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The increasing complexity of deep learning systems has pushed conventional

computing technologies to their limits. While the memristor is one of the

prevailing technologies for deep learning acceleration, it is only suited for

classical learning layers where only two operands, namely weights and

inputs, are processed simultaneously. Meanwhile, to improve the

computational efficiency of deep learning for emerging applications, a

variety of non-traditional layers requiring concurrent processing of many

operands are becoming popular. For example, hypernetworks improve their

predictive robustness by simultaneously processing weights and inputs against

the application context. Two-electrode memristor grids cannot directly map

emerging layers’ higher-order multiplicative neural interactions. Addressing this

unmet need, we present crossbar processing using dual-gated memtransistors

based on two-dimensional semiconductor MoS2. Unlike the memristor, the

resistance states ofmemtransistors can be persistently programmed and can be

actively controlled by multiple gate electrodes. Thus, the discussed

memtransistor crossbar enables several advanced inference architectures

beyond a conventional passive crossbar. For example, we show that sneak

paths can be effectively suppressed in memtransistor crossbars, whereas they

limit size scalability in a passive memristor crossbar. Similarly, exploiting gate

terminals to suppress crossbar weights dynamically reduces biasing power by

~20% in memtransistor crossbars for a fully connected layer of AlexNet. On

emerging layers such as hypernetworks, collocating multiple operations within

the same crossbar cells reduces operating power by ~ 15 × on the considered

network cases.
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1 Introduction

The increasing complexity of deep neural networks (DNN)

and their proliferating applications in embedded computing have

pushed conventional architectures and CMOS technologies to

their limits (Shukla et al., 2021b; Nasrin et al., 2021; Kim et al.,

2020; Iliev et al., 2019). As a result, there is an invigorated interest

in exploring alternative technologies and computing

architectures to achieve a disruptive improvement in

deploying DNNs under stringent area, power, and latency

constraints. Memristors are among the most promising

emerging non-volatile memory technologies for DNNs

(Prezioso et al., 2015; Cheng et al., 2017; Li et al., 2018; Ankit

et al., 2019; Wang et al., 2019). Memristors can store DNN’s

synaptic weights in a dense and scalable crossbar architecture

with multibit precision and passive resistive programming.

Moreover, the same crossbar can be used for “compute-in-

memory” processing of certain key computations of a DNN.

Integrating storage and computations within the same structure

allows memristor crossbars to supersede conventional digital

accelerators where limited memory-processor bandwidth

becomes the key bottleneck for performance scaling (Chen

et al., 2016; Basu et al., 2018; Kim et al., 2020).

In parallel, DNN architectures are going through a

dramatic evolution to improve their computational

efficiency. In the last few years, novel layers such as

inception (Szegedy et al., 2016), residual layers (Szegedy

et al., 2017), dynamic gating (Hua et al., 2018), polynomial

layers (Kileel et al., 2019), self-attention (Wu et al., 2019), and

hypernetworks (Ha et al., 2016) have been added to the

repository of DNN building blocks. Therefore, a critical

challenge for the next generation of DNN accelerators is to

exhibit high versatility in their processing flow for efficiently

mapping these various DNN layers into hardware circuits.

Emerging architectures use additional layers beyond the

classical layers, and thus, they can simultaneously correlate

multiple variables to enhance the computational efficiency

and representation capacity. For example, hypernetworks

(Ha et al., 2016) integrate the application context in their

prediction by simultaneously correlating all three, viz.,

inputs, weights, and context features to predict the output.

Likewise, recurrent layers such as gated recurrent units

(GRU) simultaneously correlate input and weight dot

products against history-dependent reset vector using

Hadamard product for long or short-term memory.

While a significant advantage of memristor crossbars is

their scalability via two-electrode arrays, this same

architecture imposes challenges when adapting their use

for such emerging DNN layers. Due to only two

controlling electrodes, memristor crossbars are only suited

for classical DNN layers where only two operands, namely

weights and inputs, are processed at a given time. Memristor

grids cannot directly map emerging DNN layers where

multiple operands must be simultaneously processed. A

two-electrode control of memristors also creates challenges

for computational scalability. For example, mixed-signal

operations on memristor crossbars are susceptible to sneak

current paths formed dynamically depending on the input

and weight vectors. To suppress these sneak paths, memristor

cells in a crossbar are typically integrated with additional

selector components such as transistors or diodes. Although

the selectors improve the robustness of crossbar processing,

the additional circuit elements per cell sacrifice the crossbar

scalability and pose other constraints on materials

compatibility during fabrication.

In this work, we present a neural network crossbar based on

dual-gated memtransistors (Figure 1) to overcome the

limitations of memristor crossbars for higher-order processing

of emerging deep learning layers. Unlike memristors,

memtransistors are multi-terminal gate-tunable active

elements whose non-volatile resistance can be persistently

programmed but volatile channel resistance can also be

adapted dynamically by gate electrodes. The gate-tunability of

memtransistors also offers unprecedented circuit and

microarchitecture-level co-optimization opportunities for

neural crossbars, especially for emerging deep learning layers

that rely on higher-order multiplicative interactions.

Exploiting the dual-gated MoS2 memtransistors for neural

processing, our key contributions in this work on classical and

emerging neural layers are as follows:

• Classical layers on memtransistor crossbars: We propose a

higher-order neural network processing method using a

dual-gated memtransistor crossbar in the time and charge

domain. In our scheme, inputs are applied row-wise in the

time domain, and outputs are accumulated column-wise in

the charge domain. The proposed gate-tunable neural

processing significantly enhances the scalability of the

crossbar and minimizes overheads of mixed-signal

processing and peripherals. For example, we exploit gate

tunability of memtransistors to eliminate sneak current

paths in the crossbar. When time-encoded input to a row is

low, memtransistors in the respective row are configured to

a very high resistance state using gate controls to suppress

sneak current paths. In comparison, conventional

memristor crossbars require additional selectors at each

cell to control the sneak path and/or are limited to

operating with a smaller crossbar size. In addition, by

using the gate-tunability of memtransistors,

conductance-emulated crossbar weights are dynamically

suppressed based on input patterns such that the overall

prediction accuracy is not affected but the crossbar’s

overall biasing power can be minimized. Although

similar input-adaptive weight suppression is also feasible

in memristor crossbars, only hard weight gating can be

implemented without significantly complicating the
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physical design. Meanwhile, gate-tunability of

memtransistors naturally allows a soft-gating of network

weights which opens many more excellent opportunities

for crossbar weight adaptation without sacrificing

accuracy.

• Emerging layers on memtransistor crossbars: We discuss

mapping schemes for emerging higher-order neural layers

on memtransistor crossbars, namely, hypernetworks and

history-dependent gating mechanisms in long-short term

memory (LSTM) and gated recurrent units (GRU). The

implementations reveal the significant efficiency of

memtransistor crossbars to implement the emerging layers

than conventional memristor crossbars. Dual gate controls of

memtransistor allow quadratic order multiplications to be

implemented within a single device, reducing the total

number of operations and processing modules. For

example, for hypernetworks, quadratic multiplications

within a memtransistor crossbar are ~ 1.5 × more energy

efficient than in memristors. Furthermore, by performing

higher-order multiplications within a single crossbar, unlike

memristors, memtransistors obviate partitioning higher-order

operations into a sequence of lower-order operations which

significantly reduces the necessary workload and improves the

energy efficiency of crossbar processing. Hence, while the

emerging neural layers promise better inductive biases and

prediction capability under network size constraints,

memtransistor crossbars further improve their potential by

enabling low power implementation.

Section 2 discusses the background on fabrication and

operating characteristics of memtransistors. Section 3

discusses the advantages of memtransistor crossbars on

classical neural network layers. Section 4 presents the

benefits of memtransistor crossbars for emerging neural

network layers such as Hypernetworks and LSTM on the

memtransistor grid. Finally, Section 5 summarizes our key

advancements and concludes.

2 Gate-tunable dual-gated
memtransistor crossbars

In prior works (Sangwan et al., 2018; Lee et al., 2020), our co-

authors Sangwan and Hersam have demonstrated a novel gate-

tunable memristive system—the memtransistor—fabricated from

polycrystalline monolayer MoS2 with SiO2 as the bottom gate

dielectric. For the individual dual-gated memtransistor

(Figure 1A), the drain and source electrodes were patterned by

electron beam lithography and liftoff processes on MoS2 that was

synthesized by chemical vapor deposition. This is followed by

patterning of MoS2 channels by reactive ion etching (channel

length L and width W are 900 and 700 nm, respectively). The

top-gate dielectric Al2O3 (30 nm thick) were grown by atomic

layer deposition. A 300-nm-thick SiO2 acted as the gate

dielectric on the doped Si wafer serving as a global bottom

gate. The dual-gated memtransistor crossbar was fabricated

using the same channel geometry, the thickness of metal

electrodes, and the thickness of dielectrics layers as the

individual devices. Figure 1B shows the channel dimensions

of each node in the fabricated crossbar. Figure 1C shows the

micrograph of a representative dual-gated 10-by-9 crossbar

array. The source and drain terminal lines are interleaved,

running in parallel, for a higher density of memtransistor

cells. The top gate lines run orthogonal to source/drain

terminals. Various other adaptations of memtransistors

have been discussed in our prior works Yan X. et al., 2021;

Yuan et al., 2021; Sangwan et al., 2015.

2.1 Operating principles of the dual-gated
memtransistor

Figure 2A shows the characteristic pinched memristive loop

and measured bipolar resistive switching characteristics of the

dual-gated MoS2 memtransistor at different bottom gate biases

VBG with a floating top gate. The device is initially in a low

FIGURE 1
Dual-gated memtransistors: (A) Schematic of a dual-gated memtransistor on monolayer MoS2. (B) Top view schematic of a crossbar cell.
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resistance state (LRS) and switches to a high resistance state

(HRS) at forward bias (drain voltage VDS > 0), representing a

RESET process. In contrast, the device undergoes a SET process

(i.e., switching from HRS to LRS) at reverse bias (VDS < 0). The

clockwise switching in SET/RESET processes and inverted

rectification polarity suggest that the bottleneck for charge

injection occurs at the drain electrode. Thus the dominant

resistive switching mechanism occurs at the forward-biased

Schottky diode (i.e., under the drain contact in RESET, source

contact in SET). This is in contrast to the dominant resistive

switching mechanism in reverse-biased Schottky diode at source

contacts in single-gated memtransistors (Sangwan et al., 2018,

2015), as shown in Figure 2B. The possible physical mechanisms

for the different behavior are discussed in detail in the Lee et al.

(2020). The reversible and dynamic modulation of the Schottky

barrier could be attributed to the migration of defects or charge

trapping events near the contacts in the underlying MoS2 or

overlaying Al2O3. Most importantly, the dual-gated

memtransistor (Lee et al., 2020) enables not only gate-tunable

learning, like the single-gated memtransistor (Sangwan et al.,

2018), but also permits efficient scaling into a crossbar array

configuration by suppression of sneak currents, unlike the single-

gated memtransistor. Memtransistor-based spiking neuron

implementations were discussed in prior works Yuan et al.,

2021; Yan et al., 2021b whereas this paper focuses on higher

order deep learning using the devices.

2.2Modelling of single gatememtransistor
characteristics

In Sangwan et al., 2018, we have discussed memtransistor

modeling under a single gate adaptation of the device. A brief

summary is provided here. We model the memtransistor

behavior by integrating a mathematical formalism of

memristive systems with the charge transport model of a

Schottky-barrier FET (SB-FET). Memristive systems are

defined as:

dw

dt
� f w,V, t( ) and I � g w,V, t( ) × V (1)

where t is the time, w is an internal state variable, and V and I are

the input (voltage) and output (current). In the sub-threshold

regime, the charge transport in SB-FET is dominated by

thermionic emission:

ID � ApT3/2 exp
Φb

kbT
( ) exp

eVD

kbT
( ) − 1[ ] (2)

where Ap is the 2D equivalent Richardson constant, the term T3/2

comes from the 2D model (as opposed to T2 in 3D), Φb is the

barrier height. Combining SB-FET model with memristive

formalism, we derive:

ID � Dexp
e VG − Vth( )

crkBT
[ ] 1 − exp − eVD

cvdkBT
( )[ ]

exp

ϕb0 −
e

εs

�����
wsΔn
4π

√
+

����
e

4πεs

√ ���������������
2en ϕb0 + A VD| |( )

εs

4

√
kBT

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (3)

zws

zt
� EID 1 − w − 0.5( )2 + 0.75[ ]p{ } (4)

Here, A, D, E, cr, cvd, p, and Δn are fitting parameters. We omit

greater details of the above equation here for brevity that can

be referred in our prior work Sangwan et al., 2018.

FIGURE 2
Memtransistor characteristics andmechanism: (A)Drain current (IDS) versus drain bias (VDS) characteristics of a dual-gatedMoS2memtransistor.
Gate tunable memristive switching is seen at various bottom gate biases (VBG) while the top gate is floating. (B) Left: Schematic diagram showing a
Schottky contact and MoS2 band-bending near the drain electrode in low resistance state (LRS). EF is the Fermi energy level. Right: Schematic
diagram showing the increased space-charge region near the drain electrode in high resistance state (HRS). Reproduced with permission
(Sangwan et al., 2018). Copyright 2018, The Authors, published by Springer Nature.
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2.3 Projection of dual-gated
memtransistor to scaled dimensions

Dimensions of our prototype memtransistors are not scaled to

achieve practical low power advantages for neural processing. While

our device scaling efforts are underway (Lee et al., 2020), in this work,

we project dual-gated memtransistor nodes to approach tens of

nanometers and study the potential benefits of crossbar-based neural

processing using simulations. In the fabricated prototypes, non-

volatility of resistance states is experimentally verified to originate

from Schottky Barrier (SB) height modulation. Therefore, to study

the device characteristics at the nanometer scale, we integrate the

formalism of non-equilibriumGreen function (NEGF)-based current

conduction and SB height modulation. A NEGF-based model can

preserve the wave (quantum-mechanical) character of carrier

electrons at the scaled dimensions, and therefore, it is more

accurate than classical current transport equations.

Figure 3A shows the schematic of a dual-gated

memtransistor with a channel length of 7 nm for simulation

using NEGF. The scaled device in the figure is used for our

ensuing discussions. The channel in the device is formed using

monolayer MoS2. Top gate is patterned on 2 nm thick Al2O3

dielectric. In the fabricated prototype, see Figure 1, MoS2 is

grown on SiO2 and a doped silicon layer is used as a bottom gate.

Appropriately, a bottom (or back) gate under 10 nm thick SiO2 is

considered in the scaled adaptation. Under various SB height

(ΔϕB) programming, Figure 3B shows ID-VGS characteristics of

the scaled device at VDS = 0.3 V and Figure 3C shows ID-VDS

characteristics at the top gate potential being 0.5 V. Due to

thermionic emission-based current conduction, IDS through a

memtransistor is exponentially sensitive to gate voltage VGS. At

varying programming configurations, IDS changes by one to

three-orders of magnitude by switching gate voltage to zero

from 0.5 V. Therefore, to suppress sneak paths, memtransistor

crossbars can utilize gate-tunability of IDS; the advantages of

these characteristics will be analyzed in more details

subsequently.

2.4 Comparison to competitive synaptic
memory technologies

Table 1 compares the proposed technology against the

competitive synaptic memory technologies for neural

crossbars. Characteristics and benchmarks of other

technologies are gathered from Chen 2016; Choi et al., 2020;

Cai et al., 2017; Yu and Chen 2016; Endoh et al., 2016; Mladenov

2019, 2020; Mladenov and Kirilov 2013. Two key advantages of

memtransistors are multi-terminal control, thus eliminating the

need for dedicated selector devices, and potential for better

crossbar density due to superlative gate electrostatics even at

sub-10 nm scaling. In the demonstrated prototypes Sangwan

et al., 2018; Lee et al., 2020; Sangwan and Hersam 2020;

Sangwan et al., 2017; Yan X. et al., 2021, HRS/LRS ratio,

FIGURE 3
Memtransistor characteristics simulations: (A) Scaled dimensions of memtransistor evaluated under NEGF. (B) IDS-VGS at varying Schottky
Barrier height (VDS = 0.3 V). The potential at the top gate is sweeping while the potential at the bottom gate is set to 0 V. (C) IDS–VDS at varying SB
height. The potential at the top gate is 0.5 V and at the back gate is zero.
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retention, and endurance are already comparable to the best-

reported characteristics among nonvolatile memories (NVMs).

Although our current prototype has a larger dimension, at sub-

10 nm channel lengths, write voltage is expected to be less than

2 V with latency less than 10 nanoseconds.

Furthermore, memtransistors have critical advantages over

dual gate synaptic transistors such as in YanM. et al., 2021; Tian

et al., 2019. In memtransistors, the non-volatile resistive

switching is achieved by the drain bias pulses. Therefore,

one of the gate terminal can afford the tunability of the

resistive states to realize multi-state memory or change the

learning rate during neural network training. Importantly, this

can be achieved without the second gate that can be then used as

a selector to suppress the sneak current in the scaled network.

So, the second gate acts as a transistor in a 1T1M architecture of

memristor crossbars while the second gate can control learning

behavior. On other hand, dual-gated synaptic transistors Yan

M. et al., 2021; Tian et al., 2019 achieve non-volatile memory

states using pulses on one of the gates, not by the drain

electrode. So, the second gate can be used to either change

the learning rate or act as a selector, but not for both

simultaneously. Therefore, dual-gated memtransistors allow

an additional control electrode that is not feasible in dual-

gated synaptic transistors. These differences have also been

outlined in detailed comparison between different dual-gated

synaptic devices including ferroelectric devices in the review

article Yan X. et al., 2021.

3 Classical neural layers on
memtransistor crossbars

This section studies the advantages of dual-gated

memtransistor crossbars for classical deep learning layers. We

first discuss a time/charge-domain neural processing scheme

simplifies crossbar processing peripherals. Subsequently, we

discuss how dual-gate control of memtransitor crossbars can

be exploited to dynamically suppress sneak paths and

layer weights to maximize the energy efficiency of neural

processing.

3.1 Crossbar architecture and time-
domain processing

Figure 4 shows the architecture of a crossbar where each cell

is made of a dual-gated memtransistor. The drains electrodes of

memtransistors along a row are shared and controlled together.

The source electrodes of memtransistors along a column are also

shared. Dual-gate grids are formed within a crossbar. Front gates

of memtransistors along a row are shared, creating a row-wise

front-gate grid. Back-gates along a column are shared, forming a

column-wise back-gate grid. Comparable memtransistor

crossbars were fabricated in Feng et al., 2021. A weight matrix

is mapped on a memtransistor grid by programming the height

of each crossbar element’s Schottky barrier (SB). An input vector

is applied row-wise on the drain ends of memtransistors in the

time-domain using digital to pulse converter DAC (T-DAC).

T-DAC is composed of digital components—a digital

comparator and register to store crossbar inputs—where the

count from a digital counter is compared against the stored input.

An active high signal is inserted if the count is less than the input.

Subsequently, the crossbar operates on time-encoded input

signals against the stored weights. Each memtransistor is

programmed so that its conductance (gij) at the applied time-

encoded input pulse between its drain to source electrodes is

proportional to the mapped weight magnitude wij. Since the

conductance of a memtransistor can only be positive, whereas the

weight matrix values can be both positive and negative, two

crossbar cells—positive and negative weight cells—are dedicated

for each weight matrix entry, as shown in the figure. The figure

shows that positive or negative weight matrix entries are written

on the corresponding cell while the other cell is programmed to

the minimum conductance.

When input pulses are applied, each memtransistor injects a

current Iij = IDS(ϕij) along a column as long as the pulse is active.

Here, ϕij is the programmed Schottky barrier height of a

memtransistor at the iij row and jij column, programmed

according to the corresponding weight value wij mapped at

the intersection. Along a column, columns currents are

integrated on a capacitor CINT using a charge integrator

circuit shown to the right side of Figure 4. At the end of

TABLE 1 Comparison of device-level characteristics of memtransistor against conventional NVMs.

Technology PCRAM STT-MRAM RRAM FeRAM Memtransistor

Device Structure 2 terminals 2 terminals 2 terminals 3 terminals 4 terminals

Selector Needed Needed Needed Not needed Not needed

Write Voltage < 3.0 V < 1.0 V < 0.5–5 V 5 V < 2 V

Write Latency 40–150 ns 2–20 ns 20–100 ns 10 ns < 10 ns

HRS/LRS 102–103 < 2 103–106 — > 103

Retention > 10 years > 10 years > 10 years > 10 years > 10 years

Endurance > 109 1012 106–1012 1013 > 109
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crossbar processing, the potential developed across the

integrating capacitor follows ∑Ti × Iij/CINT. Here, Ti is the

pulse-width of the encoded input vector element at row “i”

and Iij is the current of memtransistor at the iij row and jij

column. The front-end amplifier in the charge integrator

enforces a virtual ground on the sources of memtransistors to

improve the reliability of current integration.

An integrated charge can be held briefly using a voltage hold

cell shown to the right in the figure. Hold-cell is designed using

common-source (CS) amplifiers with both NMOS (MN1) and

PMOS (MP2) input stage to accommodate for rail-to-rail swing of

the integrator output and feedback capacitors (Cf1 and Cf2). The

potential at the charge-integrator output degrades over time due

to crossbar’s leakage. Such degradation will alter the biasing of

MN1 and MP2, causing the output of the CS stage to increase due

to negative feedback and resulting in potential differences across

feedback capacitors. The resulting current through the feedback

capacitors due to the potential difference restores charge-

integrator output and thereby enhances the retention time of

the hold-cell.

The complexity of time-domain digital to analog converter

(T-DAC) and voltage-domain analog to digital converter (ADC)

in Figure 4 increases exponentially with higher precision input and

output processing. Memtransistors can only support a limited

precision weight storage. Therefore, the operating precision of

neural crossbar is inherently limited. Higher precision inputs and

weights can be bit-sliced to alleviate precision scalability challenges, as

shown in Figure 4. For example, 8-bit input and weight values can be

time-sliced into four-bit sections and four operation cycles can be

used for processing. Although the crossbar’s latency increases, its

design and implementation become significantly simplified. Similar

memristor and other non-volatile memory-based neural accelerators

have also been studied in prior works (Trivedi and Mukhopadhyay

2014;Manasi and Trivedi 2016; Shafiee et al., 2016;Wang et al., 2016;

Mikhailenko et al., 2018; Nasrin et al., 2019; Fernando et al., 2020;Ma

et al., 2020; Nasrin et al., 2020; Shukla et al., 2021a). However, our

subsequent discussion will highlight how dual-gated control of the

memtransistor grid can offer unique co-optimization opportunities

not available to current memristor-based crossbar designs.

3.2 Crossbar scalability with gate-
controlled sneak path suppression

A critical challenge for conventional crossbar scaling is the

presence of sneak current paths. Consider the earlier discussed

time-domain neural processing in a crossbar in Figure 5A. As a

vector of time-domain inputs is applied along the rows, charge

domain processing in the array computes input vector-weight

matrix products along with columns in voltage mode, which

must be digitized for downward processing and transmission.

Since a typical analog-to-digital converter (ADC) requires

significant area/power overhead, integrating parallel ADCs at

each crossbar column incurs excessive overhead. Thus typically,

only a limited number of integrated ADCs will multiplex over all

crossbar columns to sequentially digitize their output. Under

FIGURE 4
Time-domain processing in memtransistor crossbars: Inputs are applied in the time-domain. Inputs and weights are multiplied in the charge
domain. Integrator and hold circuit for charge accumulation are shown on the right.
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such ADC multiplexing, the analog output of a column held at

the charge integrator is susceptible to degradation under charge

leakage. Therefore, to minimize the crossbar’s bias power under

ADC’s multiplexing, only a limited number of column outputs

(such as 16 in a crossbar with 128 columns) are computed in one-

time step, and the remaining crossbar columns are left floating to

prevent leakage power. However, floating crossbar columns can

form sneak paths affecting the output accuracy, whereas the

number of such sneak paths dramatically increases with

increasing crossbar size.

In a memtransistor crossbar, gate-bias of crossbar elements

can be employed to suppress such sneak paths dynamically.

Figure 5A shows the proposed scheme where timing pulses from

T-DAC are applied to both drain and gate of a memtransistor. As

T-DAC pulses deactivate, the gate voltage of memtransistors

along the row is swept from 0 V to −0.5 V, which increases their

resistance by orders of magnitude (see Figure 3B) and effectively

suppresses the sneak paths formed through floating

memtransistor columns. Although similar implementation can

be used for memristor crossbars by integrating a transistor in

each crossbar cell (Zidan et al., 2014; Yan et al., 2016; Humood

et al., 2019; Shi et al., 2020), memtransistors achieve this in a

single circuit device.

Figure 5B shows the root-mean-square (RMS) error for

memristor-based crossbar arrays against memtransistor

crossbar arrays where gate voltages are exploited to suppress

sneak current paths dynamically. Various simulation parameters

are listed in Table 2. Memtransistors withW/L = 10 nm/7 nm are

used for each crossbar cell where ϕB programming within

~150 mV window varies drain-to-source current Ids from

1–100 nA at drain VD. When the input from T-DAC

deactivates, VD of memtransistors along the row is grounded

and VG is biased at −0.5 V to cut-off sneak paths as discussed

before. An equivalent resistance programming range is assumed

for memristors to highlight the advantages of gate tunability in

memtransistors specifically. Timing DACs are operated with 4-

bit precision and take a minimum time-step of 0.2 ns. 6-Bit

precision ADCs are integrated with a crossbar and one ADC

operation consumes 8.3 fJ based on the energy model in

Ginsburg 2007. Simulations were performed using SPICE. The

simulation results show average and worst-case performance

over hundred simulations on random input and weight

vectors. The error distribution is shown in shaded red and

green colors for memristor and memtransistor crossbars.

Note that the sneak current paths problem deteriorates in

memristor crossbars with increasing crossbar size, causing

degradation to the output, thereby limiting the size of the

largest crossbar that can be reliably processed. In the

proposed memtransistor crossbar operation, we can control

sneak current to the instrumentation noise floor since each

FIGURE 5
Sneak current path analysis of memtransistor crossbar: (A) Sneak paths in a crossbar can arise due to practical considerations such as column
multiplexing with limited number of ADCs which requires unselected (floating) columns. For memristor and memtransistor crossbars: (B) average
and worse-case scalar product error at increasing crossbar size, and (C) average biasing power if unselected crossbar columns are grounded in
memristor crossbars.

TABLE 2 Memtransistor (MemTX) crossbar simulation parameters.

WMemTX 10 nm LMemTX 7 nm VD,MemTX 0 V(OFF), 0.3 V(ON)

VG,MemTX −0.5 V(OFF), 0 V(ON) CRow 3 aF/cell CCol 3 aF/cell

MemTX precision 4-bit T-DAC min time-step 0.2 ns T-DAC precision 4-bit

ADC 6-bit ADC energy 8.3 fJ/op IBias (C-Int) 100 nA
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gate is connected to the input. Thus, the error is almost

independent of the size of the array and is only impacted by

the non-idealities of peripherals such as limited OP-AMP gain

(~100 in our case). Moreover, the average power consumption

can be significantly reduced in the dual-gated memtransistor

crossbar, as shown in Figure 5C. If such sneak paths were to be

suppressed by grounding unselected columns in the memristor

crossbar, the resulting waste in biasing power would invariably

scale with crossbar size as shown in Figure 5C. In avoiding the

requirement to ground unselected crossbar columns,

memtransistor crossbars can achieve much better energy

efficiencies than memristor crossbars.

3.3 Input adaptive deep learning with
dynamic weights

The input-adaptive inference is becoming prominent in

improving the energy efficiency of deep learning. The central

idea in input-adaptive inference is to dynamically re-adjust

input-output connections in each layer based on the input

characteristics and complexity. For example, complex input

patterns can be processed with a more sophisticated inference

model, i.e., more weights and more levels of abstractions (DNN

layers). In contrast, simpler inputs can be operated with a low

complexity model with fewer weights yet maintaining high

prediction accuracy. For such input adaptive deep learning,

Liu et al. Liu and Deng 2018 discussed dynamic deep neural

networks (D2NN) where input-output connections in each deep

learning layer are dynamically dropped based on the input

characteristics. Channel gating neural networks were discussed

in Hua et al. (2019) where channels that contribute less to the

classification result are identified and skipped dynamically.

Dynamic slimmable networks were presented in Li et al., 2021

exploring a better mapping efficiency under such dynamic

pruning by keeping filters stored statically and contiguously in

memories.

However, most input-adaptive inference techniques

applicable for memristor crossbars show significant training

complexity related to the lack of dynamic tunability of the

memristor’s characteristics. Since that resistance of a

memristor can not be modulated in runtime, only hard gating

of output neurons can be implemented. Under such hard gating,

an output neuron is completely dropped (gated) depending on

the input pattern and thereby its associated bias power on

synaptic connections can be saved. However, hard gating of

neurons requires adding discrete optimization steps in the

learning procedure. Thereby, computationally expensive

discrete optimization methods (such as REINFORCE Cai

et al., 2018) or reinforcement learning Liu and Deng 2018 are

necessitated which significantly increases the training workload.

While hard gating of DNN neurons is essential for memristor

grids, by exploiting their gate tunability, memtransistor grids can

utilize soft gating of neurons for enhanced opportunities for

input-adaptive bias power saving as well as simplified learning

procedures. Under soft gating, an output neuron can dynamically

scale down its synaptic strength through gate tunability of the

memtransistor grid. Since the bias power for a weight-input

product at an output neuron is proportional to the total

conductance of associated synapses, the associated bias power

can be saved by scaling down its synaptic weights. We discuss

how dual-gate control of memtransistor crossbars can efficiently

implement such input-adaptive crossbar weight modulation.

More importantly, we will discuss how dual-gate management

simplifies the input-adaptive inference training procedure.

In Figure 6B, consider input-adaptation neurons Ai,1 to Ai,N

interleaved with output neurons in a crossbar mapping layer i of

a neural network. For input-adaptive crossbar energy

minimization, the scheme follows a “soft-suppression” of

output neurons by controlling their column-wise back gate

voltages based on the output from the adaptation neurons. If

an adaptation neuron suppresses an output neuron, its output

voltage is low, reducing all weights in the output neuron’s

column. We consider a block-wise input adaptation where

neuron Aij regulates column-wise gate voltages of all output

neurons in the respective block Bij as shown in the figure. The

input-adaptation transpires in two phases. In the first phase, the

output neuron’s suppression voltage are computed through

adaptation neurons while disabling regular output neurons

using column-wise gate voltages, i.e., VBG = 0 V. Adaptation

neurons Aij in the layer perform scalar dot product of adaptation

weight matrix and layer input yi−1 to compute the adaptation

voltages of the corresponding block. In the second phase, layer

outputs are computed by applying suppression voltages to the

gate grid of output neurons, as shown in the figure. Thereby,

weight matrix Wi of layer i is adapted to WA
i � Wi ⊙ g(Aij)

where g () voltage to conductance transfer function of

memtransistor and ⊙ is Hadamard product operation (see left

of Figure 6B).

Notably, due to soft suppression of weights, the network is fully

differentiable, thereby doesn’t introduce training complexities

compared to typical DNNs. In Figure 6C, we consider a fully-

connected layer of size 4,096 × 4,096 from AlexNet, trained with

the CIFAR10 dataset, and apply the above input-adaptive inference

with soft gating of neural weights. Weights of adaptation neurons Aij

were trained by modifying the original weight matrix Wi to WA
i �

Wi ⊙ g(Aij) and adding L2 norm of the adapted weight matrix

‖WA
i ‖2 to the cost functionwhich forces the network tominimize the

network weight on each input from the training set. For the

illustrative results, the fully-connected layer in the network

performs input-adaptive inference with eight adaptation neurons.

The figure shows adaptation factors across eight neurons on various

example images in the dataset, demonstrating the ability of the

network to suppress neural weights based on input characteristics

dynamically. In Figure 6D, we consider a varying number of

adaptation neurons operating on equal block sizes within each
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crossbar. Crossbar processing power reduces with more adaptation

neurons due to fine-grained input adaptations. However, since each

adaptation neuron incurs its processing overhead, an optimal

number of them is needed for maximum energy saving. In the

figure, an optimal ~20% energy can be saved with 32 adaptation

neurons on the considered case.

4 Higher-order neural networks on
memtransistor crossbars

Several new DNN layer styles are being developed to improve

computational efficiency and to capture multiple inductive biases

in deep learning. A noticeable trend among emerging DNN layer

styles is that they exploit higher-order interaction among

operands. For example, for inputs x, weight matrix W, and

activation function f (), a classical first-order DNN layer

computes f (Wx). Comparatively, a second-order DNN layer

in hypernetworks computes f(zTWx) (Figure 7A). Here,W is a

3D weight tensor, and z is a higher-order multiplicand operated

along with the input x. Since memristors are two-electrode

devices, they are suited only for first-order network layers in

classical deep learning models unless additional circuit elements

are added to each cell. Meanwhile, a single element

memtransistor cell can efficiently implement higher-order

processing steps by exploiting gate terminals. This section

presents the mapping of various emerging layer styles on

memtransistor crossbars, showing their higher degree of

versatility than memristor crossbars.

In a hypernetwork Ha et al., 2016, a neural network g

generates weights of another network f given some context z.

Hypernetworks have found critical success over traditional

DNNs for generative modeling, continuous learning, and

neural machine translation Klocek et al., 2019; Ehret et al.,

2020; Spurek et al., 2020; Suarez 2017. Prior work Jayakumar

et al., 2019 has shown that processing in hypernetworks is, in fact,

equivalent to higher-order processing of input x and context z

through a 3D weight tensorW. Figure 7A shows the mapping of

hypernetworks on memtransistor crossbars. A 2D slice of W is

mapped on one crossbar. z is applied with time-encoding row-

wise on drain terminals while x is applied column-wise on back

gate terminals. As discussed before, row-wise back gate terminals

FIGURE 6
Dynamic inference paths: (A) Input-adaptive “soft” suppression of neurons. (B) Within crossbar computations of input-adaptive suppression
factor. Input to a layer are applied to adaptation neurons which compute the suppression factor for primary neurons in the layer. Using the crossbar
architecture shown to the right, the suppression factor is applied using vertical gate grid. (C) On CIFAR10 dataset, input-adaptive neural weight
suppression factors computed for the fully-connected layer of AlexNet. (D) Bias-power saving with increasing number of adaptation neurons
on fully-connected layer of AlexNet.

Frontiers in Electronic Materials frontiersin.org10

Rahimifard et al. 10.3389/femat.2022.950487

https://www.frontiersin.org/journals/electronic-materials
https://www.frontiersin.org
https://doi.org/10.3389/femat.2022.950487


are exploited to suppress sneak paths. Charges pushed by all

columns can be integrated by merging them through a single

charge integrator circuit. Charge from each memtransistor flows

as long as both row-wise drain-to-source voltage pulse (encoding

z) and column-wise back-gate voltage pulses (encoding x) are

active. Thereby, the charge flown through the crossbar in one

processing step is proportional to zTWix where Wi is the slice of

W mapped on the crossbar.

Figure 7B shows a comparative mapping of hypernetworks

on the memristor crossbar to illustrate the advantages of the

memtransistor grid on such higher-order processing. Since

memristors can only perform first-order matrix-vector

multiplication, hypernetwork computations must be split into

multiple steps in Figure 7B. Therefore, first, weight-slice Wi is

processed against time-encoded context vector z using a

memristor crossbar. Then, column outputs are digitized and

multiplied digitally with input vector x. Finally, the product sum

bits are digitally accumulated. For an n × m × k-sized 3D weight

tensor W, a memristor crossbar needs to perform several extra

operations compared to the memtransistor crossbar as shown in

Table 3. For example, memristor crossbars perform n × k ADC

operations, for all n columns in k crossbars necessary to process

W. Meanwhile, in memtransistor crossbars, only one ADC

operation per crossbar is needed, therefore only k operations

are needed. Although memtransistors require more DAC

operations due to time-encoded voltage pulses being applied

at row-wise drain terminals and column-wise gate-terminals, the

overhead of DAC operations is much less due to its digital design

compared to ADC. Memristors also require n × k digital

multiply-accumulate operations as shown in Figure 7B

whereas memtransistors require only k such operations, one

per crossbar. Furthermore, the memristor crossbar also

consumes extra power in the crossbar operation itself. Power

dissipation in a memtransistor element is proportional to the

product zi × Wij × xj where zi, xj, and Wij are the context, input,

and weight elements mapped on memtransistor at ith row, jth

column. Power dissipation in the corresponding memristor

element is proportional to zi × Wij. Considering that input

and context vectors are normalized to unity, zi × Wij × xj is

smaller than zi × Wij, therefore, the memtransistor crossbar

consumes a reduced biasing power.

Considering a specific test-case of W of size 64 × 64 ×

64 where x, z, and weights are uniformly distributed, Figure 7C

and Table 3 also compare the energy for memristor and

memtransistor grids for crossbar biasing and peripheral

operations. Simulation parameters listed in Table 2 are used

for energy estimation. By reducing operations for x and z to a

FIGURE 7
Hypernetworks on memtransistor crossbar: (A) Implementation of Hypernetworks on memtransistor crossbar and comparison to memristor
crossbar-based mapping in (B). Context vector z is applied row-wise as pulse-width modulated signal and input vector x is applied column-wise.
Charge integrated by all output columns ismerged and passed to ADC for digitization. Compared to amemristor crossbar, the number of computing
operations are minimized significantly. (C) Comparison of crossbar and peripheral energy between memristor andmemtransistor crossbars for
64-by-64 weight matrix.

TABLE 3 Memtransistor vs. Memtransitors on Hypernetworks.

Higher-Order
Multiplicative
Interaction

(zTWx)k � ∑ijziW ijkxk

Operands x ∈ Rn : Input, z ∈ Rm : Task context

W ∈ Rn×m×k : 3D weight tensor

Workload Memristor Memtransistor

# of crossbar cell
multiplications

m × n × k m × n × k

# of DAC operations m × k (m + n) × k

# of ADC operations n × k k

# of digital MAC operations n × k k

Energy comparison (m = n =
k = 64)

39.45 pJ 2.64 pJ
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single cycle, the memtransistor grid saves ×1.5 energy than the

memristor grid. By minimizing the number of ADC and digital

MAC operations, memtransistor crossbars save ~ 15 × energy

compared to memristors on the considered test-case.

In gated recurrent neural networks (RNN), such as long short

termmemory (LSTM)Hochreiter and Schmidhuber 1997 and gated

recurrent units (GRU) Ravanelli et al., 2018, the role of previous

output state ht−1 to current predictions ht is gated based on the

predictions from a forget network rt using Hadamard product, i. e,

ht−1 ⊙rt. Figure 8A shows such gating through coupled

memtransistor crossbars. Here, the first crossbar Xbar1 computes

the gating factors rt. Xbar2 is a special purpose crossbar where both

gate lines run row-wise parallel. Significantly, by directly coupling

Xbar1 and Xbar2, digital conversion of gating factors from Xbar1 to

Xbar2 is not needed, and gating factors can be applied in the voltage

domain itself. The activation layer, such as sigmoid on gating factors,

can be implemented using an operational transconductance

amplifier (OTA). Conversely, additional digital multiplications

FIGURE 8
Other higher-order emerging layers on memtransistor crossbar: (A) Implementation of Hadamard product layers of LSTM and GRU using
coupled memtransistor crossbars. Outputs from left crossbar are directly applied to the gate grid of right crossbar, and thereby the overhead of
intermediate digitization is saved. (B) Energy comparisons between memristor and memtransistor-based implementation of Hadamard gating
mechanisms.

TABLE 4 Memtransistor vs. Memtransitors on Gated Recurrent Units.

Higher-Order Multiplicative Interaction rt � σg(Wrxt + Urht−1)
ĥt � ϕhUh(rt ⊙ ht−1)

Operands xt ∈ Rn : Input, ht−1 ∈ Rm : Output, rt ∈ Rm : Reset vector

ĥt ∈ Rm : Candidate activation vector

Wr ∈ Rm×n : Input-to-reset weights

Ur ∈ Rm×m : Hidden-to-reset weights

Ur ∈ Rm×m : Hidden-to-activation weights

σg (): Sigmoid activation, ϕh (): tanh activation

Workload Memristor Memtransistor

# of crossbar cell multiplications (m + n) × m + m × m (m + n) × m + m × m

# of DAC operations 2m + n 2m + n

# of ADC operations 2m m

# of Sigmoid operations — m

# of Digital multiplications m —

Energy comparison (m = n = 64) 1.247 pJ 0.68 pJ
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and domain conversions will be necessary if gating is mapped

through the memristor crossbar. Due to such integrated

processing, in Table 4 on a 64 × 64 random LSTM/GRU matrix

operated on random inputs, memtransistors consume on average

~ 1.8 × lower processing energy. Although analog peripherals such

as OTA are needed to operate on charge integrator (C-Int) output

directly, the benefit from saving ADC’s energy supersede, and

therefore, memtransistor crossbars are more efficient. Like

hypernetworks, the energy comparison was performed using

energy models of various processing components and estimating

the necessary operations.

Likewise, attention mechanisms can be efficiently implemented

on memtransistor crossbars. In particular, recent work has shown

remarkably simpler neural architectures composed entirely of

attention mechanisms Vaswani et al., 2017. An attention function

can be described as mapping a query and a set of key-value pairs to

an output. For a multi-headed attention in Vaswani et al. (2017),

each attention layer i computes softmax(QWi
QKK

T) where queries
and keys are packed as a matrices Q and K, respectively. Wi

QK is a

linear projection matrix learned from data. Since memtransistor

crossbars can perform quadratic matrix products within a single

array, they can efficiently implement such attentionmechanisms. By

performing quadratic matrix multiplications in a single crossbar,

similar to hypernetworks, memtransistor crossbars can save

significant processing energy. Similarly, metric learning is a key

operation for computer vision Bellet et al., 2015. A commonly used

distance class is Mahalanobis distances where dC (x, z) = ‖x − z‖C =
xTC−1x − 2xTC−1z + zTC−1z. Quadratic matrix multiplications for

metric learning can also be implemented using memtransistor

crossbars. Overall, memtransistor crossbars can be efficient on a

range of different data processing tasks that have been beyond the

limit of memristors.

5 Conclusion

We have discussed emerging trends in deep learning where

recent higher-order neural network layers and input adaptive

deep learning rely on higher-order multiplicative interactions.

Since memristors are two-terminal passive devices, they cannot

efficiently emulate such higher-order computations and cannot

take advantage of the ongoing algorithmic innovations.

Overcoming this critical gap between hardware technologies

and emerging neural network layer architectures, we have

discussed neural processing with dual-gated memtransistor

crossbars. Due to dual-gate controls, memtransistor crossbars

can be dynamically adapted by suppressing sneak paths or

adapting against input characteristics. Furthermore, dual-gate

tunability of memtransistors allows mapping higher-order

computations on a single crossbar cell, which results in a

significant reduction of analog-to-digital conversions and

crossbar biasing power.
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