics. Commonly, the
individual devices in the NR synapse are switched in a binary fashion.
This leads to the wanted gradual synaptic dynamics, as the switching
process is stochastic, in the way that there exists a voltage range in which
the devices have a certain probability to switch upon receiving a
programming pulse. This probability can be included in a stochastic
gradient descent algorithm, in which the switching probability is coupled
to the error of the neural network classification (Bengel et al. (2021b)). By
applying multiple constant voltage pulses, theNR synapse can be made to
change rather gradually, as individual devices are switching one after
another. We have shown in the past, that the origin of the stochastic
voltage range, in which all devices are switched, mainly originates from
the d2d variability of the VCM cells, while c2c variability is less significant
(Bengel et al. (2021b)). The stochastic voltage ranges are depicted in SET
and RESET probability curves (Dalgaty et al. (2019); Singha et al. (2014);
Bengel et al. (2021a)). While the SET exhibits an abrupt characteristic
stemming from the positive feedback between the temperature and the
field acceleration of the oxygen vacancy movement, the RESET typically
shows a more gradual nature, due to the negative feedback of reducing
current and heat. However, by initializing the VCM cells in a sufficiently
high HCS, determined by the internal series resistance, an abrupt RESET
can be achieved (Cüppers et al. (2019); Hardtdegen et al. (2018; 2016);
Strachan et al. (2013)).

In this work, we are not operating the NR synapse with constant
voltage pulses, but with voltage pulses increasing in amount for the
potentiation and depression direction. The aim is to reproduce the
synaptic dynamics delay regime, linear regime and saturation regime
of the 1R synapse with the NR synapse. Under a constant voltage
pulse this could be done by using the weak programming idea as for
the 1R synapse, but it will suffer from the same challenges that were
discussed in Section 3. With the increasing voltage pulses this can be
achieved as we will show in Subsections (4.3 and 4.4) by adapting the
start and end voltages of the pulse train on the switching probability
curve. We will first explore the potentiation and depression behavior
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as a function of the d2d and c2c variability, based on which we will
explain our concept for achieving different synaptic dynamics
(section 4.1). We will then characterize the experimental SET and
RESET probabilities from our fabricated devices and show that they
are in a good match with our compact model (section 4.2). In the
end, we will experimentally and through matched simulations
demonstrate the different synaptic dynamics (sections 4.3,
sections 4.4 and sections 4.4).

4.1 The NR synapse under increasing voltage
pulses

The concept we have proposed is based on using the SET/RESET
switching probabilities, which strongly depend on the LCS/HCS of the
device (Cüppers et al. (2019)). To achieve a symmetric potentiation and
depression, but also to perform multiple potentiation and depression
cycles after one another (cyclability), its crucial to start from well defined

FIGURE 7
(A–D) show the synaptic dynamics of the NR synapse for different amounts of d2d (varK) and c2c (c2c%) variability. For (A) (varK/c2c%) are (0.01/1%), for
(B) they were (0.01/30%), for (C) they were (1/1%) and for (D) they were (1/30%), respectively. In (E) we show how the conductance evolution can be split into
the three conductance dynamic regimes. (F) shows the controlled pulse operation in the linear regime for the device with reduced d2d variability. In all these
simulations N was chosen as 8, and five 8R synapses were simulated for three ((A–D)) or five (F) SET/RESET cycles.
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resistances and arrive at specific resistances, respectively. This means, that
the conductance variability of the HCS and LCS after the pulse train
should be as small as possible. Figure 7 showcases the behavior of the NR
synapse for N = 8 devices at different amounts of d2d and c2c variability
A-D. In Figure 7E, we qualitatively show how the complete conductance
evolution curve of theNR synapse can be split into the three conductance
dynamic regimes and Figure 7F shows the controlled operation in
the linear regime. As introduced in (Bengel et al. (2021a)), d2d and
c2c variability can be tuned independently from each other. This
can be done by changing the variation coefficient (varK), of the
distributions from which the parameters are initially drawn for the
d2d variability, or by changing the percentage, by which the
parameters can change around the initially drawn values (c2c
%), for the c2c variability.

In Figure 7A, the d2d and c2c variability are small, in Figure 7B
d2d stays small while c2c is large, in Figure 7C d2d is large while c2c is
small and in (d) both variability’s are large. Figure 7D then has the
same values as the parameter set which was fitted to our own devices.
In A to D we applied a voltage pulse train for SET and RESET
consisting of 50 pulses with an absolute increasing amplitude between
|0.4 V| and |2 V|. We started at small voltages at which no switching is
observed and ended at voltages at which all devices are switched. In
this way it was possible to show the typical ‘S’ shape of the complete
conductance evolution (Bengel et al. (2022); Dalgaty et al. (2019);
Zahari et al. (2020)). This was repeated five times for eight different
devices each time and for three potentiation/depression cycles, each to
observe the repeatability of the behavior. For the case of the small d2d
and c2c variability A, as expected the five different synapses almost all
behave the same over the course of the three cycles. As the devices are
almost identical, initially they slowly change their conductance and
then they all abruptly switch at the same SET voltage after which they
stop switching, as the maximum HCS is reached. In the RESET
direction, at first the conductance is changing slowly as well,
followed by a more abrupt regime, between around 35 mS and
10 mS, which transitions into a gradual and slow conductance
change for the rest of the pulse train between 10 mS and ≈0 mS.
Those three regimes observed for eight VCM devices in parallel,
correspond to the delay, linear and saturation regime, observed for
the 1R synapse, as the devices in A are still very deterministic. While
the RESET already shows an addressable linear regime, the SET
directly transitions from the LCS to the HCS, without any
intermediate steps. Even for the RESET, most of the pulse train is
not spent in the linear regime, but in the slowly changing saturation
regime. Of the 50 pulses, only around five are part of the linear regime.
Due to their different switching behaviors, SET and RESET are also
not symmetrical. In conclusion, the NR synapse with small d2d and
c2c variability suffers from the same limitations as the 1R synapse.

By adding c2c variability to the VCM devices we arrive at
Figure 7B. Here, we can identify several significant differences to
Figure 7A. For example, the HCS variability is increasing, whichmakes
it more difficult to achieve a reproducible RESET behavior between the
five simulated synapses. This variability also reduces the
reproducibility of the RESET over multiple cycles, as the RESET
pulse train begins at a wider range of different initial conductances
(30 mS to 40 mS). Another feature is that the SET now has a stochastic
switching window, in which not all devices have switched to the HCS.
This also leads to a higher symmetry between SET and RESET. For the
RESET, the stochastic window has slightly widened, in both the
horizontal (number of pulses) and the vertical (conductance range)

direction. Increasing the d2d variability instead of the c2c variability,
we arrive at Figure 7C. One important difference here is that the
second and third cycle are very similar to each other due to the small
c2c variability. This shows a very good cyclability of the synapse, but it
is physically unreasonable to assume that devices would be possible
with a large d2d and small c2c variability due to the stochastic nature
of the VCM mechanism. The first cycle is different from the second
and third cycle, mostly on the SET side, as the devices are initialised
before the first cycle, but afterwards their conductance is a result of the
programming pulses. The HCS is again characterised by a high
variability. The stochastic SET window is similar to Figure 7B, but
the RESET side has changed significantly, exhibiting a ladder like
behavior. This can be explained by the freezing in of the relative device
properties such as the switching speed. The freezing in is a result of the
small c2c variability. By relative device properties we mean how an
individual device behaves in relationship to the other devices, e.g. at
which voltages it switches to which resistances. With c2c variability
these relative device properties change over time, however by
removing the c2c variability slower device will stay slow and fast
devices will always be faster. This leads to the reproducible (between
different synapses) and repeated (over multiple cycles) ladder like
behavior. While both SET and RESET have a clear stochastic window,
they are not symmetrical in this case, due to the ladder like behavior on
the RESET side. Figure 7D shows the same simulation for the case of a
large d2d and c2c variability, which was fitted in (Bengel et al. (2022))
to a range of different SET and RESET kinetic experiments. Opposed
to the results in A to C, the stochastic window in the SET direction is
larger. The HCS variability is similar to Figure 7B but even stronger,
with the HCS ranging from 30 mS up to 45 mS. The ladder like
behavior of the RESET is visible, but less pronounced than in
Figure 7C. By restricting the voltage range, we can now control the
shape of the SET and RESET direction. Figure 7E schematically shows,
how to split the conductance evolution into the three conductance
dynamic regimes. The red curve shows the typical ‘S’ shape of the
idealised 1R and NR synapse conductance evolution. By cutting out
slices of the conductance evolution according to the different colored
areas in Figure 7E, the different synaptic dynamics can be realised.
Figure 7F shows the addressing of the linear regime over five SET/
RESET cycles. In this simulation, we have used the optimised device
with reduced d2d variability (section 2.1). To only access the linear
regime, the voltage range was reduced to −0.55 V to −0.65 V for the
SET side and 0.6 V–0.8 V for the RESET side while still using 50 pulses
for both SET and RESET. Through this reduction it is possible to
extend the stochastic switching range over almost the full 50 pulses of
SET and RESET and to achieve a very symmetric SET and RESET
operation. This reduction of the voltage range also leads to an increase
of the LCS while the HCS does not change strongly. The
reproducibility of the SET and RESET is very good, which can be
attributed to the tightly controlled conductance states at the end of the
SET/RESET pulse trains. In summary, we have shown here how either
d2d or c2c variability is required to achieve all three possible synaptic
dynamics of the NR synapse. Those regimes are analogous to the 1R
case, but here they can be achieved reliably.

As we have shown here, by restricting the voltage range, the
synaptic dynamic of the NR synapse can be shaped to only be a certain
part of the total ‘S’ shape dynamic. The restriction of the voltage range
is defined via the SET/RESET probabilities. Therefore, before showing
all three dynamics we will characterize the switching probabilities in
the next Subsection.
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4.2 Characterization of the SET and RESET
probabilities of the individual devices

Before the stochastic switching can be exploited, it has to be
characterized experimentally and described through simulation. For
the experimental characterization of the SET and RESET probabilities,
we considered N = 8 VCM devices in parallel to each other, to closely
match the measurements on the NR synapse. We first programmed each
device individually to the LCS range for the SET direction and to the HCS
for the RESET direction. The high resistance range (= low conductance
range) is defined as 30 kΩ ± 30% for each individual cell, while the low
resistance range (= high conductance range) is defined as 1 kΩ ± 30% for
each cell. In the simulations, the devices were also initially programmed to
the same target conductance range, to be as close as possible to the
experiment. Then, the SET/RESET voltage is applied to N cells
simultaneously with a 100 μs long pulse. Voltages between |0.4 V| and
|2.2 V| were tested in 50 mV steps. Finally, the conductivity of each device
ismeasuredwith a−0.1 V pulse, low enough to not further alter its state. If
the devices were found to be outside of the initial resistance range they
were programmed back and the measurement was repeated with a
different voltage. The choice of the next voltage was randomized in
order to prevent accumulative effects (gradual switching). The criteria for
a successful SET and RESET operation are not defined based on the
crossing of a single threshold conductance value. Instead, the thresholds

are defined as the conductance value for which the respective initial
conductance has doubled (in the SET direction) or halved (in the RESET
direction). In this way, there is a direct relationship between the switching
probabilities and the synaptic dynamics, as the switching probability
relates to a certain amount of conductance change, which is symmetrical
for SET and RESET.

Figures 8A, B show the experimental results for the SET and
RESET probability. A 95% confidence interval obtained via
bootstrapping (DiCiccio and Efron (1996)) is also given. To derive
it, a number of samples is randomly drawn from the experimentally
observed distribution of successful/unsuccessful SET attempts (for
each voltage), that is equal to the number of measured data points.
This is repeated 5,000 times, and each time the set percentage is
determined. From this the confidence interval can be estimated. For
most voltages, the percentages are calculated from at least
50 measurements, taken on > 24 different devices. For SET
voltages < -1.9 V less measurements are shown, as at these high
voltages, many devices permanently break down. This leads to the
slightly larger confidence interval there. As expected, for larger
voltages the probabilities increase towards 100%. However, at the
highest voltages, a decrease in the RESET probability is observed. This
effect is attributed to some of the devices failing and breaking down to
a high conductance state (von Witzleben et al. (2021b)). Further, it is
possible that the SET probability is still slightly below 100% at 2.2 V.

FIGURE 8
(A, B) show the experimental SET and RESET percentages for different applied voltages. The shaded area indicates a 95% confidence interval for the
probabilities. The experiments where done for a pulse length of 100 μs. (C, D) show the simulated SET and RESET percentages for a range of pulse durations
and different voltages as a heat map. The red rectangles around the 100 μs indicate the same pulse length as in the measurements.
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The measurements were not continued to higher voltages as a
significant number of devices is permanently destroyed, due to too
high stress.

Figures 8E, F show the simulation results for the SET and RESET
percentages at different voltages and for different pulse durations,
respectively. To account for the device variability, 100 cells were
simulated at each combination of voltage and pulse length for one
voltage pulse. In this way, the simulation only displays the d2d
variability which has been shown to be the main contributor to the
stochastic switching (Bengel et al. (2021b)). As expected, higher
absolute voltages, as well as longer pulse durations increase the
respective probabilities. The stochastic switching window then
describes the range of voltages for which the switching percentage
is > 0% and < 100%. Comparing SET and RESET percentages, it can
be observed that the SET process is stochastic over a larger voltage
window and requires higher voltages at a certain pulse length to
achieve the same switching probability. However, the difference
between SET and RESET is not only a result of the device
behavior, but also of the criterion employed to evaluate whether
the cell has switched as detailed in section 4.2. In the compact
model, the amount of d2d and c2c variability, introduced through
the variation of the variability parameters, is the same for SET and
RESET. The variability parameters Ndisc, min, var, Ndisc, max, var, rfil, var
and ldisc, var only have a small influence on the resistance in the HCS,
which is mainly determined by the series resistance. On the opposite
side, the low conductive state strongly depends on the variability
parameters. This difference explains larger stochastic window in the
SET direction. Another feature, which can be observed for the RESET,
is that the stochastic switching window becomes larger for smaller
pulse widths. The reason for this is that the strong programming shifts
to a weak programming scheme for smaller pulse widths, as the pulse
duration approaches that of the transition time (compare Figure 3).
This means, that in some cases, the pulse will stop while the device is
still in the linear region, shifting the voltage, at which it is counted to
have switched successfully to higher values. The same also applies for
the SET direction, however, it is hidden here due to the large
variability. As a more general remark, changing the initial
conductance state of the individual VCM cells will result in a shift
of the stochastic switching window. For the SET, a higher/lower initial
conductance will shift the window to lower/higher voltages, while for
the RESET direction a higher/lower initial conductance will shift the
window to higher/lower voltages. In the SET direction, a smaller initial
conductance extends the delay (deterministic never switching) regime
(Cüppers et al. (2019); Fleck et al. (2016)). In the RESET direction, the
effect is due to the influence of the series resistance in the voltage
divider with the switching oxide layer (Cüppers et al. (2019)).

The voltages to achieve the different synaptic dynamics can now
be determined. For the delay behavior, one has to start at a voltage
corresponding to a probability of around 0% or at smaller voltages and
increase it towards roughly 100%. For the linear behavior, one has to
start at a percentage slightly above 0% and increase it towards 100%
and for a saturation behavior one has to start above 0% and end at a
voltage higher than the 100% voltage. Due to the fact that a concrete
synapse of N devices might not have the same switching percentages
that were measured on a larger subset of devices, the optimum voltages
might not exactly correspond to the switching percentages, but the
voltages were chosen through this approach in the next two
Subsections.

4.3 Characterization of the different NR
synaptic dynamics in SET or potentiation
direction

Based on the measurements and simulations of the SET
probabilities as a function of the applied voltage, we then applied
pulse trains according to Figures 8A, C to achieve delay, linear and
saturation type dynamics. The results are shown in Figure 9 with the
experimental results on the left side (A, C and E) and the equivalent
simulations on the right side (B, D and F) for N = 8. The conductances
shown are the conductance of eight VCM devices in parallel. In each
regime, ten experimental runs and ten simulation runs were
performed with eight devices in each case. For the potentiation and
depression experiments, pulse trains with 20 pulses were chosen due to
the limitations of the measurement setup as not arbitrarily small
voltage differences (< 10 mV) can be resolved by the output DACs of
the measurement tool.

The delay regime (A and B) is characterised by an initial, near-
constant conductance during the first pulses as the applied voltage is to
small to lead to any switching. Thereafter, the conductance gradually
increases. The length of the initial non (or very weak) switching region
can be controlled by the part of the voltage pulse train which is at
voltages for which the SET percentage is around zero percent. While
there is a small horizontal shift between the onset of the gradual
change between experiment and simulation, the conductance ranges
are very similar. For the linear regime (C and D) the aim is to achieve a
gradual conductance tuning over the whole pulse train. Therefore, the
devices have to start switching during the first few pulses and have to
keep on switching until the end of the pulse train. The conductance
variation as well as the final conductance range of around 5 mS to
10 mS are well matched. The linear regime is the regime with the
smallest voltage range, as the voltage has to be high enough to not
exhibit a delay regime behavior and low enough, to not go into the
saturation regime. For the saturation regime (E and F), the aim is to
first achieve a gradual tuning of the conductance, which then reduces
its slope until the conductance does not change any further. To this
end, one starts at relatively high voltages, to directly start switching,
the same as in the linear case. The voltage at the end of the pulse train
has to be chosen higher than in the linear range. The pulse number at
which the conductance change starts to level off, roughly corresponds
to the voltage level, where the SET/RESET percentage reaches 100%.
In reality, the conductance starts to level of already earlier as the
devices are already in a potentiated state, which increases their SET
probability as explained in section 4.2. For the corresponding
simulations, the parameter set had to be slightly adapted to better
match the synaptic dynamics. One change was that the variation
coefficient determining the d2d variability had to be reduced to 0.1, as
otherwise the curves would have shown a too large variability. The
original parameter set was therefore overestimating the variability and
had to be reduced in order to better match the experiment.
Additionally, to match the conductance at the end of the voltage
pulse train, the median values of the distribution for the maximum
oxygen vacancy concentration (Ndisc, max, var) were adapted
individually for each dynamic regime. They are 4·1026 1

m3 for the
delay regime, 3·1026 1

m3 for the linear regime and 12·1026 1
m3 for the

saturation regime. The reasoning behind this is similar to the one used
in (Bengel et al. (2021b; 2020)), that the high conductance range can be
very easily controlled through the variation of this parameter.
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4.4 Characterization of the different NR
synaptic dynamic in RESET or depression
direction

For the depression direction, we use the RESET probabilities to
determine the appropriate voltage ranges for delay regime, linear
regime and saturation regime. The conductance evolutions, pulse
schemes and used voltage ranges are shown in Figure 10 with the

experimental results again on the left side (A, C and E) and the
equivalent simulations on the right side (B, D and F). In analogy to the
potentiation direction, ten experimental runs and ten simulation runs
were performed in each regime. For the depression direction, the delay
regime (A and B) also shows a near constant conductance due to a very
weak switching. After a specific voltage pulse, which corresponds to
the voltage at which the cells start to switch stochastically, the
conductance decreases until the final pulse. This behavior is quite

FIGURE 9
Comparison of the delay regime (A) and (B), the linear regime (C) and (D) and the saturation regime (E) and (F) between experiment (left) and simulation
(right) for the potentiation or SET direction and for N = 8. The conductances shown are the conductance of the complete synapse. The insets describe the
pulse schemes with the applied voltages and pulse lengths.
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well matched by the simulations in terms of the amount of variability
and the range of conductances after the final pulse. For the linear
regime (C and D) the goal is again to achieve a gradual conductance
tuning over the whole pulse train, which can be achieved quite well in
the depression direction. The curves also agree well between
experiment and simulation. For the saturation regime (E and F)
one should transition from a gradual change of the conductance to
a region in which the conductance stays constant. This is actually
harder in the RESET direction, as the conductance still slightly
changes, even after the saturation regime is reached (around pulse

12). While in the potentiation direction, the internal series resistance
will limit the switching as soon as the device resistance approaches the
series resistance, the final conductance value in the depression
direction is not affected by this series resistance. This feature is
also matched by the compact model. As in the SET direction we
also reduced the variation coefficient, to a value of 0.2.

To summarize, the NR synapse is a convenient concept to deal
with the inherent variability present in the VCM cell and allows for
different, gradual operation modes. Comparing it to the behavior of a
single device, especially, the stabilization of the three regimes is of

FIGURE 10
Comparison of the delay regime (A) and (B), the linear regime (C) and (D) and the saturation regime (E) and (F) between experiment (left) and simulation
(right for the depression or RESET direction and for N = 8. The conductances shown are the conductance of the complete synapse. The insets describe the
pulse schemes with the applied voltages and pulse lengths.
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great interest. Regarding the relationship between the switching
probabilities and the choice of the voltages for the three dynamic
regimes it should be noted that the switching probabilities were
measured and simulated for a larger number of devices (50 in
experiment and 100 in simulation) when compared to the results
for the synaptic dynamics (8 devices in both cases). As the initial
conditions before the SET or RESET pulse are of great importance, it
might be useful to introduce a write-verify process to bring the devices
into the wanted conductance states. If those initial conductances can
be controlled, different types of dynamics can be achieved over many
cycles and different synapses.

5 1T1R synapse

As passive crossbar configurations suffer from issues such as sneak
paths during read out or from resistance drift during programming,
transistors can be introduced in series to the VCM cells, which leads to
an active 1T1R structure. 1T1R arrays are today practically the
standard for neuromorphic applications (Garbin et al. (2015); Milo
et al. (2021); Yao et al. (2020); Xue et al. (2020)) as they allow for the
programming and readout of each individual cell without disturbing
neighbouring cells. In 1T1R arrays, mainly NMOS transistors are used,
as they offer a higher charge carrier mobility at the same transistor

FIGURE 11
(A) shows the auxiliary circuit to simulate the transfer characteristic (TC) of the PTM 130 nm transistor model with the body effect (b.e.). (B) shows the
schematic to simulate the TCwith b. e. (C) shows the two possible configurations, AE or OE at transistor, of the 1T1R synapse. For each configuration the body
effect has to be considered for one switching direction. (D) shows the TC of the simulated transistor (W = 260 nm L = 130 nm), with blue and without body
effect yellow, at four different gate voltages (0.5 V, 1 V, 1.5 V and 2 V). (E) shows the adapted load line with the transistor from (D) at VG = 2 V (black lines),
with and without body effect, and with the VCM cell at different states as load (red lines). The background is colored according to the power dissipated in the
VCM device. (F) shows the typical way that the 1T1R synapse is operated in the potentiation direction, where VWL is increased over the pulse train, while VSET is
kept constant. In the RESET direction we keep VWL constant while increasing VRESET as shown in (G).
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dimensions compared to PMOS transistors, which leads to a smaller
footprint of the 1T1R cell and thereby reduces the footprint of the
whole array. The Bulk connection of all transistors is connected to
Ground. This means, that negative voltages cannot be used, as
otherwise the Bulk to Drain or the Bulk to Source diodes could
become conducting. When considering the 1T1R element, there
exist two possible configurations for the wiring, as either the AE or
the OE can be connected with the transistor, as detailed in Figures 1D,
E. As we will show in the following, these two configurations lead to
different synaptic dynamics. Considering the configuration where the
AE is connected to the transistor, Figure 1D, potentiation is performed
by applying a positive voltage to the WL and SL, while grounding the
BL. In this configuration, the gate source voltage VGS of the transistor
during the depression, depends on the state of the VCM cell according
to VGS = VG, RESET − VVCM. Additionally, the body effect arises due to
the potential difference between the source and bulk, which results in a
shift of the threshold voltage of the transistor. For the potentiation
direction, the source is connected to Ground, hence VGS = VG, SET. If
the OE is connected to the transistor, the functions of BL and SL are
inverted and the body effect will arise for the potentiation. For the read
operation, the gate voltage VG, READ is used and VREAD is applied such
that the body effect is avoided.For the evaluation, a 130 nm technology
node SPICE-based BSIM4 NMOS model card is utilized (Nanoscale
Integration and Modeling (NIMO) Group at ASU (2006)). If not
specified otherwise, the pulse width for potentiation and depression
are kept constant at tpotentiation = tdepression = 10μs. For the simulations
with variability, the variability parameters here represent the reduced
d2d variability device, as introduced in Subsection 2.1.

5.1 Load lines for 1T1R synapses

The addition of the transistor complicates the evaluation of this
synapse concept, since the weight dynamics no longer solely
depend on the physical behavior of the VCM device, but also on
the behavior of the transistor. A convenient way to illustrate the
interplay between the VCM cell and the transistor is provided by
adapting the load line concept, a well known graphical analysis tool
in electronics. In Figure 11A the auxiliary circuit is shown, with
which we simulated the transfer characteristic (TC) of the PTM
130 nm transistor model without the body effect (no b. e.).
Figure 11B shows the schematic to simulate the TC with b. e.
Since VCM cells are bipolar devices, we need to drive the 1T1R
synapse from both directions, SL and BL. In one direction, VGS will
be a function of the resistance of the VCM cell, which increases VS.
Figure 11C shows the two possible connection cases of the 1T1R
synapse with the potential definitions for SET/potentiation (cases
2 and 3) and RESET/depression (cases 1 and 4). If the AE is
connected to the transistor (AE configuration), the b. e. is
observed in the RESET direction (case 1), while it is observed in
the SET direction (case 3), if the OE is connected to the transistor
(OE configuration). The resulting TCs are shown in Figure 11D for
the Gate voltages 0.5 V, 1 V, 1.5 V and 2 V. The transistor
dimensions are W = 260 nm and L = 130 nm. The simulations
without the b. e. are shown in yellow, while the simulations with b.
e. are blue. Without b. e. the TC shows the typical behavior with a
transition from the linear regime to the saturation regime. With b.
e. the transistor is either off, or in the saturation regime since
VGS ≤VDS. For VGS, in the beginning, VGS and VDS are 0 V as VG,

VD and VS are all 2 V. By reducing VS, VGS increases, until
VGS >Vth, at which point the transistor switches from off to
saturation. At VDS = 2 V no body effect exists. With b. e. the
transistor has a lower small signal impedance in the saturation
region leading to a steeper slope (Razavi (2016) p. 53).

In Figure 11E, we combine the TC with the VCM cells I-V-
characteristic to gain a better understanding of the 1T1R behavior. The
TCs with and without b. e. at VG = 2 V are displayed as solid black
lines, the VCM cells I-V characteristic are added at different Ndisc

values as the load (red lines). For this simulation, the ionic current was
turned off to prevent switching of the cell. Due to the polarity
dependent conduction mechanism of the VCM cell, one has to
simulate the I-V characteristics for both polarities (Bengel et al.
(2020)). Here, we only show the case of the SET direction. The
RESET direction will be discussed in the following subsections. The
background of Figure 11E is colored according to the power dissipated
in the VCM device given through Pcell (I, V) = I · (Vdisc + Vplug +
VSchottky), which is the same equation as for the RESET direction. The
only difference between SET and RESET direction is the temperature
change due to the dissipated power which is 20% smaller in the RESET
case at the same power, due to the different thermal resistances. The
dissipated power in the device is linearly proportional to the
temperature change (Bengel et al. (2020)) and holds information
about the temperature accelerated ionic movement of the oxygen
vacancies in the disc. As the series resistance does not contribute to the
Joule heating of the VCM device, it is excluded here and the power is
reduced, when the series resistance starts to limit the switching. This
temperature increase has been previously identified as the main force
driving the non-linear switching kinetics (Menzel et al. (2011)). As the
series resistance in this parameter set is in the order of 100Ω (compare
Supplementary Table S1) this only happens at very low resistances.
The voltage on the x-axis refers to the voltage difference between SL
and BL. For a certain operating point (e.g. OP1) the voltage dropping
over the transistors Drain Source connection is given as the x-axis
difference from origin to OP1. The voltage dropping over the VCM
device is then the x-axis difference between OP1 and the applied
voltage (here 2 V). Figure 11E shows two of the cases of Figure 11C,
namely case 2 as the intersection points of the red lines with the TC
without b. e. and case 3 as the intersection points of the red lines with
the TC with b. e. The significance of the difference between these two
cases can be understood from the difference between OP1 and OP2. In
these two cases the VCM cell is in the same resistive state. While the
current is larger by a factor of two in OP2, the dissipated power and
thereby the induced temperature difference is even larger by a factor
three. This leads to a faster and stronger SET switching. Another
feature that can be inferred from the OP is the resilience against
variability and noise in the transistor via the slope of the transistor
characteristic in the OP.While the slope of the VCM cell is the same in
both OPs, the transistor has a steeper slope in the OP1. This means,
that the same voltage disturbance VDS will result in a stronger current
disturbance, if the b. e. is present. We can thereby also increase the
variability tolerance of the 1T1R synapse by increasing the Length of
the transistor, as this reduces the TC slope in the saturation regime,
while keeping W

L constant to stay in the same conductance range. In
Figures 11F, G the typical operating schemes are shown for
potentiation and depression direction, respectively. In the
potentiation direction, we always keep VSET constant while linearly
increasing VWL over the course of the pulse train (F). On the other
hand, we always keep VWL constant while linearly increasing VRESET
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over the course of the pulse train for the depression (G). This is done to
achieve a fairer comparison between potentiation and depression, as
changing the maximum current in the potentiation (SET) direction
and changing the maximum voltage in the depression (RESET)
direction are the conventional methods to achieve multi level
switching in each direction.

In the rest of this section we will investigate the SET and RESET
behavior of the 1T1R synapse for the AE at the transistor and for

the OE at the transistor. For this investigation, we perform
potentiation and depression experiments over the course of
10 pulses, each of them 10 μs long, with the goal of achieving a
gradual conductance tuning over the course of this pulse train. The
conductances are chosen such that for each configuration the
potentiation and depression can be concatenated if possible.
This is achieved by aligning the conductance range after the
potentiation with the conductance range before the depression

FIGURE 12
Configuration AE for the potentiation (A, C, E) and depression (B, D, F) direction. (A, B) shows the load line analysis with the power dissipated in the device
in the background. (C, D) show the development of the cell voltages at the different device states with the electric field driving the ionic motion in the
background. (A, D) are using the deterministic model parameters. In (E, F) the deterministic conductance evolution (red diamonds) is shown together with ten
runs exhibiting d2d and c2c variability (black circles).
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and vice versa. For the AE configuration, we use a transistor sizing
of W = 1,300 nm and L = 130 nm and for the OE configuration we
use W = 390 nm and L = 130 nm.

5.2 Active electrode (AE) at the transistor

We will first start with the AE configuration, where the body effect
arises in the depression direction. Compared to Figure 11D the oxygen
vacancy concentration now can change dynamically based on the
equations of the model. Figures 12A, B show the load line analysis for
the potentiation and depression direction, consisting of the transistor
characteristic (grey from left to right), the device characteristic (white
from right to left), the colored background indicating the power
dissipated in the device and the various OPs (black circles). As the
switching dynamics of the VCM cell do not only depend on the
temperature acceleration, but also on the field acceleration (Menzel
et al. (2011)), we also have to consider the strength of the electric field
during potentiation and depression. Figures 12C, D shows the electric
field driving the ionic movement for potentiation and depression as
the background coloring, and the OPs as black circles. Additionally,
showing the electric field helps in understanding the different
contributions of the driving forces for the switching. As the electric
field is calculated differently for the SET and RESET direction (Bengel
et al. (2020)), the background color, which contains the magnitude of
the electric field, of Figures 12C, D differs. For the SET direction, the
electric field ESET used to calculate the ionic current depends only on
the voltage dropping across the disc region. For an increasing cell
voltage the electric field is always increased. Reducing the oxygen
vacancy concentration increases the disc resistance. Depending on the
oxygen vacancy concentration, different behaviors can be observed
when the cell voltage is increased. Going to smaller oxygen vacancy
concentrations increases the resistance of the disc which increases
ESET. Going to even smaller oxygen vacancy concentrations, ESET
reduces, as not only Rdisc increases, but also resistance of the Schottky
diode. Towards very small oxygen vacancy concentration RSchottky

increases faster than Rdisc, which reduces ESET. For the RESET
direction, the relevant portion of the electric field also includes the
voltage drops across the plug and the Schottky interface regions. In
this case, only the electric field across the series resistance does not
contribute to the ionic movement. This leads to the behavior that the
electric field always increases for higher cell voltages and smaller
vacancy concentrations in contrast to the SET direction. The
simulations in Figures 12A-D are performed with the deterministic
device parameter set. In Figures 12E, F the conductance evolution is
shown for the deterministic parameter set and for ten devices with d2d
and c2c variability.

In Figures 12A, C, E the characteristics of the potentiation are
shown. Figure 12A shows the load line characteristics through the
course of the potentiation experiment. In this experiment, we start
with the VCM cell in the HRS state and apply ten pulses in the SET
direction. Over the course of these pulses, we linearly increase the
WL voltage from 0.4 V in the first pulse to 0.55 V in the last pulse.
In this case, VGS is independent of the VCM device state, which
means that the TC only changes due to the increase of the WL
voltage. This changes the TC from lower currents at the first pulse
to higher currents at the last pulse. The transistor is operated in the
saturation regime, as the TC slope there is smaller compared to the
linear regime, which gives a better robustness to variability as

described above. The WL voltage range is quite small and well
below the maximum possible voltages, due to the fact that we have a
quite large transistor (W = 1,300 nm, L = 130 nm). This increase of
the driving capability of the transistor is required to be able to
RESET the VCM cell in the AE configuration, as will be shown
later. For the chosen transistor sizing, theWL voltage range gives us
the required range of saturation currents from around 50 μA at the
first OP to around 270 μA at the last OP. The SET voltage applied at
the BL is chosen very high at 2 V to prevent the VCM switching
variability from affecting the behavior. Essentially, we want to have
a high enough voltage to bring us into a regime, where the
switching is only controlled and limited by the WL voltage
controlling the transistor and not the VCM cells stochastic
switching behavior. As the transistor changes to higher currents
(due to the increasing WL voltage) and the VCM cell increases its
conductance as it SETs, the OPs are moving towards higher
amounts of dissipated power. The electric field during the
potentiation (Figure 12C) increases for the first pulse and then
continuously decreases over the remaining pulses. Therefore, we
can say that as the SET progresses the influence of the heating for
the switching process increases, while the influence of the electric
field on the switching decreases. With the chosen parameters a very
linear synapse dynamic can be achieved for all but the first pulses as
shown in Figure 12E.

For the depression direction, load lines, field dependency and
synaptic dynamics are shown in Figures 12B, D, F, respectively.
Here, we start with the VCM cell in the LRS state and apply ten
pulses in the RESET direction. The WL voltage is kept at 2.5 V at all
times, to prevent a cutoff of the transistor which can occur if VGS

drops below Vth as the VCM cell is too low conductive. Over the
course of these pulses, we linearly increase the BL voltage from 1 V
in the first pulse to 2 V in the last pulse. This can be described in the
load line analysis as shifting the TC along the x-axis. The initial off
phase of the transistor due to the body effect is then shifted to
negative currents. The x-axis difference between the origin of the
VCM characteristic and the intersection point of the TC with the
x-axis is the actual voltage dropping over the 1T1R synapse. While
the dissipated power increases from the first to the second pulse,
this is due to the fact that the device is not switching yet, as the BL
voltage is increased. As the device gets higher ohmic, the dissipated
power decreases, as expected, which means that temperature
acceleration of the ionic movement reduces. The first switching
has to happen at a higher power, when compared to the first pulses
in the potentiation direction, as the electric field is weaker by a
factor of around seven. This factor drops to around three for the
final pulses, but generally, the electric field is smaller in the
depression direction than in the potentiation direction. The
electric field is larger in the potentiation direction, as the main
voltage drop is confined to a much shorter part of the switching
layer. As the electric field increases while the power decreases, the
influence of the electric field on the switching increases towards
smaller LCS while the influence of the temperature decreases. With
the chosen parameters, the switching is gradual and slow during the
first pulses, then it becomes steeper and more linear before the
slope is reduced again towards the end. It would be possible to start
at a higher BL voltage to skip the initial slow changing phase, but,
these higher BL voltages lead to a much more abrupt switching, in
which almost the complete conductance range is traversed during
the first few pulses.
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To summarize, the AE configuration allows for a relatively gradual
tuning with small variability in potentiation and depression direction.
Both directions are also quite symmetrical except for the depression
behavior at high conductances, however, this might be mitigated by
reducing the dynamic range towards smaller maximum conductances. In
this way, the symmetry (which in this case means linearity) can be traded
of with the dynamic range, which has also been observed for the 1R
synapse (section 3.1.1). As the initial and final conductances of
potentiation and depression are compatible with each other, multiple

cycles can be concatenated. In the next subsection, wewant to focus on the
1T1R synapse, where the OE is connected to the transistor. The results are
presented in an analogous fashion to the AE case in Figure 12.

5.3 Ohmic electrode (OE) at the transistor

Figure 13 depicts a potentiation and depression of the 1T1R synapse in
theOE configuration for a transistor sizing ofW=390 nmand L=130 nm.

FIGURE 13
Configuration OE for the depression (A, C, E) and depression (B, D, F) direction. (A, B) shows the load line analysis for potentiation and depression
direction, (C, D) show the development of the cell voltages driving the switching process. For (A, D) only the deterministic model parameters were used.
In (E, F) the deterministic conductance evolution (red diamonds) is shown together with ten runs exhibiting d2d and c2c variability (black circles).
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Here, the body effect arises for the potentiation direction.We again apply a
pulse train consisting of ten pulses, each 10 μs long. For the potentiation (A,
C and E) we hold the BL voltage at 2 V, while varying theWL voltage from
2 V during the first pulse to 2.2 V for the 10th pulse (A). The transistor is in
the saturation regime throughout the complete operation. The increase in
WL voltage shifts the TC towards higher currents allowing for higher HCS.
As the TCs are relatively steep in the range of the operating points the cell
voltage changes only over a small region (C). Again, the influence of the
power on the switching increases towards higher conductances, while the
influence of the electric field decreases. The resulting synaptic dynamics
shown in Figure 13E shows a similar linearity to the AE configuration but
with a much more pronounced variability. As described in section 5.1 this
can be attributed to the slope of the TC in the vicinity of the OPs. The delay
like regime occurs in the beginning, due to the insufficient voltage drop over
the VCM cell.

For the depression direction, Figures 13B, D, F, there is no body
effect in the transistor, which allows for the operation of the VCM cell
in the ohmic region or in the saturation region. A closer evaluation of
both regimes shows, that a operation in the saturation regime would
result in a more abrupt conductance change over the course of the
depression. Once the voltage drop across the VCM cell is sufficient to
trigger the RESET, the voltage divider will shift towards the VCM cell
uncontrollably, thereby resulting in an abrupt decrease of the
conductance. In contrast to that, when operating within the ohmic
region, the transistor serves as a series resistance, which can adjust the
voltage drop over the VCM device in a controlled manner and thus
provides a more gradual RESET. We therefore operate the transistor
solely in the linear region through the design of theW

L ratio. This can be
done by choosing W

L = 3, ensuring that the first RESET happens in the
linear regime. The load line is constructed by shifting the load line
along the x-axis by (2-VBL) (B). The x-axis difference between the
origin of the VCM load lines and the intersection of TC with x-axis
gives the voltage dropping across the 1T1R synapse. The WL voltage
was again chosen as 2.5 V and the BL voltage was increased from 1.5 V
in the first pulse to 2 V for the last pulse. From Figures 13B, D we can
also see, that a further RESET can only be achieved through an
increase of the BL voltage and not by increasing the WL voltage or
by increasingW

L . Increasing VWL orW
L only further increase the slope of

the TC, however, this will not lead to any significant increase in
dissipated power or electric field at 2 V BL voltage. By increasing VBL

we can shift the TC further to the left and reach higher VCell voltages
which will lead to smaller LCS. The resulting synaptic dynamics for the
depression direction in Figure 13F shows a different shape from the
AE configuration with a more abrupt but linear change in the
beginning and a more pronounced saturation towards the end of
the pulse train.

To summarize, the OE configuration allows for a relatively gradual
and linear tuning with high variability towards the end of the pulse
train in the potentiation direction. In the depression direction, the
tuning is more abrupt, but also linear with large variability in the
beginning, transitioning to a saturation behavior with small variability
at the end of the pulse train. These behaviors of potentiation and
depression are not very symmetrical. In analogy to the AE
configuration, the symmetry could be improved by reducing the
dynamic range towards higher minimum conductances. Again, the
parameters where chosen such that potentiation and depression can be
concatenated as the initial and final conductance values are
compatible. Compared to the AE configuration, one advantage lies
in the fact, that a smaller transistor can be used to operate the synapse.

Another advantage is that it is easier to program very small LCS values
since the transistor is not cut off.

6 Discussion

In this work, different synapse concepts based on VCM ReRAM
devices were investigated by using a physics-based compact model as
well as experimental data on ZrOx based VCM devices. The synaptic
dynamics were assessed under different performance metrics such as
linearity, resolution, symmetry, dynamic range and variability
tolerance. For a single VCM device, three regimes and thus three
forms of synaptic dynamics were defined based on the specific device
dynamics and physics, which are the delay, linear and saturation
regime. As we have shown, those regimes are difficult to control or
only allow for a limited analog performance. For the NR concept, we
found, that either d2d or c2c variability is a requirement for the
symmetry of the synapse and for achieving a gradually tuneable SET.
Based on these results, we demonstrated the proposed concept of
achieving different synaptic dynamics by choosing pulse amplitudes
based on the switching probabilities and show, that we can achieve
linear, symmetrical and reproducible synapse behavior. Those results
are also verified experimentally. For the 1T1R concept, the effect of the
connection direction between transistor and device on the switching
behavior is explained through an adapted load line concept, which
recognizes the impact of the different driving forces and includes the
body effect of the transistor. For the AE configuration a good linearity
and low variability can be achieved at the cost of relatively large
transistors. In the OE configuration the synaptic dynamic is less linear
and shows more variability. Comparing the different synapse
concepts, it can be observed, that the 1R synapse provides the
highest synapse density and easiest operation mode. However, it
suffers from conductance fluctuations and a bad cyclability, due to
the large impact of the d2d and c2c variability. In the NR concept, the
inherent variability can be exploited, as long as the d2d variability is
not too large, and allows for a good synapse operation. The 1T1R
synapse in the AE configuration provides a very reliable and analog
behavior at the expense of a large transistor. For the OE configuration,
the variability is increased and the linearity decreased but smaller
transistor sizings are possible as well as smaller LCS.

In this work, the operation of filamentary VCM based synapses is
discussed for the case of pulse trains consisting of multiple
rectangular pulses at constant voltage amplitude or at a changing
amplitude. The conductance modulation is then associated with a
specific singular pulse at a specific initial conductance. Additionally,
we have mainly considered cases where the synapse is strongly
potentiated or depressed at the beginning of the pulse train. For
the investigation of the linear region of the 1R synapse, we have
shown that addressing intermediate conductance ranges is
associated with a small variability tolerance towards d2d and c2c
variability of the VCM devices. In the context of neuromorphic
learning rules, such as Spike-Timing-Dependent-Plasticity (STDP)
(Kuzum et al. (2013)) and Spike Rate Dependent Plasticity (SRDP)
(Xiong et al. (2019)) the timing of different spikes with respect to
each other influences the conductance evolution. For STDP, the
conductance of a synapse is adjusted based on the timing between a
postsynaptic and a presynaptic spike. If the presynaptic spike
precedes the postsynaptic spike, the synapse is potentiated and if
the postsynaptic spike precedes the presynaptic spike, the synapse is
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depressed. For SRDP, spike trains are applied to the presynaptic
neuron and the postsynaptic neuron with different frequencies. The
conductance change is then a function of the relative frequencies of
presynaptic and postsynaptic spike train to each other. Based on our
results, it should be possible to optimize experiments and
simulations of such biorealistic learning rules. The observed
symmetry of STDP and SRDP will strongly depend on the
considered conductance regime. Operating in the saturation and
delay regime should deliver less symmetrical behavior for example.
Generally, we have shown in this work that the dynamical behavior
of a VCM device strongly depends on its conductance level before
the application of the stimulus. This could prove a future
optimization path for biorealistic learning rules by closely
controlling their operating region.

7 Conclusion

In this paper, we have extensively investigated different synapse
concepts based on VCM cells. This was done using experiments, but
mainly through the use of our physics based compact model. Our work
shows, that single VCM devices are strongly limited in their analog
synaptic properties. This is mainly due to the d2d and c2c variability
making the synapse behavior fundamentally difficult to control beyond an
abrupt binary switching. We have discussed in detail the linear and
saturation regime with regard to their quantitative behavior for a range of
synapse evaluation criteria taken from literature. Using theNR synapse or
the 1T1R synapse can be seen as different ways towards improving the
properties of a single VCM devices for synapse applications. The idea
behind using the NR synapse is that by averaging over the behavior of
multiple devices, the non-ideal behavior of single devices has a smaller
influence on the behavior of the whole synapse. For the NR synapse we
started with identifying the impact and relevance of d2d and c2c
variability on the synaptic dynamics. Additionally, we could show that
different synaptic dynamics can be achieved via the exploitation of the
switching percentages and through the use of changing pulse amplitudes.
The idea behind the 1T1R synapse is to better control the behavior of the
VCM devices through the transistor. For the 1T1R synapse we have
analysed the difference between the two configurations in which the VCM
cell can be connected to the transistor. If the AE is connected to the
transistor the behavior is generally more favourable with a linear tuning
across a large range of conductances and a smaller observed variability.
However, the AE configuration requires larger transistors for the RESET
direction. Design trade offs and limitations are introduced and discussed
through the introduction of an adapted load line concept, which takes into
account the power dissipation in the device as well as by taking into
account the electric field driving the ionicmotion during switching. Those
two quantities represent the driving forces governing the VCM behavior.
For all observed synapse concepts, a clear trade off between the dynamic
range and the linearity can be observed.
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