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Compliant and soft sensors that detect machinal deformations become

prevalent in emerging soft robots for closed-loop feedback control. In

contrast to conventional sensing applications, the stretchy body of the soft

robot enables programmable actuating behaviors and automated

manipulations across a wide strain range, which poses high requirements for

the integrated sensors of customized sensor characteristics, high-throughput

data processing, and timely decision-making. As various soft robotic sensors

(strain, pressure, shear, etc.) meet similar challenges, in this perspective, we

choose strain sensor as a representative example and summarize the latest

advancement of strain sensor-integrated soft robotic design driven by machine

learning techniques, including sensor materials optimization, sensor signal

analyses, and in-sensor computing. These machine learning

implementations greatly accelerate robot automation, reduce resource

consumption, and expand the working scenarios of soft robots. We also

discuss the prospects of fusing machine learning and soft sensing

technology for creating next-generation intelligent soft robots.
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Introduction

Emerging soft robots have attracted more and more attention in robotic research due

to their easy body/shape transformation (Shepherd et al., 2011; Rus and Tolley, 2015),

high degree of freedom (DOF) deformation (Rus and Tolley, 2018; Walsh, 2018), energy-

efficient actuation (Hu et al., 2018; Kim et al., 2018), and safe human-machine interfaces

(Laschi et al., 2016; Kim et al., 2019). Efficient and accurate feedback control is an essential

function for soft robots to safely interact in dynamic environments (Thuruthel et al., 2019;

Wang et al., 2020; Zhou et al., 2020). Conventional robotic control strategy also involves

simulation and coaching, which depends on advanced algorithms or mathematical

models. But for soft robots, due to the very high degree of freedom of their soft body,

it is challenging to model the robotic dynamics mathematically, making the simulation

and coaching not suitable. As a result, feedback control, which relays on the integrated soft

sensors to back actual electronic signals in response to external stimulus, becomes
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prevalent in soft robotic research. Among various soft sensing

technologies, the compliant strain sensor, as a representative

sensing technology with the facile device fabrication and testing,

is widely attached to the robotic body, enabling the robot itself to

capture mechanical deformations and achieve closed-loop

control (Mirvakili and Hunter, 2018; Zhang et al., 2019).

Until now, diverse strain sensing components are integrated

into soft robots to enable bio-mimicking dexterous

manipulations, such as fish-like robot to explore deep ocean

(Li et al., 2021), ultra-gentle gripper to capture fragile lives

(Sinatra et al., 2019; Sundaram et al., 2019), cheetah-inspired

soft robot with fast-moving (Tang et al., 2020), and soft human

exoskeletons for rehabilitation (Zhao et al., 2016; Cianchetti et al.,

2018), etc.

With the prosperity of soft robots, the soft robotic body with

high DOF manipulations proposes high requirements of the

integrated strain sensors. Firstly, soft robots often exhibit

multimodal locomotion, whereas different robotic units show

very different actuating behaviors with strain deformations

ranging from <5% (Araromi et al., 2020) to >200% (Wang

et al., 2018; Yang et al., 2020). To track the coordinated

locomotion of a soft robot, multiple strain sensors with on-

demand sensor characteristics are necessary for tracking separate

robotic units with distinct kinematics (Mengüç et al., 2014; Yang

et al., 2020), yet it is hindered by the huge resource consumption

to validate a large number of design principles and trial-and-

error experiments. Secondly, with the increasing number of

integrated strain sensors, the mass of sensing data increases

rapidly, leading to a heavy load of data storage, transmission,

and processing, as well as the concern of high energy

consumption (Faisal et al., 2019; Wang et al., 2020; Yang

et al., 2020). Besides, to achieve the ultimate goal of an

intelligent soft robot, timely decision-making is significant,

which relays on local sensor data processing (i.e., in-sensor

computing) rather than remote external computing devices

(Zhou and Chai, 2020; Moin et al., 2021), yet is rarely

explored in the soft robotic system. To push the boundary of

strain sensor-integrated soft robots, it is significant to develop

new principles to address the above issues of customized sensor

characteristics, high-throughput data processing, and timely

decision-making.

To address these challenges, data-driven exploration,

prediction, and recommendation by machine learning (ML)

provide an alternative approach (Schmidt et al., 2019; Xia

et al., 2020). ML is a powerful tool that could create a model

to uncover the unknown relations or principles in data-rich

systems (Butler et al., 2018). Recently, ML experiences a boom

in the investigation of various scientific areas including material

science (Kitchin, 2018; Zahrt et al., 2019; Toyao et al., 2020),

statistics (Yu and Kumbier, 2018), medicine (Ekins et al., 2019;

Vamathevan et al., 2019), neuroscience (Savage, 2019), and

machine automation (Zhou et al., 2022), where a large

number of data points are provided to train an accurate ML

model. Considering the inherently strong capabilities and recent

advancements in handling data, including 1) uncovering the

material/device characteristics with absent first principles, 2)

parallel computing for high-throughput data, and 3) edge chip

to achieve localized data processing, it is of high value to fuse ML

technology for addressing robotic sensing challenges (Shih et al.,

2020). Herein, we choose strain sensor as a representative

example of robotic sensing technologies and briefly

summarize the latest advancement of using ML techniques to

design strain sensor-integrated soft robots, including sensor

materials optimization, sensor signal analyses, and in-sensor

computing. These ML implementations address the above

challenges of customized sensor characteristics, high-

throughput data processing, and timely decision-making,

respectively. In the end, several prospects are also discussed.

We expect this mini perspective could provide a brief but timely

review of the current status and future directions.

ML for sensor material optimization

There are generally two types of strain sensors: piezoresistive

sensor and capacitive sensor. Under mechanical deformations,

the piezoresistive sensor shows resistance changes while the

capacitive sensor demonstrates changes in capacitance value.

Compared with the capacitive sensor that requires a sandwich

structure, the piezoresistive sensor with a simple single-layer

structure shows the advantages of facile fabrication and tight

integration with the robotic body. As a result, at this very initial

research stage, most ML techniques in strain sensor-integrated

soft robots are implemented on the piezoresistive sensor.

Therefore, piezoresistive sensor is selected as the main topic

to review recent ML advancements.

A variety of intrinsically conductive materials ranging from

metallic materials (e.g., gold foil (Yang et al., 2016), liquid metal

(Lin et al., 2022)) to nanomaterials (e.g., fullerenes (Shi et al.,

2018a), carbon nanotubes (Yamada et al., 2011; Sun et al., 2020),

graphene (Wang et al., 2014; Yang et al., 2018), MXene (Yang

et al., 2020; Saeidi-Javash et al., 2021; Cao et al., 2022)) have been

adopted for the fabrication of piezoresistive strain sensors. The

sensing mechanism is based on varying conductive pathways of

the sensor layer under strains (e.g., in-plane crack propagation),

leading to increased resistance as the electrical indicator. Two

characteristics of a strain sensor are generally evaluated,

including strain sensitivity and linear working window. The

sensitivity of a strain sensor is characterized by gauge factor

(GF), as defined in the equation below,

GF � (R − R0)/R0

ε

where ε denotes the applied uniaxial strain, R0 and R represent

the resistances before and after the applied strain, respectively.

On the other hand, the linear working window of a strain sensor
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is determined by the strain range where the resistance of the

sensor increased linearly with the applied strain.

The research experiences from past decades have revealed

that the GF and linear working window of a strain sensor are

highly correlated and balanced (Qiu et al., 2019; Afsarimanesh

et al., 2020; Souri et al., 2020; Pei et al., 2021). A high GF generally

exists within a narrow linear range, while a broad strain range is

usually accompanied by a low GF (Amjadi et al., 2016; Shi et al.,

2018b; Jayathilaka et al., 2019). This trade-off is caused by the

different fracture behaviors of piezoresistive sensors: high GF

comes from quick and drastic crack propagation under a narrow

strain range, yet a broad linear working window requires slow

and mild crack growth across a large strain. Based on these

principles, many influential fabrication parameters including

sensor material composition (Shi et al., 2018b; Cai et al.,

2018), sensor shape/dimension (Jiang et al., 2018; Xin et al.,

2020), and sensor topography (Yang et al., 2016; Pei et al., 2021)

were proposed to engineer the sensor characteristics. For

example, Shi et al. used fullerene as a lubricant agent to lower

the friction between 2D graphene layers (Figure 1A). Under

FIGURE 1
ML for Strain Sensor-Integrated Soft Robots. (A) Schematic illustration of sensing mechanism for GO–AgNW–C60 sensing films under
stretching, where the layers partially slide out inside the crack in the sensing film. Reproduced with permission from Shi et al. (2018a). Copyright:
WILEY-VCH Verlag GmbH & Co. (B) Comparison of the sensor structures between conventional flat film structure and auxetic metamaterial
structure, with corresponding deformation under 15% tensile strain. Reproduced with permission from Jiang et al. (2018). Copyright: WILEY-
VCH Verlag GmbH & Co. (C) MXene strain sensor with hierarchical surface topography. Reproduced with permission from Yang et al. (2020).
Copyright: American Chemical Society. (D) Three-stage framework for construction of an ML-enabled predictionmodel capable of automatic strain
sensor design for soft robots. Reproduced with permission from Yang et al. (2022). Copyright: Springer Nature. (E) A robot hand is integrated with
tactile sensors and the multilayer perceptron model. With the aid of ML tools, the robot hand could identify object material, shape, and size.
Reproduced with permission from Li et al. (2020). Copyright: American Association for the Advancement of Science. (F) Digitally designed full-sized
tactile sensing wearables, which collected the tactile frames during human–environment interactions and explored their applications using ML
techniques. Reproduced with permission from Luo et al. (2021). Copyright: Springer Nature. (G)Wearable biosensing system with adaptive machine
learning for real-time prediction of hand gestures. Reproduced with permission fromMoin et al. (2021). Copyright: Springer Nature. (H) The physical
picture of the Tianjicat robot, the development board, and the TianjicX chip array. By equipping with TianjicX andmultimodal sensors, a robotic car is
able to simultaneously process multisensory information locally for various tasks including object detection, obstacle avoidance, and decision-
making. Reproduced with permission from Ma et al. (2022). Copyright: American Association for the Advancement of Science.
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uniaxial strains, the graphene layer with lubricant experienced a

mild fracture behavior instead of inducing long cracks to cut off

the conductive pathways quickly, enabling the resulted strain

sensor with a large linear working window (Shi et al., 2018a).

Besides, X. Chen’s group designed an auxetic mechanical

structure to improve the sensitivity (Jiang et al., 2018). As

shown in Figure 1B, compared with conventional flat film, the

auxetic structure showed a negative Poisson’s ratio and

underwent 2D expansion in both parallel and perpendicular

directions. Such auxetic metamaterials were incorporated into

stretchable strain sensors to significantly enhance the crack

density under strains and improved the sensitivity by up to

24-fold. In addition, P.-Y. Chen’s group demonstrated a

hierarchical topography of MXene sensor with micro-

crumples/wrinkles (Figure 1C) to regulate the in-plane crack

propagation, which could control the crack growth in a

programmable manner and realized highly tunable strain

sensor characteristics (Yang et al., 2020).

Through various design principles, as discussed by multiple

important review articles (Amjadi et al., 2016; Jayathilaka et al.,

2019; Qiu et al., 2019; Afsarimanesh et al., 2020), the state-of-the-

art research studies focus on developing high-performance strain

sensor that shows high sensitivity (GF > 100) and large linear

working window (>100%), simultaneously. With the great

progress in recent years, a lot of strain sensors with

outstanding sensor characteristics were created (Tao et al.,

2017; Shi et al., 2018a; Shi et al., 2018b; Cai et al., 2018; Jiang

et al., 2018; Lee et al., 2019; Li and Du, 2019; Yang et al., 2020;

Zhang et al., 2021), which gradually fulfilled the above

challenging region. With this regard, instead of continuing to

pursue high sensor performance, it is time to move to the next

stage of developing strain sensors with customized sensor

characteristics for desired applications such as soft robots.

Nevertheless, due to the complex relationship between

sensing materials and sensor characteristics, the exploration

efficiency is greatly limited through conventional trial-and-

error experiments. Under this condition, ML tools show a

unique opportunity to underlay the unclear relations, which

greatly reduces time, manpower, and resource consumption

(Butler et al., 2018; Wei et al., 2019). Recently, H. Yang et al.

proposed an ML framework that enabled automatic strain sensor

design across a wide strain range from <0.5% to 350% (Yang

et al., 2022). As shown in Figure 1D, there was a three-stage

machine learning process, including boundary definition, active

learning, and data augmentation. Firstly, multiple influential

variables of varying material components, varying sensor

thicknesses, and varying sensor morphologies were included.

Adequate delamination tests were conducted to examine the

fabrication feasibility which was used to train a support vector

machine (SVM) classifier that only allowed the fabrication

recipes with high successful chances to be suggested by the

model. Secondly, with the guidance of active learning, an

increasing number of strain sensors were stagewise fabricated

to serve as the representative dataset to enrich the multi-

dimensional dataset of the ML model. Finally, data

augmentation methods were implemented to create more than

10,000 virtual data points to cultivate the prediction model. After

the three-stage process, the ultimate prediction model was

capable of conducting two-way tasks of automatic strain

sensor design for diverse soft robots, including 1) high-

accuracy prediction of sensor characteristics based on

proposed fabrication recipes and 2) suggestion of feasible

fabrication recipes for interested strain ranges. In addition, by

implementing statistical analyses based on the collected data

points, the underlying sensing mechanisms were revealed that

dictated data-driven design principles.

ML for sensor signal analyses

Besides the on-demand sensor characteristics, soft robots

also face difficulties in processing large amounts of data

generated from multiple sensors on separate robotic units

(Shih et al., 2020). For example, when applying wearable

robots to track full-body human motions, more than

70 sensors are needed to match various body joints from

shoulders to toe. Also, to achieve high sensing resolution, S.

Sundaram et al. showed a knitted soft glove with 548 sensors

(Sundaram et al., 2019). Such a large number of integrated

sensors lead to a heavy load in multi-channeled sensor data

collection, transmission, and processing (Zhou and Chai, 2020).

Emerging approaches adopt wireless technology such as

Bluetooth or near-field communication modules to facilitate

data collection and wireless transmission (Lin et al., 2020;

Yang et al., 2020; Jeong et al., 2021; Lin et al., 2022), yet they

failed in the aspect of signal analyses due to the absence of

computing unit.

With the rapid development of mobile computing platforms

like Raspberry Pi, an emerging strategy is to connect sensors,

wireless modules, and ML-embedded computing hardware

together to establish a comprehensive sensor platform (Ha

et al., 2020; Wang et al., 2021). By introducing ML tools,

without manual data calibration, one can adopt the well-

known algorithms from the open-source library (e.g., pandas,

scikit-learn, PyTorch, TensorFlow) to pre-process the sensor

signals easily such as de-noising, filtering, and grouping

(Manie et al., 2020; Zhou et al., 2020). On the other hand,

powerful machine learning neural networks enable the ML

model to solve more complex tasks like signal pattern

recognition. For example, X. Chen group adopted deep

convolutional neural networks to analyze the strain sensor

signals from five fingers of a human hand to distinguish

different hand gestures (Wang et al., 2020). In addition, by

combining tactile sensing information and a multilayer

perceptron model, G, Li et al. developed a smart robotic hand

that could precisely recognize different shapes, sizes, and
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materials in a diverse set of garbage (Figure 1E) (Li et al., 2020).

On the other hand, recurrent neural network is often used as a

powerful architecture to process variables along a temporal

sequence like speech recognition (Jung et al., 2020).

Besides executing a single task, multiple ML models and

computing tools with different functions could be assembled and

work together to satisfy the diverse needs of soft robots. For

instance, J. Chen group recently reported a wearable sign-to-

speech translation system based on a soft glove with stretchable

strain sensor arrays (Zhou et al., 2020), which involved a three-

step computing process including signal pre-processing (the

generated sensor signals are merged into a matrix), feature

extraction (by principal component analysis), and speech

translation (by multi-class SVM classifier). In addition, as

shown in Figure 1F, Y. Luo et al. reported an ML-powered

sensing textile suit which had three models with different

network architectures to cover self-supervised calibration,

interaction identification, and full-body motion prediction,

respectively (Luo et al., 2021).

ML for in-sensor computing

The integration of sensors, wireless modules, and ML-

embedded computing devices ensured facile sensor data

transmission and processing, but with the increasing number

of sensors, continuous data steaming raises high concerns of

bandwidth requirement, graphics processing units expense, and

power consumption (Zhou and Chai, 2020; Iwendi et al., 2021).

On the other hand, wireless communication usually faces

interruption and disconnection challenges, especially for soft

robotic navigation in distant fields or underwater scenarios

(Shih et al., 2019; Pillai and Lohani, 2020). Additionally, the

radio frequency communication between wireless hardware and

external computing devices faces the inevitable risks of data

security (Lin et al., 2020).

An innovative approach to address the above difficulties is

to process the real-time sensor data locally to achieve in-

sensor computing without steaming sensor data out (Zhou

and Chai, 2020; Moin et al., 2021). The goal of in-sensor

computing is to perform both data processing and decision-

making tasks locally to achieve higher levels of robotic

autonomy with onboard machine intelligence, without

further analyses or external computing modules. For

instance, J. M. Rabaey group recently proposed an in-

sensor adaptive machine learning framework for hand

gesture recognition (Figure 1G) (Moin et al., 2021). In

particular, they implemented a neuro-inspired

hyperdimensional computing algorithm that could analyze

sensor data locally for real-time hand gesture classification, as

well as automatic model training and updating under variable

conditions such as different arm positions and sensor

replacement. That report well filled the gap of self-

supervised model training and updating during continuous

usage, enabling optimal model performance under long-term

operations. On the other hand, S. Ma et al. developed a

neuromorphic computing chip of TianjicX, which enabled

multiple neural network models to be executed locally (Ma

et al., 2022). As shown in Figure 1H, by equipping with

TianjicX and multimodal sensors, without steaming sensor

data out and external computing devices, a robotic car is able

to simultaneously process multisensory information locally

for diverse tasks, including object recognition, obstacle

avoidance, and decision-making. In comparison with the

TABLE 1 Summary of ML implementations for strain sensor-integrated soft robots.

ML technique References(s) Advantages Disadvantages

Sensor material
optimization

Yang et al. (2022) Nat. Mach.
Intell.

▪ Accurate prediction of sensor
characteristics

▪ Manual device fabrication and test

▪ Automatic sensor design for diverse soft
robots

▪ Manual signal processing

Sensor signal analyses Li et al. (2020) Sci. Robot. ▪ Wireless transmission and good mobility ▪ High bandwidth requirement

▪ Multi-channeled data processing ▪ Signal interruption and disconnection

Luo et al. (2021) Nat. Electron. ▪ Multiple tasks implementation ▪ Energy consumption

▪ Data security

In-sensor computing Moin et al. (2021) Nat. Electron. ▪ Less signal latency ▪ Separated sensor and computing units

▪ Real-time response ▪ Mismatch of mechanical modulus between rigid chips and
soft robots

Ma et al. (2022) Sci. Robot. ▪ Power efficiency ▪ Circuit miniaturization

▪ High data security
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commercial NVIDIA Jetson TX2 (ML-embedded computing

hardware developed by NVIDIA), the developed TianjicX

chip showed less latency and 50% lower power consumption.

Prospects

Fusing ML and soft sensing technology is an emerging

multidisciplinary field and shows great potential for soft

robots (see a summary in Table 1). But there is still a long

way to achieve the ultimate goal of the intelligent soft robot, and

several viewpoints are discussed here. Firstly, the sensing

capability of soft robot is not limited to body strain

deformation to estimate the kinematics of the robot itself but

also should include more functions such as contact modeling (by

pressure sensor) and mapping of the surroundings (by chemical

and biological sensors). Therefore, important progress is

expected in integrating ML technology with multiple types of

sensors (e.g., strain, pressure, chemical, biomolecule) to create a

multifunctional soft robot with comprehensive perception

capability. We believe these ML techniques, including sensor

material optimization, sensor signal analyses, and in-sensor

computing, are also workable for other types of soft sensors,

as they meet similar challenges to realize the goal of intelligent

soft robot. On the other hand, for ML-assisted sensor material

optimization, although some promising examples have been

identified, we envisioned that critical challenges still exist at

this early stage, such as the lack of sufficient high-quality

datasets and absent evaluation standards to fairly compare the

developed models. Besides, considering different kind of sensor

types, their unique sensing mechanisms and structures may lead

to different ML implementations yet is rarely studied, which

would be an important future research direction.

Secondly, many recent advances are conceptual studies to

examine the feasibility of ML tools for soft robots yet lack the

assessments of system robustness in practical conditions. For

example, both compliant sensors and soft robotic bodies

consist of soft matters, which will experience stress fatigue

under long-term repeated mechanical deformations. This

kind of phenomenon is commonly seen in robotics and

affects the sensor signal and body kinematics a lot. It

remains to explore suitable ML frameworks to ensure

accurate feedback and control under such mechanical

coupling conditions. Also, many other powerful ML

algorithms like active learning, meta-learning, and

reinforcement learning are waiting to be fully utilized for

guiding soft robots to complete more challenging missions

like automatic navigation or swarm under dynamic,

unstructured, and even unknown environments.

At last, module integration and miniaturization are always

pursued. For soft robotic applications, the separated sensors and

computing modules inevitably increase the overall weight, cause

signal deviation, and affect robotic locomotion. Therefore, the

tight integration of multiple sensors, data collection/transmission

modules, and computing units as well as the subsequent

miniaturized circuit design are desired to achieve the goals of

creating light, compliant, power-efficient, and eventually

intelligent robots with multifunctionality. Moreover, it is

expected to see potential innovations in constructing the data

processing and computing modules with total soft materials,

which would reduce the design restrictions of soft robots and

expand their application scenarios.

Author contributions

All authors listed have made a substantial, direct, and

intellectual contribution to the work and approved it for

publication.

Acknowledgments

We are grateful for the financial support of the National

Natural Science Foundation of China (52103228, 22075199).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Afsarimanesh, N., Nag, A., Sarkar, S., Sabet, G. S., Han, T., and Mukhopadhyay, S. C.
(2020). A review on fabrication, characterization and implementation of wearable strain
sensors. Sensors Actuators A Phys. 315, 112355. doi:10.1016/j.sna.2020.112355

Amjadi, M., Kyung, K. U., Park, I., and Sitti, M. (2016). Stretchable, skin-
mountable, and wearable strain sensors and their potential applications: A
review. Adv. Funct. Mat. 26, 1678–1698. doi:10.1002/adfm.201504755

Frontiers in Electronic Materials frontiersin.org06

Yang and Wu 10.3389/femat.2022.1000781

https://doi.org/10.1016/j.sna.2020.112355
https://doi.org/10.1002/adfm.201504755
https://www.frontiersin.org/journals/electronic-materials
https://www.frontiersin.org
https://doi.org/10.3389/femat.2022.1000781


Araromi, O. A., Graule, M. A., Dorsey, K. L., Castellanos, S., Foster, J. R., Hsu, W.-
H., et al. (2020). Ultra-sensitive and resilient compliant strain gauges for soft
machines. Nature 587, 219–224. doi:10.1038/s41586-020-2892-6

Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O., and Walsh, A. (2018).
Machine learning for molecular and materials science. Nature 559, 547–555. doi:10.
1038/s41586-018-0337-2

Cai, Y., Shen, J., Ge, G., Zhang, Y., Jin, W., Huang, W., et al. (2018). Stretchable
Ti3C2TX MXene/carbon nanotube composite based strain sensor with ultrahigh
sensitivity and tunable sensing range. ACS Nano 12, 56–62. doi:10.1021/acsnano.
7b06251

Cao, Y., Guo, Y., Chen, Z., Yang, W., Li, K., He, X., et al. (2022). Highly sensitive
self-powered pressure and strain sensor based on crumpledMXene film for wireless
human motion detection. Nano Energy 92, 106689. doi:10.1016/j.nanoen.2021.
106689

Cianchetti, M., Laschi, C., Menciassi, A., and Dario, P. (2018). Biomedical
applications of soft robotics. Nat. Rev. Mat. 3, 143–153. doi:10.1038/s41578-
018-0022-y

Ekins, S., Puhl, A. C., Zorn, K. M., Lane, T. R., Russo, D. P., Klein, J. J., et al. (2019).
Exploiting machine learning for end-to-end drug discovery and development. Nat.
Mat. 18, 435–441. doi:10.1038/s41563-019-0338-z

Faisal, A. I., Majumder, S., Mondal, T., Cowan, D., Naseh, S., and Deen, M. J.
(2019). Monitoring methods of human body joints: State-of-the-Art and research
challenges. Sensors 19, 2629. doi:10.3390/s19112629

Ha, N., Xu, K., Ren, G., Mitchell, A., and Ou, J. Z. (2020). Machine learning-
enabled smart sensor systems. Adv. Intell. Syst. 2, 2000063. doi:10.1002/aisy.
202000063

Hu, W., Lum, G. Z., Mastrangeli, M., and Sitti, M. (2018). Small-scale soft-bodied
robot with multimodal locomotion. Nature 554, 81–85. doi:10.1038/nature25443

Iwendi, C., Maddikunta, P. K. R., Gadekallu, T. R., Lakshmanna, K., Bashir, A. K.,
and Piran,M. J. (2021). Ametaheuristic optimization approach for energy efficiency
in the IoT networks. Softw. Pract. Exper. 51, 2558–2571. doi:10.1002/spe.2797

Jayathilaka, W. a. D. M., Qi, K., Qin, Y., Chinnappan, A., Serrano-García, W.,
Baskar, C., et al. (2019). Significance of nanomaterials in wearables: A review on
wearable actuators and sensors. Adv. Mat. 31, 1805921. doi:10.1002/adma.
201805921

Jeong, H., Kwak, S. S., Sohn, S., Lee, J. Y., Lee, Y. J., O’brien, M. K., et al. (2021).
Miniaturized wireless, skin-integrated sensor networks for quantifying full-body
movement behaviors and vital signs in infants. Proc. Natl. Acad. Sci. U. S. A. 118,
e2104925118. doi:10.1073/pnas.2104925118

Jiang, Y., Liu, Z., Matsuhisa, N., Qi, D., Leow, W. R., Yang, H., et al. (2018).
Auxetic mechanical metamaterials to enhance sensitivity of stretchable strain
sensors. Adv. Mat. 30, 1706589. doi:10.1002/adma.201706589

Jung, Y. H., Hong, S. K., Wang, H. S., Han, J. H., Pham, T. X., Park, H., et al.
(2020). Flexible piezoelectric acoustic sensors and machine learning for speech
processing. Adv. Mat. 32, 1904020. doi:10.1002/adma.201904020

Kim, Y., Parada, G. A., Liu, S., and Zhao, X. (2019). Ferromagnetic soft
continuum robots. Sci. Robot. 4, eaax7329. doi:10.1126/scirobotics.aax7329

Kim, Y., Yuk, H., Zhao, R., Chester, S. A., and Zhao, X. (2018). Printing
ferromagnetic domains for untethered fast-transforming soft materials. Nature
558, 274–279. doi:10.1038/s41586-018-0185-0

Kitchin, J. R. (2018). Machine learning in catalysis. Nat. Catal. 1, 230–232. doi:10.
1038/s41929-018-0056-y

Laschi, C., Mazzolai, B., and Cianchetti, M. (2016). Soft robotics: technologies and
systems pushing the boundaries of robot abilities. Sci. Robot. 1, eaah3690. doi:10.
1126/scirobotics.aah3690

Lee, J., Pyo, S., Kwon, D. S., Jo, E., Kim, W., and Kim, J. (2019). Ultrasensitive
strain sensor based on separation of overlapped carbon nanotubes. Small 15,
1805120. doi:10.1002/smll.201805120

Li, G., Chen, X., Zhou, F., Liang, Y., Xiao, Y., Cao, X., et al. (2021). Self-powered
soft robot in the mariana trench. Nature 591, 66–71. doi:10.1038/s41586-020-
03153-z

Li, G., Liu, S., Wang, L., and Zhu, R. (2020). Skin-inspired quadruple tactile
sensors integrated on a robot hand enable object recognition. Sci. Robot. 5,
eabc8134. doi:10.1126/scirobotics.abc8134

Li, H., and Du, Z. (2019). Preparation of a highly sensitive and stretchable strain
sensor of MXene/silver nanocomposite-based yarn and wearable applications. ACS
Appl. Mat. Interfaces 11, 45930–45938. doi:10.1021/acsami.9b19242

Lin, R., Kim, H.-J., Achavananthadith, S., Kurt, S. A., Tan, S. C., Yao, H., et al.
(2020). Wireless battery-free body sensor networks using near-field-enabled
clothing. Nat. Commun. 11, 444–510. doi:10.1038/s41467-020-14311-2

Lin, R., Kim, H.-J., Achavananthadith, S., Xiong, Z., Lee, J. K., Kong, Y. L., et al.
(2022). Digitally-embroidered liquid metal electronic textiles for wearable wireless
systems. Nat. Commun. 13, 2190–2210. doi:10.1038/s41467-022-29859-4

Luo, Y., Li, Y., Sharma, P., Shou, W., Wu, K., Foshey, M., et al. (2021). Learning
human–environment interactions using conformal tactile textiles. Nat. Electron. 4,
193–201. doi:10.1038/s41928-021-00558-0

Ma, S., Pei, J., Zhang, W., Wang, G., Feng, D., Yu, F., et al. (2022). Neuromorphic
computing chip with spatiotemporal elasticity for multi-intelligent-tasking robots.
Sci. Robot. 7, eabk2948. doi:10.1126/scirobotics.abk2948

Manie, Y. C., Li, J.-W., Peng, P.-C., Shiu, R.-K., Chen, Y.-Y., and Hsu, Y.-T.
(2020). Using a machine learning algorithm integrated with data de-noising
techniques to optimize the multipoint sensor network. Sensors 20, 1070. doi:10.
3390/s20041070

Mengüç, Y., Park, Y.-L., Pei, H., Vogt, D., Aubin, P. M., Winchell, E., et al. (2014).
Wearable soft sensing suit for human gait measurement. Int. J. Rob. Res. 33,
1748–1764. doi:10.1177/0278364914543793

Mirvakili, S. M., and Hunter, I. W. (2018). Artificial muscles: Mechanisms,
applications, and challenges. Adv. Mat. 30, 1704407. doi:10.1002/adma.201704407

Moin, A., Zhou, A., Rahimi, A., Menon, A., Benatti, S., Alexandrov, G., et al.
(2021). A wearable biosensing system with in-sensor adaptive machine learning for
hand gesture recognition. Nat. Electron. 4, 54–63. doi:10.1038/s41928-020-00510-8

Pei, Y., Zhang, X., Hui, Z., Zhou, J., Huang, X., Sun, G., et al. (2021). Ti3C2TX

MXene for sensing applications: Recent progress, design principles, and future
perspectives. ACS Nano 15, 3996–4017. doi:10.1021/acsnano.1c00248

Pillai, R. R., and Lohani, R. B. (2020). “Emergency data detection using hidden
markov model during temporary disconnection of wireless body area networks,” in
2020 International Conference for Emerging Technology (INCET), Belgaum, India,
Jun 5-7, 1–5.

Qiu, A., Li, P., Yang, Z., Yao, Y., Lee, I., and Ma, J. (2019). A path beyond metal
and silicon: Polymer/nanomaterial composites for stretchable strain sensors. Adv.
Funct. Mat. 29, 1806306. doi:10.1002/adfm.201806306

Rus, D., and Tolley, M. T. (2018). Design, fabrication and control of origami
robots. Nat. Rev. Mat. 3, 101–112. doi:10.1038/s41578-018-0009-8

Rus, D., and Tolley, M. T. (2015). Design, fabrication and control of soft robots.
Nature 521, 467–475. doi:10.1038/nature14543

Saeidi-Javash, M., Du, Y., Zeng, M., Wyatt, B. C., Zhang, B., Kempf, N., et al.
(2021). All-printed MXene–graphene nanosheet-based bimodal sensors for
simultaneous strain and temperature sensing. ACS Appl. Electron. Mat. 3,
2341–2348. doi:10.1021/acsaelm.1c00218

Savage, N. (2019). How AI and neuroscience drive each other forwards. Nature
571, S15–S17. doi:10.1038/d41586-019-02212-4

Schmidt, J., Marques, M. R. G., Botti, S., and Marques, M. a. L. (2019). Recent
advances and applications of machine learning in solid-state materials science.
npj Comput. Mat. 5, 83. doi:10.1038/s41524-019-0221-0

Shepherd, R. F., Ilievski, F., Choi, W., Morin, S. A., Stokes, A. A., Mazzeo, A. D.,
et al. (2011). Multigait soft robot. Proc. Natl. Acad. Sci. U. S. A. 108, 20400–20403.
doi:10.1073/pnas.1116564108

Shi, X., Liu, S., Sun, Y., Liang, J., and Chen, Y. (2018a). Lowering internal friction
of 0D–1D–2D ternary nanocomposite-based strain sensor by fullerene to boost the
sensing performance. Adv. Funct. Mat. 28, 1800850. doi:10.1002/adfm.201800850

Shi, X., Wang, H., Xie, X., Xue, Q., Zhang, J., Kang, S., et al. (2018b). Bioinspired
ultrasensitive and stretchable MXene-based strain sensor via nacre-mimetic
microscale “brick-and-mortar” architecture. ACS Nano 13, 649–659. doi:10.
1021/acsnano.8b07805

Shih, B., Shah, D., Li, J., Thuruthel, T. G., Park, Y.-L., Iida, F., et al. (2020).
Electronic skins and machine learning for intelligent soft robots. Sci. Robot. 5,
eaaz9239. doi:10.1126/scirobotics.aaz9239

Shih, Y., Hsiu, P., and Pang, A. (2019). A data parasitizing scheme for effective
health monitoring in wireless body area networks. IEEE Trans. Mob. Comput. 18,
13–27. doi:10.1109/TMC.2018.2830779

Sinatra, N. R., Teeple, C. B., Vogt, D. M., Parker, K. K., Gruber, D. F., and Wood,
R. J. (2019). Ultragentle manipulation of delicate structures using a soft robotic
gripper. Sci. Robot. 4, eaax5425. doi:10.1126/scirobotics.aax5425

Souri, H., Banerjee, H., Jusufi, A., Radacsi, N., Stokes, A. A., Park, I., et al. (2020).
Wearable and stretchable strain sensors: Materials, sensing mechanisms, and
applications. Adv. Intell. Syst. 2, 2000039. doi:10.1002/aisy.202000039

Sun, X., Qin, Z., Ye, L., Zhang, H., Yu, Q., Wu, X., et al. (2020). Carbon
nanotubes reinforced hydrogel as flexible strain sensor with high stretchability
and mechanically toughness. Chem. Eng. J. 382, 122832. doi:10.1016/j.cej.2019.
122832

Frontiers in Electronic Materials frontiersin.org07

Yang and Wu 10.3389/femat.2022.1000781

https://doi.org/10.1038/s41586-020-2892-6
https://doi.org/10.1038/s41586-018-0337-2
https://doi.org/10.1038/s41586-018-0337-2
https://doi.org/10.1021/acsnano.7b06251
https://doi.org/10.1021/acsnano.7b06251
https://doi.org/10.1016/j.nanoen.2021.106689
https://doi.org/10.1016/j.nanoen.2021.106689
https://doi.org/10.1038/s41578-018-0022-y
https://doi.org/10.1038/s41578-018-0022-y
https://doi.org/10.1038/s41563-019-0338-z
https://doi.org/10.3390/s19112629
https://doi.org/10.1002/aisy.202000063
https://doi.org/10.1002/aisy.202000063
https://doi.org/10.1038/nature25443
https://doi.org/10.1002/spe.2797
https://doi.org/10.1002/adma.201805921
https://doi.org/10.1002/adma.201805921
https://doi.org/10.1073/pnas.2104925118
https://doi.org/10.1002/adma.201706589
https://doi.org/10.1002/adma.201904020
https://doi.org/10.1126/scirobotics.aax7329
https://doi.org/10.1038/s41586-018-0185-0
https://doi.org/10.1038/s41929-018-0056-y
https://doi.org/10.1038/s41929-018-0056-y
https://doi.org/10.1126/scirobotics.aah3690
https://doi.org/10.1126/scirobotics.aah3690
https://doi.org/10.1002/smll.201805120
https://doi.org/10.1038/s41586-020-03153-z
https://doi.org/10.1038/s41586-020-03153-z
https://doi.org/10.1126/scirobotics.abc8134
https://doi.org/10.1021/acsami.9b19242
https://doi.org/10.1038/s41467-020-14311-2
https://doi.org/10.1038/s41467-022-29859-4
https://doi.org/10.1038/s41928-021-00558-0
https://doi.org/10.1126/scirobotics.abk2948
https://doi.org/10.3390/s20041070
https://doi.org/10.3390/s20041070
https://doi.org/10.1177/0278364914543793
https://doi.org/10.1002/adma.201704407
https://doi.org/10.1038/s41928-020-00510-8
https://doi.org/10.1021/acsnano.1c00248
https://doi.org/10.1002/adfm.201806306
https://doi.org/10.1038/s41578-018-0009-8
https://doi.org/10.1038/nature14543
https://doi.org/10.1021/acsaelm.1c00218
https://doi.org/10.1038/d41586-019-02212-4
https://doi.org/10.1038/s41524-019-0221-0
https://doi.org/10.1073/pnas.1116564108
https://doi.org/10.1002/adfm.201800850
https://doi.org/10.1021/acsnano.8b07805
https://doi.org/10.1021/acsnano.8b07805
https://doi.org/10.1126/scirobotics.aaz9239
https://doi.org/10.1109/TMC.2018.2830779
https://doi.org/10.1126/scirobotics.aax5425
https://doi.org/10.1002/aisy.202000039
https://doi.org/10.1016/j.cej.2019.122832
https://doi.org/10.1016/j.cej.2019.122832
https://www.frontiersin.org/journals/electronic-materials
https://www.frontiersin.org
https://doi.org/10.3389/femat.2022.1000781


Sundaram, S., Kellnhofer, P., Li, Y., Zhu, J.-Y., Torralba, A., and Matusik, W.
(2019). Learning the signatures of the human grasp using a scalable tactile glove.
Nature 569, 698–702. doi:10.1038/s41586-019-1234-z

Tang, Y., Chi, Y., Sun, J., Huang, T.-H., Maghsoudi, O. H., Spence, A., et al.
(2020). Leveraging elastic instabilities for amplified performance: Spine-inspired
high-speed and high-force soft robots. Sci. Adv. 6, eaaz6912. doi:10.1126/sciadv.
aaz6912

Tao, L.-Q., Wang, D.-Y., Tian, H., Ju, Z.-Y., Liu, Y., Pang, Y., et al. (2017). Self-
adapted and tunable graphene strain sensors for detecting both subtle and large
human motions. Nanoscale 9, 8266–8273. doi:10.1039/C7NR01862B

Thuruthel, T. G., Shih, B., Laschi, C., and Tolley, M. T. (2019). Soft robot
perception using embedded soft sensors and recurrent neural networks. Sci. Robot.
4, eaav1488. doi:10.1126/scirobotics.aav1488

Toyao, T., Maeno, Z., Takakusagi, S., Kamachi, T., Takigawa, I., and Shimizu, K.-
I. (2020). Machine learning for catalysis informatics: Recent applications and
prospects. ACS Catal. 10, 2260–2297. doi:10.1021/acscatal.9b04186

Vamathevan, J., Clark, D., Czodrowski, P., Dunham, I., Ferran, E., Lee, G., et al.
(2019). Applications of machine learning in drug discovery and development. Nat.
Rev. Drug Discov. 18, 463–477. doi:10.1038/s41573-019-0024-5

Walsh, C. (2018). Human-in-the-Loop development of soft wearable robots. Nat.
Rev. Mat. 3, 78–80. doi:10.1038/s41578-018-0011-1

Wang, H., Totaro, M., and Beccai, L. (2018). Toward perceptive soft robots:
Progress and challenges. Adv. Sci. 5, 1800541. doi:10.1002/advs.201800541

Wang, M., Wang, T., Luo, Y., He, K., Pan, L., Li, Z., et al. (2021). Fusing
stretchable sensing technology with machine learning for human–machine
interfaces. Adv. Funct. Mat. 31, 2008807. doi:10.1002/adfm.202008807

Wang, M., Yan, Z., Wang, T., Cai, P., Gao, S., Zeng, Y., et al. (2020). Gesture
recognition using a bioinspired learning architecture that integrates visual data with
somatosensory data from stretchable sensors. Nat. Electron. 3, 563–570. doi:10.
1038/s41928-020-0422-z

Wang, Y., Wang, L., Yang, T., Li, X., Zang, X., Zhu, M., et al. (2014). Wearable and
highly sensitive graphene strain sensors for human motion monitoring. Adv. Funct.
Mat. 24, 4666–4670. doi:10.1002/adfm.201400379

Wei, J., Chu, X., Sun, X. Y., Xu, K., Deng, H. X., Chen, J., et al. (2019). Machine
learning in materials science. InfoMat 1, 338–358. doi:10.1002/inf2.12028

Xia, B., Miriyev, A., Trujillo, C., Chen, N., Cartolano, M., Vartak, S., et al. (2020).
Improving the actuation speed andmulti-cyclic actuation characteristics of silicone/
ethanol soft actuators. Actuators 9, 62. doi:10.3390/act9030062

Xin, M., Li, J., Ma, Z., Pan, L., and Shi, Y. (2020). MXenes and their applications in
wearable sensors. Front. Chem. 8, 297. doi:10.3389/fchem.2020.00297

Yamada, T., Hayamizu, Y., Yamamoto, Y., Yomogida, Y., Izadi-Najafabadi, A.,
Futaba, D. N., et al. (2011). A stretchable carbon nanotube strain sensor for human-
motion detection. Nat. Nanotechnol. 6, 296–301. doi:10.1038/nnano.2011.36

Yang, H., Li, J., Lim, K. Z., Pan, C., Van Truong, T., Wang, Q., et al. (2022).
Automatic strain sensor design via active learning and data augmentation for
soft machines. Nat. Mach. Intell. 4, 84–94. doi:10.1038/s42256-021-00434-8

Yang, H., Xiao, X., Li, Z., Li, K., Cheng, N., Li, S., et al. (2020). Wireless
Ti3C2TX MXene strain sensor with ultrahigh sensitivity and designated
working windows for soft exoskeletons. ACS Nano 14, 11860–11875. doi:10.
1021/acsnano.0c04730

Yang, T., Li, X., Jiang, X., Lin, S., Lao, J., Shi, J., et al. (2016). Structural engineering
of gold thin films with channel cracks for ultrasensitive strain sensing.Mat. Horiz. 3,
248–255. doi:10.1039/C6MH00027D

Yang, Z., Pang, Y., Han, X.-L., Yang, Y., Ling, J., Jian, M., et al. (2018). Graphene
textile strain sensor with negative resistance variation for human motion detection.
ACS Nano 12, 9134–9141. doi:10.1021/acsnano.8b03391

Yu, B., and Kumbier, K. (2018). Artificial intelligence and statistics. Front. Inf.
Technol. Electron. Eng. 19, 6–9. doi:10.1631/FITEE.1700813

Zahrt, A. F., Henle, J. J., Rose, B. T., Wang, Y., Darrow, W. T., and Denmark,
S. E. (2019). Prediction of higher-selectivity catalysts by computer-driven
workflow and machine learning. Science 363, eaau5631. doi:10.1126/science.
aau5631

Zhang, H., Liu, D., Lee, J.-H., Chen, H., Kim, E., Shen, X., et al. (2021).
Anisotropic, wrinkled, and crack-bridging structure for ultrasensitive, highly
selective multidirectional strain sensors. Nano-Micro Lett. 13, 122–215. doi:10.
1007/s40820-021-00615-5

Zhang, J., Sheng, J., O’neill, C. T., Walsh, C. J., Wood, R. J., Ryu, J., et al. (2019).
Robotic artificial muscles: Current progress and future perspectives. IEEE Trans.
Robot. 35, 761–781. doi:10.1109/TRO.2019.2894371

Zhao, H., O’brien, K., Li, S., and Shepherd, R. F. (2016). Optoelectronically
innervated soft prosthetic hand via stretchable optical waveguides. Sci. Robot. 1,
eaai7529. doi:10.1126/scirobotics.aai7529

Zhou, F., and Chai, Y. (2020). Near-sensor and in-sensor computing. Nat.
Electron. 3, 664–671. doi:10.1038/s41928-020-00501-9

Zhou, X., Wen, X., Wang, Z., Gao, Y., Li, H., Wang, Q., et al. (2022). Swarm of
micro flying robots in the wild. Sci. Robot. 7, eabm5954. doi:10.1126/scirobotics.
abm5954

Zhou, Z., Chen, K., Li, X., Zhang, S., Wu, Y., Zhou, Y., et al. (2020). Sign-to-
Speech translation using machine-learning-assisted stretchable sensor arrays. Nat.
Electron. 3, 571–578. doi:10.1038/s41928-020-0428-6

Frontiers in Electronic Materials frontiersin.org08

Yang and Wu 10.3389/femat.2022.1000781

https://doi.org/10.1038/s41586-019-1234-z
https://doi.org/10.1126/sciadv.aaz6912
https://doi.org/10.1126/sciadv.aaz6912
https://doi.org/10.1039/C7NR01862B
https://doi.org/10.1126/scirobotics.aav1488
https://doi.org/10.1021/acscatal.9b04186
https://doi.org/10.1038/s41573-019-0024-5
https://doi.org/10.1038/s41578-018-0011-1
https://doi.org/10.1002/advs.201800541
https://doi.org/10.1002/adfm.202008807
https://doi.org/10.1038/s41928-020-0422-z
https://doi.org/10.1038/s41928-020-0422-z
https://doi.org/10.1002/adfm.201400379
https://doi.org/10.1002/inf2.12028
https://doi.org/10.3390/act9030062
https://doi.org/10.3389/fchem.2020.00297
https://doi.org/10.1038/nnano.2011.36
https://doi.org/10.1038/s42256-021-00434-8
https://doi.org/10.1021/acsnano.0c04730
https://doi.org/10.1021/acsnano.0c04730
https://doi.org/10.1039/C6MH00027D
https://doi.org/10.1021/acsnano.8b03391
https://doi.org/10.1631/FITEE.1700813
https://doi.org/10.1126/science.aau5631
https://doi.org/10.1126/science.aau5631
https://doi.org/10.1007/s40820-021-00615-5
https://doi.org/10.1007/s40820-021-00615-5
https://doi.org/10.1109/TRO.2019.2894371
https://doi.org/10.1126/scirobotics.aai7529
https://doi.org/10.1038/s41928-020-00501-9
https://doi.org/10.1126/scirobotics.abm5954
https://doi.org/10.1126/scirobotics.abm5954
https://doi.org/10.1038/s41928-020-0428-6
https://www.frontiersin.org/journals/electronic-materials
https://www.frontiersin.org
https://doi.org/10.3389/femat.2022.1000781

	A review: Machine learning for strain sensor-integrated soft robots
	Introduction
	ML for sensor material optimization
	ML for sensor signal analyses
	ML for in-sensor computing
	Prospects
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


