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Introduction: The study examines the impact of targeted educational

interventions on the academic success and retention of engineering students

identified as high-risk, with a focus on two student groups historically

underrepresented in STEM: underrepresented minority (URM) and female

students. These interventions included an alternative curriculum pathway, a

co-calculus support course, and spatial visualization training. Building on our

previous work, we evaluated the outcomes of interventions designed to improve

retention and graduation rates among the most academically underprepared

students from these groups, who were consequently categorized as high-risk.

Methodology: We analyzed data from 10 student cohorts, covering 5 years

before and 5 years after the interventions were implemented. We utilized a two-

population proportion test to compare the groups’ retention rates, graduation

rates, and success in early STEM courses during pre- and post-intervention

periods. Additionally, we constructed logistic regression models to identify key

factors influencing on-time graduation.

Results: Our results show that the interventions significantly increased both

the 4- and 6-year graduation rates for high-risk URM students by nearly 20

percentage points. Although high-risk female students improved retention and

graduation rates, these changes were not found to be statistically significant.

However, their performance in early foundation STEM courses, particularly

Physics I and Calculus I, significantly improved post-intervention.

Discussion: Logistic regression models indicated a shift in the significance of

the graduation rate predictors post-intervention, demonstrating the e�cacy

of these tailored strategies. The reduced importance of Physics I grades in

predicting on-time graduation during the intervention years suggests a benefit of

the alternative curriculum pathway, which decoupled this course from Calculus

I for high-risk students. Additionally, the intervention mitigated the previously

significant predictor of being non-URM for on-time graduation, indicating a

leveling e�ect for URM students. These findings highlight the potential of

customized interventions to enhance the academic outcomes and retention of

high-risk students in STEM disciplines.

KEYWORDS

STEM, engineering curriculum, first year, logisticmodeling, retention, underrepresented
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1 Introduction

Racial and gender disparities in STEM fields are well-

documented, with research consistently indicating that retention

rates are particularly low for historically underrepresented students

of color and women (Anderson and Kim, 2006; Griffith, 2010; Hill

et al., 2010; Shaw and Barbuti, 2010; Chen, 2013).

In our previous research (Wick et al., 2022), we described a

methodology for identifying academically underprepared students

entering engineering majors, categorized as high-risk students.

We also evaluated the impact of targeted interventions through

a study encompassing 10 student cohorts. These interventions,

further described in Section 1.1, include an Alternative Curriculum

Pathway, a Co-Calculus support course, and Spatial Visualization

training. Thus, the study uses data spanning 16 years to include

data from the graduation of the final cohort. This paper builds upon

our work (Wick et al., 2022) by specifically examining the impact

of these targeted interventions on high-risk underrepresented

minority (URM) and female engineering students. We aim to

understand the various factors influencing the success of these

groups in completing their engineering degrees and retaining their

enrollment through predictive modeling.

Our study addresses the following research questions:

I What is the impact of targeted interventions on the retention

rates and graduation rates for these groups?

II What is the impact of the interventions on the success in

foundational early STEM courses for these groups?

III What are the key factors responsible for the on-time graduation

of these groups?

Racial and gender disparities in STEM education: The

challenges faced by high-risk URM and female students in

engineering disciplines are complex andmultifaceted. These groups

often encounter systemic barriers that can impede their academic

progress and reduce retention rates in Science, Technology,

Engineering, and Mathematics (STEM) fields (Markle et al., 2022).

Recent research continues to show lower retention and graduation

rates for URM and female students in STEM fields. For instance,

a study by Riegle-Crumb et al. (2019) found that minority

students, particularly African Americans and Hispanics, have lower

persistence rates in science and engineering majors compared to

their white and Asian counterparts. Similarly, Cheryan et al. (2017)

highlighted the persistence gap between male and female students

in STEM, with women being less likely to continue in STEM

majors after their first year. This ongoing disparity underscores the

need for targeted interventions to support these underrepresented

groups in achieving academic success in STEM disciplines.

Numerous interventions have been proposed and implemented

to address these racial and gender disparities. Summer bridge

programs, supplemental instruction, and mentorship initiatives

have shown promise in supporting URM and female students in

STEM. For example, Ghazzawi et al. (2021) demonstrated that

summer bridge programs significantly improve graduation rates for

URM students by providing early academic support. Palid et al.

(2023) emphasized the importance of targeted interventions to

address the systemic challenges faced by URM students, advocating

for comprehensive support systems that include academic advising,

tutoring, and mentoring. Culturally responsive mentoring has

shown promise in combating stereotype threats and supporting

URM students in STEM. Studies indicate that interactions

with underrepresented faculty and mentors can significantly

improve the confidence and commitment of students from these

backgrounds (Mondisa andMcComb, 2015; Miguel and Kim, 2015;

Haeger and Fresquez, 2016). Community-oriented interventions

such as the Meyerhoff Scholar’s program (Sto Domingo et al., 2019)

have been successful in increasing the diversity of underrepresented

groups in STEM fields.

Importance of foundational early STEM courses: In our

present work, we aim to understand the impact of the targeted

interventions on the success of URM and female students in early

STEM courses. Indeed, performance in early STEM courses is

a strong predictor of long-term success in STEM majors. Aulck

et al. (2017) noted that students who perform well in introductory

mathematics courses are more likely to persist in STEM fields. This

finding is supported by the work of Schalk et al. (2009, 2011),

who demonstrated that targeted interventions in these courses can

significantly improve student outcomes. Wick et al. (2022) further

emphasized the importance of addressing academic preparedness

in these foundational courses to enhance retention and graduation

rates.

Predictive modeling in STEM education: In recent years,

predictive modeling has emerged as a valuable tool for identifying

at-risk students and tailoring interventions to their specific needs

(Sghir et al., 2023). For example, Prasanth and Alqahtani (2023)

developed a machine-learning-based predictive model to predict

which university students are at risk of dropping out. Aulck et al.

(2017) developed a machine learning-based predictive model to

forecast STEM attrition using first-year academic data, highlighting

the critical role of early performance in foundational mathematics

courses. Similarly, Rohr (2012) found that SAT scores and high

school GPA are significant predictors of college retention in STEM

fields, underscoring the importance of academic preparedness.

1.1 Overview of our prior foundational
work

This paper builds upon our previous study (Wick et al., 2022),

which aimed to enhance the success and retention of engineering

students at a private research university by first identifying and then

supporting underprepared students.

In 2009, the university established a First-Year Council as

part of a strategic initiative to improve student performance and

retention in STEM fields (Turner, 2008; Jaspersohn, 2017). The

council included deans from the Colleges of Arts and Sciences

and Engineering and faculty members from Mathematics, Physics,

and Engineering, adopting an interdisciplinary approach to assess

the readiness of incoming students for their first-year STEM

courses through a thorough analysis of pre-college survey data.

The university extensively evaluated first-year student performance

in introductory Calculus and Physics courses, leveraging historical

data collected over several years, supported by an initial grant

from Procter & Gamble in 2009 (Schalk et al., 2009, 2011).

Principal Component Analysis (PCA) of pre-entry data highlighted

that Mathematics and Physics Diagnostic scores, obtained from
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both internal and external evaluative instruments, were significant

independent measures influencing student outcomes.

A sunflower plot, generated (see Wick et al., 2022, Figure

1) using data from the Fall 2006 to 2010 cohorts, illustrates the

paired normalized Mathematics and Physics Diagnostics scores

for students co-enrolled in Calculus I and Physics I during

their first semester. This plot showcases the diversity in student

preparation levels, categorizing the data into four quadrants based

on Diagnostic Survey performance. These quadrants represented

different preparedness levels in Mathematics and Physics, leading

to four risk categories: Low-Risk (well-prepared in both subjects),

High-Risk (ill-prepared in both subjects), and Medium-Risk (well-

prepared in one subject but not the other). For logistical reasons, a

small subgroup of the highest-risk students from the Medium-Risk

category was included in the analysis to further expand the High-

Risk category. This methodology was the foundation for developing

and validating a binary classifier that identified High-Risk students

on a per-cohort basis from 2011 onward, ensuring uniformity of

subject selection across each cohort year.

Targeted interventions to assist underprepared students: To

improve student achievement and STEM retention (Chapman

et al., 2015) the university implemented several strategies:

• Alternative curriculum pathway: high-risk engineering

students from Fall 2011 onwards followed an alternate

schedule that delayed Physics I to the second semester and

replaced it with the Engineering and Society course that

counted toward graduation requirements and did not increase

students’ time to graduation. This decoupling allowed less-

prepared students to improve their math skills before tackling

Calculus-based Physics without sacrificing degree progress.

• Co-calculus for all: starting in 2011, all Calculus students

were placed in Co-Calculus (a low-credit mathematics skills

course), regardless of pre-entry scores. Students could choose

to complete the course or test out after achieving a specific

competency level, shifting the course perception from “fail in”

to “pass out.”

• Optional spatial visualization (SV) training: students with

scores below a designated cut-off on the Purdue Spatial

Visualization assessment’s Rotations component (Guay, 1977)

were scheduled for SV training. Participation was optional,

and from 2012 to 2015, a significant portion of high-risk

engineering students engaged in this training.

1.2 The need to extend our work to URM
and female students

The interventions by Wick et al. (2022) significantly improved

the academic performance and overall success of high-risk

students. The high-risk students exhibited improved retention rates

during the intervention years (p < 0.001), and their 4- and 6-year

graduation rates were notably superior (p < 0.05 and p < 0.001,

respectively) compared to the rates of similar students from the pre-

intervention period. Wick et al. (2022) also demonstrated that the

high-risk students who participated in the interventions were more

successful in early foundation STEM courses than their peers from

the pre-intervention years.

However, our prior work did not explore the specific impact

of these interventions on URM and female students in the High-

Risk category. URM and female students may have different

academic needs due to varying levels of preparation and different

experiences in their educational journeys. URM students often

encounter systemic barriers, including stereotype threats and

microaggressions, which can hinder their academic progress and

sense of belonging in STEM fields (Sue et al., 2007; Torres

et al., 2010). These experiences can negatively impact their

psychological well-being, engagement, and retention in STEM

programs. Likewise, female students in STEM face different barriers

such as gender stereotypes, lack of role models, and male-

dominated cultures (UNESCO, 2023; AAUW, 2023). Therefore,

there is a need to explore the specific impact of targeted

interventions on these groups separately.

To this end, this study extends our prior work to high-riskURM

and female students. For this study, we identified an average of

145 high-risk students per cohort year, of which 9.5% identified

as URM students and 22% identified as female. On average, <3%

of the high-risk students identified as both URM and female.

While our limited sample size did not permit us to explore a

deeper analysis of students at the intersection of these groups,

namely the sub-group of high-risk URM women, there is merit

in expanding our understanding of the outcomes of these groups

separately, with the hope of revealing potential overlap. Specifically,

we examine the first- and second-year STEM retention rates and

the 4- and 6-year graduation rates for these groups. Section 2.1

details the methodology for comparing pre-intervention and post-

intervention groups.

Understanding how these interventions influenced various

groups is crucial. Given the already higher STEM retention and 6-

year graduation rates (Wick et al., 2022), developing a predictive

model for these outcomes is less crucial. Hence, this study focuses

on developing predictivemodels for the 4-year graduation (on-time

graduation) of high-risk students and their subgroups before and

after the intervention. These predictive models, detailed in Section

2.3, will provide valuable insights into the mechanisms by which

the interventions affected high-risk students.

1.3 Rationale behind choosing the
potential predictors in this study

While building the predictive models, it is important to justify

the potential predictors used. Some researchers have linked SAT

scores to various aspects of success in college. Chissom and Lanier

(1975) found that SAT scores positively correlate with first-year

GPA. Similarly, Rohr (2012) identified the aggregate SAT score

as one of the primary predictors of retention in STEM fields.

Conversely, Boldt (2000) reported that SAT scores do not predict

academic performance for students in the lower 10th percentile of

SAT scores. Nevertheless, since the university historically used SAT

performance as an admission criterion, we included SAT scores as

potential predictors in our models.

High school GPA offers a measure of student success but lacks

consistency across different schools due to varying scales. The

literature does not strongly support high school GPA as a predictor

of college success. Indeed, Noble and Sawyer (2002) found that
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even a perfect 4.0 GPA in high school did not predict a first-year

college GPA above 3.0. However, Martin et al. (2006) found that

high school percentile rank highly correlates with college GPA.

Therefore, our analysis included high school percentile rank instead

of high school GPA.

Recent research by López et al. (2022) identified academic

preparedness, demographic variables, and early course

performance as critical factors influencing STEM retention.

Consequently, our predictive modeling includes early STEM

courses such as Calculus, Physics, and Chemistry.

Definitions of high-risk, URM, and female students: Our

definition of underrepresented minority (URM) includes the

following domestic demographic categories for race/ethnicity:

Black/African American, Hispanic, American Indian/Alaska

Native, and Native Hawaiian or Other Pacific Islander. We have

excluded international students from this analysis due to the focus

on domestic demographics. For the collection of data on sex and

race/ethnicity, we relied on self-identified data. Consequently,

our URM student group encompasses female URM students as

well. Likewise, the group of female students includes all students

who identified as female, irrespective of race or ethnicity. The

group of all high-risk students includes individuals categorized as

high-risk, irrespective of their sex, race, or ethnicity. We excluded

students whose sex or race/ethnicity data were unknown from

the analysis.

2 Materials and methods

Note that in this work, we aim to answer three research

questions outlined in Section 1 enumerated as I, II, and III. We

detail the methodologies employed to address these questions in

Sections 2.1-2.3, respectively. Section 2.1 describes our approach

to assess the impact of targeted interventions on the retention and

graduation rates of high-risk URM and female students. To achieve

this, we employ the two-population proportion test (Neter et al.,

1996). In Section 2.2, we detail the methodology used to measure

the intervention’s impact on the success of these groups in early

STEM courses, again utilizing the two-population proportion test.

Section 2.3 focuses on identifying key factors affecting the on-

time graduation of the two groups by developing logistic regression

models (Cox and Snell, 1989).

Before we proceed, we define our control and treatment groups

for clarity. The “URM control group” consists of URM engineering

students (N1 = 38) identified as high-risk from 2006 to 2010, based

on the binary classifier described in Wick et al. (2022). The “URM

treatment group” includes URM engineering students (N2 = 63)

classified as high-risk from 2011 to 2015. Similarly, we define the

“female control group” (N1 = 118) and “female treatment group”

(N2 = 166) for the same cohort years.

Given that the treatment and control groups span different

years, we ensured their statistical similarity at the time of university

admission by comparing SAT component scores. From 2005 to

2015, the SAT included three sections: Math, Verbal, and Writing.

We used Welch’s generalized t-test (Welch, 1947) to compare

the SAT component scores of the two groups, confirming their

comparability.

2.1 Methodology to analyze retention and
graduation rates of URM and female
engineering students

This section presents the methodology to analyze the impact

of the interventions on the retention and graduation rates of URM

and female engineering students.

We define first-year STEM retention as the percentage of

first-year STEM major students enrolled in STEM majors at

the beginning of their second year. Similarly, we define second-

year STEM retention as the percentage of first-year STEM major

students enrolled in STEM majors at the beginning of their third

year. We compared the first & second-year retention rates as well as

the 4 and 6-year graduation rates before and after the interventions.

To this effect, we visualized the first & second-year retention rates

and 4-year graduation rates of high-risk URM engineering students

for the years 2006 to 2015 using bar plots. We repeated these

visualizations for high-risk female engineering students. We used

the two-population proportion test (Neter et al., 1996) to obtain

the statistical significance of the comparison between the control

and treatment groups.

2.2 Measuring the impact of the
intervention on the success of URM and
female engineering students in early STEM
courses

This section describes the methodology to quantify the impact

of the intervention on the success rates of URM and female

engineering students in foundational STEM courses: Physics I,

Physics II, Calculus I, Calculus II, Chemistry I, and Chemistry II.

One of our primary objectives is to measure student success in

foundational STEM courses as a direct result of our interventions.

We anticipate that the impact of these interventions will manifest

in the short term. It is important to note that a student’s success

across multiple attempts at a course could result from factors

other than the intervention. Moreover, including such students

in the analysis could overinflate the results. Consequently, we

conservatively considered only the outcome (Success or Failure)

of students’ first attempts at these courses to isolate the impact of

the intervention, defining “success” as achieving a “C” grade or

better on the first attempt. This approach ensures consistency in

methodology with our previous research (Wick et al., 2022).

We used the two-population proportion test (Neter et al.,

1996) to determine the statistical significance of the difference

between the two groups. For Physics I, Calculus I, and Chemistry

I, we defined the control groups as high-risk URM (or female)

engineering students in the cohort years 2006 − 2010 who took

the corresponding courses concurrently in their first semester. For

the subsequent courses (Physics II, Calculus II, and Chemistry II),

the control group included high-risk URM (or female) engineering

students from the 2006 to 2010 cohorts who registered for these

courses after passing the initial part of the corresponding courses.

The treatment group consisted of high-risk URM (or female)

engineering students in the cohort years 2011 − 2015 who
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registered for the Engineering and Society course in the first

semester and Physics I course in the second semester of their

cohort year as denoted in the Alternative Pathway intervention

previously described. Additionally, we mandated that students in

the treatment group be registered for Calculus I and Chemistry I

during the first semester of their cohort year. For the subsequent

courses (Physics II, Calculus II, and Chemistry II), the “treatment

group” included high-risk (URM or female) engineering students

in the cohort years 2011 − 2015 who registered for these courses

after passing the first part of the corresponding course.

2.3 Modeling the 4-year (on-time)
graduation rate

We aimed to model the 4-year (or “on-time”) graduation rates,

a crucial metric for understanding the educational outcomes of

various groups of high-risk students. This section outlines the

methodology used to develop these models. The response variable

in these models is the 4-year graduation status, where a value

of “1” indicates that a student graduated within 4 years, and

“0” otherwise. To comprehensively analyze the factors influencing

graduation rates, our initial set of explanatory variables included

grades in foundational STEM courses, first-year GPA, high school

percentile rank, SAT component scores, sex, and URM/non-

URM categorization, resulting in 13 explanatory variables. We

constructed models to predict 4-year graduation outcomes for the

following populations:

• High-risk students of all genders and races before and after the

intervention,

• High-risk URM students before and after the intervention,

and

• High-risk female students before and after the intervention.

In total, we developed six distinct models to evaluate the impact

of the interventions across these different groups.

Choice of the model: To develop a robust model, we evaluated

several methodologies, including logistic regression, random forest,

support vector machines, k-nearest neighbor algorithm, and neural

networks, using five-fold cross-validation. We found that the

accuracy of the logistic regression model was consistently within

5% of the other models. Additionally, the logistic regression model

offers the added advantage of identifying the contribution of

individual factors influencing the graduation rate. Consequently,

we selected the logistic regression model for this study due to its

comparative accuracy and interpretability.

Choice of explanatory variables: Selecting appropriate

explanatory variables is crucial for developing an accurate model.

It is particularly imperative to avoid multicollinearity between

explanatory variables, as it can result in unstable and unreliable

estimates of regression coefficients (Belsley et al., 2004). To address

this, we began with the following explanatory variables: grades

in early foundation STEM courses, first-year GPA, high school

percentile rank, and SAT component scores (math, verbal, and

writing). Certain categorical variables may be constant depending

on the subset of students selected for the model. For example,

if all the students in a subset are female, the variable “Sex”

becomes constant. In such cases, we eliminate these constant

variables from the list of explanatory variables. Furthermore, we

addressed multicollinearity by eliminating variables with high

multicollinearity using a procedure adapted from Athavale et al.

(2021). The steps in this procedure are as follows:

Step 1. Compute the Variance Inflation Factor (VIF) (Belsey et al.,

1980) for each explanatory variable in the model. If all the

VIFs are <5, we declare this to be the final linear model.

Step 2. If an explanatory variable has a VIF of >5, we remove the

explanatory variable with the largest VIF.

Step 3. After removing a variable, it is possible to include more

data points in our model. For example, after removing a

certain variable, we could include students for whom that

variable was not previously available.

Step 4. We construct the linear model with the remaining

explanatory variables.

Step 5. Go to Step 1.

After removing factors that cause multicollinearity, we needed

to select the variables that yield the optimal logistic model. To

achieve this, we employed the stepwise regression technique using

the backward elimination procedure (Beale et al., 1967). To evaluate

the model’s performance, we calculated the accuracy measure and

plotted the receiver operating characteristics (ROC) curve, which

illustrates Sensitivity (True Positive Rate) against Specificity (False

Positive Rate). We also computed the area under the ROC curve

(AuROC), with a higher AuROC value indicating a more accurate

model fit.

2.4 Coding language and libraries used

We used Version 4.4.1 of the R programming language for the

coding with the following R libraries: readxl 1.4.3, tidyr 1.3.1, car

3.1-2, dplyr 1.1.4, plyr 1.8.9, caret 6.0-94, pROC 1.18.5, e1071

1.7-16.

3 Results

The results obtained for the methods described in Sections

2.1–2.3 are delineated in Sections 3.1–3.3, respectively.

It was essential to ensure that the groups are statistically similar

before and after the interventions. To confirm this, we usedWelch’s

two-tailed t-test (H0 :µ1 = µ2) to confirm there was no statistically

significant difference (p > 0.01) in SAT component scores before

and after the intervention for all high-risk students, female high-

risk students, and URM high-risk students. We also conducted

Welch’s one-sided t-test with the null hypothesis that the groups

before the intervention had SAT component scores at least as

high as the group after the intervention (H0 :µ1 > µ2). The

p−values were >0.05 for all groups across all three sections of the

SAT, indicating that we did not have significantly better-prepared

students in the intervention group. In particular, the p−values for

the high-risk URM group for the Math section were 0.034 and
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FIGURE 1

Boxplots showing the SAT component scores before (control) and after (treatment) the intervention for high-risk URM students in (A) Math

(p = 0.034), (B) Verbal (p = 0.594), and (C) Writing sections (p = 0.387). The p−values >0.01 confirm that the two groups are similar with respect to

their SAT scores in all three components.

FIGURE 2

The first row shows the (A, B) First and Second-year STEM retention for the URM engineering students in the High-Risk group. The second row

shows the (C, D) 4- and 6-year graduation rates for the URM engineering students in the High-Risk group. ∗∗∗p < 0.001,∗∗ p < 0.01,∗ p < 0.05.
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FIGURE 3

The first row shows the (A, B) First and Second year STEM retention for the female engineering students in the High-Risk group. The second row

shows the (C, D) 4- and 6-year graduation rates for the female engineering students in the High-Risk group.

0.983 for the null hypotheses H0 :µ1 = µ2 and H0 :µ1 > µ2,

respectively.

Therefore, any academic improvement observed after the

intervention cannot be attributed to better-prepared students in

the intervention group. Consequently, we proceeded with the

quantitative analysis of the intervention’s impact on these groups.

Figure 1 presents boxplots for high-risk URM students, while the

Supplementary material provides similar boxplots for all high-risk

and high-risk female students for completeness.

3.1 Results of the retention and graduation
rates of URM and female engineering
students

Figures 2, 3 illustrate the STEM retention and graduation rates

for high-risk URM and female engineering students, respectively.

Tables 1, 2 provide the corresponding rates and raw numbers along

with the p−values from the two-population proportion tests.

For URM high-risk students in the control group (2006–2010),

the first-year STEM retention rate was 86.8% (of 38 students).

This rate improved to 90.5% (of 63 students) in the treatment

group (2011–2015), though the improvement was not statistically

significant (p > 0.05). Similarly, the second-year STEM retention

improved from 73.7% in the control group to 79.4% in the

treatment group, which was also not statistically significant (p >

.05). The 4-year graduation rate for URM students in the treatment

group was 44.4%, significantly higher (p < 0.05) than the 23.7%

observed in the control group. Additionally, the 6-year graduation

rate for the URM students in the treatment group was 69.8% (of

63 students), significantly better (p < 0.05) than the 50% (of 38

students) in the control group.

High-risk female engineering students in the treatment group

showed a first-year STEM retention rate of 95.8% (of 166 students),
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TABLE 1 Success rates for URM students in the control group and the

treatment group along with the p−values for the two-population

proportion tests.

Control
group

Treatment
group

p−values

(N1 = 38) (N2 = 63)

First year STEM retention 86.8% 90.5% 0.406

Second year STEM retention 73.7% 79.4% 0.339

Four-year graduation rate 23.7% 44.4% 0.030∗

Six-year graduation rate 50.0% 69.8% 0.037∗

There were N1 = 38 URM students in the control group. Moreover, there were N2 = 63

URM students in the treatment group. See Section 2.2 for the definitions of the control and

treatment groups for URM students. ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, ·p < 0.1.

TABLE 2 Success rates for female students in the control group and the

treatment group along with the p-values for the two-population

proportion tests.

Control
group

Treatment
group

p−values

(N1 = 118) (N2 = 166)

First year STEM retention 90.7% 95.8% 0.068·

Second year STEM

retention

85.6% 89.2% 0.237

Four-year graduation rate 61.9% 64.5% 0.374

Six-year graduation rate 77.1% 84.3% 0.083·

There were N1 = 118 female students in the control group. Moreover, there were N2 = 166

female students in the treatment group. See Section 2.2 for the definitions of the control and

treatment groups for female students. ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, ·p < 0.1.

higher than the 90.7% (of 118 students) in the control group. This

improvement was marginally significant (p < 0.1). The second-

year STEM retention rate for female students was 89.2% in the

treatment group, compared to 85.6% in the control group, though

this difference was not statistically significant (p > 0.05).

High-risk female students in the treatment group exhibited

higher 4-year and 6-year graduation rates compared to the control

group. Specifically, 64.5% of 166 high-risk females in the treatment

group graduated in 4 years, compared to 61.9% of 118 in the control

group, though this difference was not statistically significant (p >

0.05). The 6-year graduation rate for high-risk females was 84.3%

in the treatment group versus 77.1% in the control group, with this

improvement being only marginally significant (p < 0.1).

3.2 Success measures of URM and female
engineering students in early STEM courses

High-risk students demonstrated improved success rates

during the intervention years in early foundational STEM courses

(Wick et al., 2022). Following this trend, high-risk female students

in the treatment group exhibited significantly greater success than

those in the control group in Physics I and Calculus I, with p-values

of 0.002 and 0.03, respectively. However, this improvement did not

extend to other early STEM courses. Furthermore, we observed no

statistically significant improvement in the performance of URM

students in early foundational STEM courses. We show the details

of these results in Figures 4, 5.

3.3 Results of modeling the 4-year
graduation rate

Tables 3–8 present the results of themodels discussed in Section

2.3. These tables list the variables retained in the final model after

stepwise backward elimination, along with their coefficients, 95%

profile likelihood-based confidence intervals (Cox and Snell, 1989),

and corresponding p-values. Additionally, we report the accuracy

of each model, the area under the receiver operating characteristic

curve (AuROC), the Akaike information criterion (AIC) (Akaike,

1974), and the null and residual deviance with the corresponding

degrees of freedom.

3.3.1 Models for all high-risk students before and
after the intervention

Tables 3, 4 display the results of the 4-year graduationmodel for

all high-risk students before and after the intervention, respectively.

Bothmodels excluded the explanatory variable “First year GPA” due

to high variance inflation factor (VIF) indicating multicollinearity.

Consequently, the stepwise regression procedure included 12

explanatory variables.

In both models, grades in Physics II emerged as the most

significant factor (p < 0.001). Before the intervention, Physics I

grade was more significant (p < 0.001) than after the intervention

(p = 0.011). High school percentile rank was a significant predictor

before the intervention (p = 0.006), but it did not appear among

the predictors in the post-intervention model.

Prior to the intervention, being from a non-URM group

was positively associated with on-time graduation (p = 0.015),

whereas this variable was not a predictor in the post-intervention

model. The models for all high-risk students before and after the

intervention had accuracy of 73.6 and 71.3%, respectively.

3.3.2 Model for URM high-risk students before
and after the intervention

Tables 5, 6 present the results of the 4-year graduation

model for high-risk URM students before and after the

intervention, respectively. Since these models focus exclusively

on URM students, the URM status variable was constant and

therefore excluded.

To construct these models, complete data for all considered

variables was required. Consequently, the number of students

included in the models—30 in the pre-intervention and 49 in the

post-intervention was slightly lower than the number of students

in the control group (38) and the treatment group (63) shown

in Table 1, as some students were exempt from SAT scores. This

pattern was also observed for female students, as shown in Tables 7,

8. In the pre-intervention model, variables such as First-Year

GPA, Physics I & II, Chemistry I & II, and Calculus I were

eliminated due to high variance inflation factors (VIF). In the

post-intervention model, First-Year GPA, high school percentile
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FIGURE 4

The success rates of High-Risk URM students in the early foundation STEM courses from the cohort years Fall 2006− 2015. The success rates in the

pre-intervention years (Fall 2006− 2010) are shown in blue, whereas the post-intervention years (Fall 2011− 2015) are in green. The significance

levels and the p-values indicating the di�erences in the pre-intervention and intervention years are shown in the individual graphs.
∗∗∗p < 0.001,∗∗ p < 0.01,∗ p < 0.05. (A) Physics I success rate. (B) Physics II success rate. (C) Calculus I success rate. (D) Calculus II success rate. (E)

Chemistry I success rate. (F) Chemistry II success rate.

rank, Physics I & II, and SAT math scores were excluded for the

same reason. This resulted in six explanatory variables for the pre-

intervention model and seven for the post-intervention model after

stepwise elimination.

In the pre-intervention model, the Calculus II

grade was the only significant predictor (p = 0.02).

Whereas the post-intervention model identified

grades in Calculus I, Chemistry I, SAT Verbal,
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FIGURE 5

The success rates of High-Risk female students in the early foundation STEM courses from the cohort years Fall 2006− 2015. The success rates in

the pre-intervention years (Fall 2006− 2010) are shown in blue, whereas the post-intervention years (Fall 2011− 2015) are in green. The significance

levels and the p-values indicating the di�erences in the pre-intervention and intervention years are shown in the individual graphs.
∗∗∗p < 0.001,∗∗ p < 0.01,∗ p < 0.05. (A) Physics I success rate. (B) Physics II success rate. (C) Calculus I success rate. (D) Calculus II success rate. (E)

Chemistry I success rate. (F) Chemistry II success rate.

and Calculus II as significant predictors of 4-year

graduation (p < 0.05).

The accuracy of the pre-intervention model was 83.3%, while

the post-intervention model achieved an accuracy of 87.8%.

3.3.3 Model for female high-risk students before
and after the intervention

Tables 7, 8 present the results of the 4-year graduation models

for high-risk female students before and after the intervention,
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TABLE 3 The pre-intervention model on-time graduation for all 356

high-risk students.

Coe�cients
(β)

Standard
errors

95% CI p−values

Physics II 0.76 0.16 0.46, 1.08 <0.001∗∗∗

Physics I 0.62 0.18 0.27, 0.98 <0.001∗∗∗

High school

percentile

rank

0.38 0.14 0.11, 0.65 0.006∗∗

Being

non-URM

1.27 0.52 0.28, 2.34 0.015∗

(Intercept) −1.01 0.51 −2.06,

− 0.05

0.046∗

Accuracy:

73.6%

AuROC: 0.80 N = 356

We began with 12 explanatory variables at the beginning of the stepwise backward

elimination. In this table, we list the variables remaining after the stepwise elimination along

with their coefficients, standard error, profile likelihood-based 95% confidence intervals,

and their p−values. Null deviance = 484.68 on 355 degrees of freedom, residual deviance

= 386.81 on 351 degrees of freedom. AIC = 396.81.
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, · p < 0.1.

TABLE 4 The post-intervention model for on-time graduation for all 593

high-risk students.

Coe�cients
(β)

Standard
errors

95% CI p−values

Physics II 0.59 0.12 0.35, 0.84 <0.001∗∗∗

Physics I 0.41 0.16 0.10, 0.73 0.011∗

Chemistry II 0.31 0.14 0.04, 0.58 0.025∗

Chemistry I −0.23 0.17 −0.56, 0.10 0.179

(Intercept) 0.62 0.10 0.42, 0.82 <0.001 ***

Accuracy:

71.3%

AuROC: 0.72 N = 593

We began with 12 explanatory variables at the beginning of the stepwise backward

elimination. In this table, we list the variables remaining after the stepwise elimination along

with their coefficients, standard error, profile likelihood-based 95% confidence intervals,

and their p−values. Null deviance = 773.23 on 592 degrees of freedom, residual deviance

= 683.27 on 588 degrees of freedom. AIC = 693.27.
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, · p < 0.1.

respectively. The variable “Sex” was constant for all students in this

group and was therefore removed from the models. Additionally,

“First Year GPA” was excluded from the pre-intervention model

due to the high variance inflation factor (VIF).

In both models, “Physics II grade” emerged as the most

significant predictor (p < 0.01). In the pre-intervention

model, “Physics I grade” was also a significant predictor (p =

0.05). However, in the post-intervention model, “Calculus I

grade” became the second most significant predictor (p =

0.037).

Consistent with the models for all high-risk students

(see Tables 3, 4), being from a non-URM group

was a significant predictor in the pre-intervention

model (p = 0.021) but not in the post-intervention

model.

The accuracy of the pre-intervention model was 75.5%, while

the post-intervention model had an accuracy of 74.3%.

TABLE 5 The pre-intervention model for on-time graduation for 30

high-risk URM students.

Coe�cients
(β)

Standard
errors

95% CI p−
values

Calculus II 2.04 0.87 0.65, 4.24 0.020∗

SATWriting −1.19 0.63 −2.72,

− 0.12

0.057 ·

(Intercept) −1.87 0.71 −3.60,

− 0.70

0.008∗∗

Accuracy:

83.3%

AuROC: 0.85 N = 30

We began with 6 explanatory variables at the beginning of the stepwise backward elimination.

In this table, we list the variables remaining after the stepwise elimination along with their

coefficients, standard error, profile likelihood-based 95% confidence intervals, and their

p−values. Null deviance = 32.6 on 29 degrees of freedom, residual deviance = 21.44 on

27 degrees of freedom. AIC = 27.44.
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, · p < 0.1.

TABLE 6 The post-intervention model for on-time graduation for 49

high-risk URM students.

Coe�cients
(β)

Standard
errors

95% CI p−
values

Calculus I 1.72 0.71 0.53, 3.41 0.015∗

Chemistry I 1.62 0.71 0.33, 3.21 0.021∗

SAT Verbal −1.51 0.75 −3.18,−0.19 0.044∗

Calculus II 1.16 0.71 −0.13, 2.76 0.103∗

SATWriting 0.92 0.71 −0.34, 2.48 0.195

(Intercept) −0.51 0.52 −1.64, 0.46 0.330

Accuracy:

87.8%

AuROC: 0.92 N = 49

We began with 7 explanatory variables at the beginning of the stepwise backward elimination.

In this table, we list the variables remaining after the stepwise elimination along with their

coefficients, standard error, profile likelihood-based 95% confidence intervals, and their

p−values. Null deviance = 66.92 on 48 degrees of freedom, residual deviance = 34.50 on

43 degrees of freedom. AIC = 46.5.
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, · p < 0.1.

4 Discussion

The results of this study provide significant insights into the

impact of targeted interventions on the academic success of high-

risk underrepresented minority (URM) and female engineering

students.

4.1 E�ect of the intervention on retention
and graduation rates

We analyzed the retention and graduation rates of high-risk

URM and female students pre-and post-intervention. As delineated

in Section 3.1 and showcased in Table 1, there is a marked

improvement in both 4- and 6-year graduation rates among high-

risk URM students, with an increase of nearly 20 percentage

points in each. This is a significant finding for the URM students

that is approximately double the 10 percentage point increase

that we reported in our prior work for all high-risk students.

Notably, this rise is observed even with increased URM student
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enrollment at the university. While high-risk female students also

demonstrated progress in STEM retention during the first 2 years

and in 4- and 6-year graduation rates, these increases were not

statistically significant. Nevertheless, they experienced a significant

improvement in Physics I and Calculus I course performance

after interventions were implemented. Contrarily, performance in

early foundation STEM courses displayed no statistically significant

improvement for URM high-risk students.

4.2 The shift in significant predictors
post-intervention

Furthermore, we formulated logistic regression models to

understand factors impacting the success of high-risk students.

Table 3 reveals that grades in Physics I and II were significant

indicators (p < 0.001) of the on-time graduation of the high-risk

students before the intervention. Post-intervention, as shown in

Table 4, the influence of Physics I waned (p < 0.05), likely due

to its intentional delay and decoupling from Calculus I for the

treatment group.

Interestingly, the high school percentile rank was an

important predictor (p = 0.006) of on-time graduation before

the intervention. This reliance diminished post-intervention,

suggesting the intervention may have neutralized students’ lack or

gaps in prior educational preparation on their college-level success.

Additionally, the pre-intervention model marked non-URM

status as significant for on-time graduation (p = 0.015). This

factor became non-predictive post-intervention, hinting at a

potential leveling of the playing field for URM students due to the

intervention.

For URM students, pre-intervention data highlighted Calculus

II as the sole significant predictor for on-time graduation. Post-

intervention, however, four nearly equally significant factors

emerged. Intriguingly, SAT verbal scores were inversely related

to on-time graduation for high-risk URM students. The inverse

relationship between SAT verbal scores and on-time graduation

for URM students may be an indication of underlying biases.

Studies by Freedle (2006) and Santelices and Wilson (2010) noted

discrepancies in SAT verbal items between African American

and White students which may reflect systemic biases that

underestimate the potential of African American students.

Evaluating models for high-risk female students (as seen in

Tables 7, 8), the significant predictor of being a non-URM student

pre-intervention (p = 0.021) was no longer apparent post-

intervention, emphasizing the intervention’s efficacy in assisting

female URM students at risk.

Before the intervention, Physics I grades were pivotal

in predicting on-time graduation for all high-risk students,

particularly female students. However, this predictive capacity was

absent post-intervention across all groups, possibly highlighting

the positive implications of the decision to delay Physics I for

high-risk students.

This change in significant predictors underscores the dynamic

nature of academic success factors, as also noted by López et al.

(2022). It suggests that the interventions not only provided

immediate support but also altered the pathways to academic

TABLE 7 The pre-intervention model for on-time graduation for 102

high-risk female students.

Coe�cients
(β)

Standard
errors

95% CI p-
values

Physics II 0.86 0.29 0.33, 1.47 0.003∗∗

Being

non-URM

1.97 0.86 0.36, 3.8 0.021∗

Physics I 0.80 0.41 0.02, 1.64 0.050∗

(Intercept) −0.93 0.81 −2.68, 0.60 0.253

Accuracy:

75.5%

AuROC: 0.82 N = 102

We began with 11 explanatory variables at the beginning of the stepwise backward

elimination. In this table, we list the variables remaining after the stepwise elimination along

with their coefficients, standard error, profile likelihood-based 95% confidence intervals, and

their p−values. Null deviance= 123.58 on 101 degrees of freedom, residual deviance= 95.57

on 98 degrees of freedom. AIC = 103.57.
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, · p < 0.1.

TABLE 8 The post-intervention model for on-time graduation for 148

high-risk female students.

Coe�cients
(β)

Standard
errors

95% CI p-
values

Physics II 0.85 0.27 0.35, 1.42 0.002∗∗

Calculus I 0.58 0.28 0.04, 1.14 0.037∗

Chemistry I −0.21 0.31 −0.83, 0.39 0.501

(Intercept) 0.95 0.21 0.55, 1.38 <0.001∗∗∗

Accuracy:

74.3%

AuROC: 0.76 N = 148

We began with 12 explanatory variables at the beginning of the stepwise backward

elimination. In this table, we list the variables remaining after the stepwise elimination along

with their coefficients, standard error, profile likelihood-based 95% confidence intervals,

and their p−values. Null deviance = 183.45 on 147 degrees of freedom, residual deviance

= 153.02 on 144 degrees of freedom. AIC = 161.02.
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, · p < 0.1.

success. López et al. (2022) highlighted similar findings, where

tailored interventions in academic settings led to changes in the

predictive power of various success factors. They emphasized

that interventions could address underlying inequities, thereby

transforming the predictors of success.

4.3 Need for tailored support system

We note that our findings align with recent literature, which

underscores the importance of nuanced interventions in STEM

education. Specifically, as noted earlier, Ghazzawi et al. (2021)

emphasizes the role of contextual and culturally responsive

pedagogy in enhancing the engagement and retention of URM

students in STEM disciplines. This aligns with our findings,

suggesting the need for more context-specific interventions for

URM students. Additionally, our approach of quantitative analysis

to STEM education is supported by Aulck et al. (2017), who

present their own predictive methods for STEM attrition. Indeed,

the improvements observed in female students’ performance in

Physics I and Calculus I are consistent with the benefits of tailored

academic support highlighted by Aulck et al. (2017). Furthermore,
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the work by López et al. (2022) highlights the critical role of

tailored support systems, such as mentoring and academic support

services, in improving outcomes for URM students in STEM,

resonating with our observations on the impact of interventions on

URM students. These recent works suggest that ongoing evaluation

and refinement of intervention strategies, incorporating the latest

research insights, are crucial for enhancing the efficacy of these

programs. By continually adapting our approaches to the evolving

needs of URM and female STEM students, we can more effectively

foster an inclusive and supportive educational environment.

4.4 Limitations

One of the limitations of this study is that we investigated

educational intervention within a private university. Additionally,

the sample sizes for URM and female subgroups were limited.

To remedy these limitations, in future we plan to include larger,

more diverse samples from multiple institutions, incorporate

qualitativemeasures, and examine the detailed implementation and

differential impacts of interventions on various subgroups.

One notable aspect of this study is its comprehensive

scope, encompassing data from cohorts spanning 2006 to 2015

and following students through to their graduation in 2021.

This extensive 16-year timeframe provides a robust longitudinal

perspective, allowing for in-depth analysis of long-term trends

and outcomes. While replicating such a study would require a

similar timeframe and substantial organizational effort, the valuable

insights gained are significant. By sharing these findings, we aim to

contribute to the body of knowledge in STEM education, providing

a strong foundation for future research and interventions that can

build upon our work.

4.5 Future direction and recommendations

Our study demonstrates that the implemented interventions

had a positive impact on URM and female high-risk students,

though the effects differed for each group. This differentiation

underscores the need for more tailored and course-specific

intervention strategies to address the unique challenges faced by

these student cohorts.

In particular, the findings suggest that high-risk URM students

would benefit significantly from interventions specifically focused

on early mathematics courses. In contrast, high-risk female

students would benefit from targeted interventions in Physics.

Additional support through tutoring and remedial courses for these

groups could further enhance the effectiveness of the interventions.

We observe that the intervention changes the significance of factors

in the predictive model. This phenomenon emphasizes the need for

continuous assessment of the model and support strategies.

Moreover, we should consider refining existing programs based

on detailed feedback and performance data from these groups. Our

predictive analysis indicates that the significance of Physics I grades

in predicting on-time graduation diminished post-intervention,

likely due to the strategic delay in taking this course for high-risk

students. This finding suggests that the intentional and strategic

sequencing of other STEM courses may have similar implications

and warrants further investigation.

5 Conclusion

The current study extends our previous work by assessing

the impact of interventions aimed at high-risk students, with a

particular focus on underrepresented minority (URM) and female

engineering students. Our primary objective was to determine the

efficacy of these interventions in improving retention and success in

early STEM foundation courses and, ultimately, the 4- and 6-year

graduation rates.

Our findings reveal a significant positive shift in the

performance metrics of high-risk URM students post-intervention,

particularly in the 4- and 6-year graduation rates. This outcome

is especially noteworthy given the increasing enrollment of URM

students at the university during this period. While there were

noticeable improvements in retention and graduation rates for

high-risk female students, these improvements were not statistically

significant. However, their performance in early foundation STEM

courses, particularly Physics I and Calculus I, showed notable

improvement post-intervention.

The logistic regression models further revealed some

encouraging trends. For all high-risk students, the importance

of Physics I grades in predicting on-time graduation declined

post-intervention, likely due to the strategic delay in introducing

this course. This supports the original rationale of delaying the

calculus-based Physics I course for the least prepared students to

allow them focused time to achieve a basic level of proficiency

in Calculus before needing to apply it in learning Physics.

Interestingly, for all high-risk students and in particular for

high-risk female students, the factor of being non-URM lost its

significance post-intervention. This suggests the intervention’s

success in equalizing opportunities and nullifying any potential

advantage of being non-URM in achieving on-time graduation.

While sample size limitations prohibited a formal and separate

analysis of the intersectionality of the URM and female groups,

this observation hints at a positive impact of the interventions for

high-risk URM women.

The shift in the significance of predictors post-intervention

across all groups underscores the profound influence the

intervention had on high-risk students. The strategies

implemented, including the restructured course schedule and

additional training modules, have positively redirected the paths of

students who might have otherwise struggled. Our study indicates

that the intervention had differing positive impacts on high-risk

URM and female students. This supports the need for an even

more tailored approach in future STEM pathway designs specific

to these groups and invites continued investigation into similar

interventions aimed at enhancing success for our most at-risk

student populations.
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