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This work presents the evolution of magnetic properties of EuxCa1−xFe2As2 (0 ≤
x ≤ 1, ECFA) samples. Unlike the resistivity data, that for magnetic susceptibility χ

(T) does not show any clear evidence of the spin density wave (SDW) transition.

When the Curie-Weiss contribution is subtracted, a weak anomaly appears at a

temperature close to the SDW transition temperature (TSDW) determined from

the resistivity data. To understand the magnetic orders arising from Fe-

moments and Eu2+ spins order, we have studied the doping dependence of

TSDW and Eu2+ antiferromagnetic order TN. It is found that TSDW increases almost

linearly with increasing x and remains nearly unchanged above x ~ 0.4, whereas

TN first appears at x ~ 0.4 and varies almost linearly with further increasing x.

These observations suggest that magnetic orders due to two sublattices are

coupled to each other. The results discussed here are helpful for understanding

the magnetic properties of ECFA and other iron-based superconductors.
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Introduction

Iron-based superconductors (IBSs) have continuously served as a platform for

exploring novel experimental tools and theoretical approaches since their discovery,

especially in studies on the impact of magnetic fluctuations and quantum criticality (Chen

et al., 2008a; Hsu et al., 2008; Kamihara et al., 2008;Wang et al., 2012; Deng et al., 2014; Lei

et al., 2016; Komedera et al., 2018; Deng et al., 2021; Fernandes et al., 2022). The Fe-

magnetic moments appear as a spin density wave (SDW) and, in general,

superconductivity emerges when the SDW order is suppressed either by appropriate

chemical doping or by applying external pressure (Chen et al., 2008b; Rotter et al., 2008;

Takahashi et al., 2008). Thin-film FeSe/STO grown by molecular beam epitaxy (MBE) has

exhibited interface-enhanced superconductivity with a Tc above 40 K (Wang et al., 2012;

Deng et al., 2014). More recently, a Tc of 38 K was retained in FeSe single crystals at

ambient pressure via pressure-quenching (Deng et al., 2021). Defects have also been

reported to play an important role in the superconductivity of IBSs (Deng et al., 2016).
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CaFe2As2 (Ca122) and EuFe2As2 (Eu122) are two members

of the “122” IBS family [(AE)Fe2As2 (AE = Ca, Ba, Sr, and Eu)]

and show SDW transitions at TSDW ~ 165 K and 190 K,

respectively (Park et al., 2008; Torikachvili et al., 2008; Lee

et al., 2009). At the SDW transition, which appears as a sharp

upturn in the resistivity data (Park et al., 2008; Lee et al., 2009; Lv

et al., 2011; Shrestha et al., 2020), the material undergoes

structural (from the tetragonal to the orthorhombic phase)

and magnetic phase (antiferromagnetic ordering of Fe-

moments) transitions simultaneously. In Ca122, there exists

an additional structural transition near 100 K to the

“collapsed-tetragonal” (cT) phase under a moderate pressure

of ~ 0.4 GPa before the superconductivity transition occurs.

However, under truly hydrostatic pressure, no

superconductivity is observed in Ca122 (Yu et al., 2009). A

higher Tc up to 49 K was achieved in this system by chemical

doping (Lv et al., 2011) with rare-earth elements. Our group

recently reported (Zhao et al., 2016) that the Tc of Ca122 can be

raised as high as 25 K using a proper annealing procedure.

Another 122 IBS, Eu122, in addition to having a high-

temperature SDW transition, exhibits an anomaly near TN ~

20 K due to its Eu2+ antiferromagnetic (AFM) order (Ren et al.,

2008). It does not show any signature of superconductivity at

ambient condition, but it can be turned into a superconductor

either by chemical doping [with K (Jeevan et al., 2008) (Tc ~

32 K), with Na (Qi et al., 2008) (Tc ~ 35 K), through Co or La

substitutions (He et al., 2010; Ying et al., 2010; Zhang et al., 2012),

etc.] or by the application of external high pressure (Terashima

et al., 2009; Kurita et al., 2011).

Here, we explore the evolution of the electrical transport and

magnetic properties of Eu-doped Ca122 [EuxCa1−xFe2As2 (0 ≤
x ≤ 1, ECFA)]. We recently reported (Shrestha et al., 2020)

detailed electrical transport properties of ECFA at ambient and

under high-pressure. Here we focus on how its magnetic

properties evolve with varied Eu-doping. We observe that,

unlike in the measurement of resistivity, the magnetic

susceptibility data does not show a visible anomaly resulting

from the SDW transition. We find that a tiny anomaly near the

SDW transition appears only after subtracting the Curie-Weiss

(CW) contribution of the Eu+2 moments.

Experimental details

Large, high-quality single crystals of ECFA were grown using

the FeAs flux technique. Starting materials were placed in an

FIGURE 1
Electrical Resistance. Normalized electrical resistance vs. temperature for Ca122 and Eu122. Both samples show a clear anomaly, near 160 K and
190 K for Ca122 and Eu122, respectively, and indicated by dashed arrows, that arises due the SDW transition. The tiny kink near 19 K for Eu122, as
indicated by the solid arrow, is due to the Eu2+ AFM order. A small drop in resistance for Ca122 near 10 K, as denoted by an asterisk, is likely due to the
superconducting transition (see the text). Upper inset: magnified view of the Eu2+ AFM transition in Eu122. Lower inset: magnified view of the
low-temperature drop in resistance for Ca122.
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alumina crucible that was sealed inside a small silica tube under a

reduced Ar atmosphere. The small silica tube was subsequently

sealed inside a larger silica tube under vacuum. The assembly was

first heated at a temperature of 1,100°C and then slowly cooled

down at a rate of 2°C/h. The sample preparation and preliminary

characterization details are provided in our previous report

(Shrestha et al., 2020). Electrical transport measurement were

carried out in a physical property measurement system (PPMS,

Quantum Design). A shiny crystal was selected and four

platinum wires were attached to its flat surface using silver

paint. Magnetic measurements from room temperature down

to 2 K were carried out using a magnetic property measurement

system (MPMS, Quantum Design). A plate-like sample was

placed inside a gelatin capsule that was subsequently attached

to a plastic straw. A small magnetic field value of 0.1 T was

applied along the c-axis to induce a magnetic moment in the

sample.

Results and discussion

Figure 1 shows the temperature-dependent electrical

resistance of Ca122 and Eu122. The resistance is

normalized to the room-temperature value. Each sample

shows a clear upturn anomaly near TSDW ~ 160 K (Ca122)

or 190 K (Eu122) that arises due to the SDW transition, as

indicated by the dashed arrows. These TSDW values are

consistent with previously reported data (Park et al., 2008;

Torikachvili et al., 2008; Lee et al., 2009; Lv et al., 2011).

Moreover, there is a tiny kink near TN ~ 19 K in the

Eu122 results (indicated by the solid arrow), which can be

more clearly observed in the magnified view shown in the

upper inset to Figure 1. This anomaly arises due to the AFM

ordering of Eu2+ spin moments (Shrestha et al., 2020). For

Ca122, there is a small drop in the resistance value near 10 K,

indicated by an asterisk and more clearly visible in the

magnified view shown in the lower inset to Figure 1. Under

application of external pressure, Ca122 enters into the

superconducting state with a transition temperature Tc ~

10 K (Park et al., 2008; Torikachvili et al., 2008; Lee et al.,

2009). Therefore, this tiny drop in resistance could be due to

the onset of the superconducting transition.

Figure 2 shows the temperature-dependent magnetic

susceptibility (χ) of ECFA samples with different amounts

of Eu doping (x). χ (T) increases gradually with decreasing

temperature and exhibits a distinct anomaly near TN ~

FIGURE 2
Magnetic susceptibility. Magnetic susceptibility (χ) vs. T for ECFA samples with different amounts of Eu doping (0.14 ≤ x ≤ 1. χ (T) increases
gradually with decreasing temperature. The low-temperature anomalies, TN ~ 10–19 K, arise due to the Eu2+ AFM order, as indicated by the arrow.
Inset: χ (T) data for EuFe2As2 (x = 1). The solid black curve is the best-fit curve using the Curie-Weiss model Eq. 1. The x-axis is in the logarithmic scale
for better visibility of TN.
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10–19 K, as indicated by the arrow. This transition arises due

to the Eu2+ AFM order (Ren et al., 2008; Zhang et al., 2012;

Maiwald and Gegenwart, 2017). TN is prominent at higher x,

and it shifts toward lower temperatures at lower x. For x = 1,

TN ~ 19 K, which is consistent with previously reported TN

values (Ren et al., 2008; Zhang et al., 2012; Maiwald and

Gegenwart, 2017). Our recent rigorous electrical transport

and magnetic studies (Shrestha et al., 2020) showed that TN

varies linearly with x. Here, the temperature dependence of χ

(T) can be described by the Curie-Weiss (CW) law Eq. 1 as

shown in the inset to Figure 2 for the x = 1 sample. The CW

law (Ashcroft and Mermin, 1976; Kittel, 2006) is expressed as

χ � C

T − θ
, (1)

where C and θ are the Curie-Weiss constant and the Weiss

temperature, respectively. Here, C is directly proportional to the

effective magnetic moment (μeff) of the sample. Therefore, by

fitting the temperature-dependent χ (T) data, we can estimate μeff
and θ of the ECFA samples.

Figures 3A–C shows the 1/χ (T) plots for selected ECFA

samples. 1/χ (T) varies linearly at high temperatures, but

anomalies corresponding to the Eu2+ AFM order occur at

low temperatures, as indicated by arrows. The solid lines

represent the best-fit to the CW law using Eq. 1. As seen in

Figures 3A–C, the temperature-dependent susceptibility data

can be well explained by the CW law. It is important to note that

there is no clear evidence of the SDW transition in any of the

ECFA samples studied [neither in Figure 2 nor in

Figures 3A–C] due to Fe-moments in our susceptibility data.

In previous studies (Ren et al., 2008; Jiang et al., 2009), the same

issue of being unable to observe a clear SDW transition in the

magnetization data was reported, but it could be observed after

subtracting the CW contribution of the Eu2+ moments.

Therefore, we have followed the same approach and

calculated Δχ (T) by subtracting the CW contribution of the

FIGURE 3
Curie-Weiss fit. Inverse susceptibility, 1/χ, vs. T for ECFA samples at (A) x = 0.31, (B) x = 0.65, and (C) x = 0.92.1/χ increases linearly with T,
consistent with Curie-Weiss behavior. The arrows show the AFM due to the Eu2+ spins. The solid lines are the best-fit lines using the Curie-Weiss law
Eq. 1. The insets in (A)–(C) display the respective Δχ vs. T plots showing the TSDW transitions, as indicated by the arrow in each. (D) TSDW (solid spheres)
and TN (solid squares) vs. x for ECFA samples. Open upright and inverted triangles are TSDW data from Refs (Shrestha et al., 2020). and (Harnagea
et al., 2018), respectively. TSDW increases rapidly with increasing x and then slowly saturates to TSDW ~ 190 K above x ~ 0.4. The error bars are taken as
the half-width of the transition. The vertical solid stripe and solid curve are guides to the eye. TN first appears at x ~ 0.4 and increases almost linearly
with further increasing x, as indicated by the dotted line.
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Eu2+ moments. As shown in the insets to Figures 3A–C, there is

a tiny but distinguishable anomaly at TSDW ~ 165–185 K. These

TSDW values are in close agreement with those previously

reported based on resistivity and magnetization

measurements (Jiang et al., 2009; Harnagea et al., 2018; Tran

et al., 2018; Shrestha et al., 2020). We subsequently determined

TSDW for various ECFA samples and plotted it as a function of

Eu doping. As shown in Figure 3D, TSDW (x) initially increases

rapidly with increasing x, gradually increases with further

increasing in x above x ~ 0.4, and then saturates to the value

of 190 K. As mentioned in the Introduction, ECFA serves as a

special platform that has two magnetic orders, one from Fe-

moments (SDW order) and another due to Eu2+ spins (AFM

order). To confirm the interaction between these orders, we

have also plotted TN vs. x on the right y-axis of Figure 3D. As

seen in Figure 3D, with decreasing x, TSDW remains almost

unchanged until the Eu2+ moment order is destroyed at x ~ 0.4.

This suggests that the magnetic orders of the two sublattices are

coupled to one another.

From the CW-fitting above, we have obtained the best-fit

parameters C = (7.94 ± 0.001) emu K/mole and θ = (19.36 ±

0.13) K for x = 0.92. From the C value obtained, we have

estimated the effective magnetic moment of Eu2+, μeff = (7.97 ±

0.10) μB. These values are comparable with those previously

reported (Jiang et al., 2009; Harnagea et al., 2018; Tran et al.,

2018) for a similar Eu-doping level. The positive θ value

implies ferromagnetic (FM) interaction between Eu2+

moments. Resonant X-ray scattering (Herrero-Martín et al.,

2009) and neutron diffraction data (Xiao et al., 2009; Xiao

et al., 2010) have also shown that Eu2+ spins on the same plane

have FM interaction, whereas they have weak AFM coupling

across the plane. The Eu-doping-dependent best-fit

parameters were calculated for various ECFA samples and

are presented in Figure 4.

Figure 4A shows the variation of the best-fit of parameter θ

with x. For x = 0.31, θ = (4.68 ± 0.23) K, and it increases almost

linearly with further increasing Eu doping. At x = 1, θ = (19.71 ±

0.19). This θ value is comparable with those of 20.3 K reported by

Harnagea et al. (2018) and 19.7 K reported by Jiang et al. (2009).

Similarly, the Eu-doping-dependent best fit of C is shown in

Figure 4B and has nearly linear dependence on x. Figure 4C

displays μeff per Eu
2+ ion at various Eu content and shows that,

although C increases linearly with x, μeff per Eu
2+ ion does not

exhibit any clear Eu-doping dependence. Its value changes

between ~ 8–10 μB.

The doping effect on 122 IBSs has been studied extensively

using both rare-earth metals (RE = La, Pr, Nd, etc.) (Qi et al.,

2008; Gao et al., 2011; Lv et al., 2011; Saha et al., 2012; Ying

et al., 2012) and alkali metals (A = K and Na) (Rotter et al.,

2008; Sasmal et al., 2008; Zhao et al., 2010). Replacing a

divalent AE2+ ion with a trivalent RE3+ (or a univalent A+)

in a 122 IBS serves as electron doping (or hole doping) and

tunes the electronic properties of the system. In both cases

(electron and hole doping), the SDW order is gradually

suppressed, and the superconducting phase has been

stabilized in the 122 system with a maximum Tc of 49 K

(for electron doping) (Gao et al., 2011; Qi et al., 2012; Saha

et al., 2012; Ying et al., 2012) and 38 K (for hole doping)

(Rotter et al., 2008; Sasmal et al., 2008; Zhao et al., 2010). The

superconducting phase in the RE-doped 122 (or A-doped

122 IBS) arises by the suppression of the SDW order via

chemical pressure, electron (or hole) doping, or the

combination of both (Saha et al., 2012). However, isovalent

substitution of Ca2+ with Eu2+ neither adds any charge carriers

FIGURE 4
Weiss temperature, Curie-constant, and effective moment. The best-fit parameters (A) θ (K) and (B)C plotted as functions of Eu doping (x). Both
θ andC vary nearly linearly with Eu doping, as shown by the dashed lines. (C) μeff per Eu

2+ ion at various Eu content. AlthoughC increases linearly with
increasing x, μeff per Eu

2+ ion does not show a clear dependence on x, and its value varies between ~ 8–10 μB).
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in the system nor suppresses the SDW order. As a result, no

superconductivity has been observed in ECFA samples here.

Nonetheless, ECFA provides a unique platform for studying

magnetic orders arising from Eu2+ and Fe2+ sublattices. The

doping dependence of TSDW and TN, as shown in Figure 3D,

suggests that there exists a weak coupling between the SDW

order of FeAs and Eu2+ localized moments. This result is

consistent with NMR (Guguchia et al., 2011), neutron

diffraction (Xiao et al., 2009), and ARPES (Zhou et al.,

2010) studies on Eu122.

Summary

Magnetic properties of EuxCa1−xFe2As2 (0 ≤ x ≤ 1, ECFA)

samples were presented. The resistivity data show clear

anomalies due to the SDW and Eu2+ AFM transitions. The

magnetic susceptibility (χ) of ECFA samples exhibits 1/T

behavior, which can explained using the Curie-Weiss law. The

χ (T) data provide evidence of the Eu2+ AFM order but do not

indicate the SDW transition due to the Fe-moments. A weak

transition near TSDW appears only after the subtraction of the

Curie-Weiss contribution of the Eu2+ moments. With increasing

Eu doping, TSDW initially increases rapidly up to x ~ 0.4, and it

then gradually saturates to a value of 190 K at x = 1. The best-fits

of the Curie-Weiss law parameters, the Curie constant (C), and

the Weiss-temperature (θ), increase linearly with increasing Eu

doping, while the effective magnetic moment, μeff, per Eu
2 + ion

remains nearly constant. Our results provide detailed

information about how the magnetic properties evolve in the

Eu-doped Ca122 system, which will eventually help in

understanding superconductivity in ECFA.
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