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The first 2 years of college mathematics play a key role in retaining STEM majors. 
This becomes considerably difficult when students lack the background knowledge 
needed to begin in Calculus and instead take College Algebra or Precalculus 
as a first mathematics course. Given the poor success rates often attributed to 
these courses, researchers have been looking for ways in which to better support 
student learning, such as examining the impact of enhancing study habits and 
skills and metacognitive knowledge. One way that students can enhance their 
metacognitive knowledge in order to modify their study habits and practices is 
through reflection on mistakes. For this paper in particular, we focus on mistakes 
students make on exams. We interviewed students after they took an exam and 
completed an exam analysis worksheet. As part of a study on the impact of 
metacognitive instruction for College Algebra students we found that students 
often attributed their exam errors to “simple mistakes.” However, we identified 
many of these errors as “not simple.” To understand students’ perceptions of 
their mistakes within the context of problem-solving, we adapted an established 
problem-solving framework as an analytical tool. We found that students’ and 
researchers’ classifications of errors were not aligned across the problem-solving 
phases. In this paper we present findings from this work, sharing the adapted 
problem-solving framework, students’ perceptions of their exam mistakes, and the 
relationship between students’ categorizations of their errors and the problem-
solving phase in which the errors occurred. Understanding students’ perceptions 
of their mistakes helps us better understand how we might support them as 
learners and better situate them for success in the future.
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Introduction

Efforts to adequately support students from diverse backgrounds who pursue Science, 
Technology, Engineering, or Mathematics (STEM) majors often include a focus on improving 
students’ first college math experience (Seymour et al., 2019; Ellis et al., 2016; Seymour and 
Hewitt, 1997). In the United States, university students without the background needed to 
begin studying calculus will often have to take a prerequisite course, such as College Algebra, 
as their first math class. Given the high failure rates associated with these classes (Herriott and 
Dunbar, 2009), researchers look for ways to improve these courses (Sadler and Sonnert, 2018). 
Study skill instruction can often be an important component of first semester support courses. 
Study habits and skills have been shown to impact academic performance as much as 
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prerequisite knowledge (Credé and Kuncel, 2008; Ohtani and 
Hisasaka, 2018; Schneider and Artelt, 2010). Further, metacognitive 
knowledge and skills can be taught in the classroom (Donker et al., 
2014; Schneider and Artelt, 2010) and are most effective when taught 
in the context of a class throughout an entire term (Sitzmann and 
Ely, 2010).

We have been designing and implementing metacognitive 
activities for college algebra students. In that work we learned that 
students’ perceptions are different from ours as researchers and 
teachers, in particular when it comes to reflection on mistakes or 
errors. Understanding student perceptions, better positions instructors 
to support the students.

As part of our study on the impact of metacognitive instruction 
for college algebra students (Pilgrim et al., 2020), we found that it was 
common for students to attribute their errors to “simple mistakes” 
(Ryals et al., 2020, p. 494) and noticed that many mistakes which 
students identified as simple, we as practitioner-researchers identified 
as not simple. Seeing that students and researchers use the term simple 
mistakes to refer to different types of errors prompted us to explore 
students’ meanings about/of their mistakes and contrast them with 
our own definitions. In this paper we  present the details of this 
comparison. Understanding how students think about their mistakes 
better positions us to know how to support their learning. The help 
and support we might normally offer may be misaligned with students’ 
needs. Knowing students’ perceptions of their mistakes helps us better 
understand how we might help them.

We conducted interviews with some of the students after students 
took an exam and completed a subsequent exam analysis worksheet. 
Their responses gave us a deeper understanding of students’ views of 
simple and not simple mistakes. In these interviews, students 
described their mistakes and explained why they believed the mistake 
was simple or not simple. As we analyzed this data to gain a deeper 
understanding of how explanations of errors relate to students’ view 
of simple and not simple mistakes (Ryals et al., 2022), we  saw a 
network of connections forming between the codes assigned to 
student explanations of mistakes. We built on Carlson and Bloom's 
(2005) problem-solving framework and looked for relationships 
between the problem-solving phase in which the error occurred and 
whether students classified their errors as simple or not simple. In this 
paper, we consider the following research questions.

 1 Is there a pattern between students’ classification of mistakes as 
simple or not simple and the problem-solving phase in which 
they describe the mistakes occurring?

 2 How do students’ patterns of classification compare with those 
of the researchers?

A review of the literature

Error analysis is a metacognitive activity which has shown to 
be  beneficial to learning mathematics (Rushton, 2018). While 
mistakes can be seen as opportunities to grow (Boaler, 2015; Kapur, 
2014), it has been shown that corrective feedback is needed in 
order for students to learn from their errors (Metcalfe, 2017). An 
“error” in math has been defined as “the result of individual 
learning or problem-solving processes that do not match 
recognized norms or processes in accomplishing a mathematics 

task” (Kyaruzi et al., 2020). Error analysis, or understanding the 
cause of a student error, is beneficial to the student, teacher, and to 
the researcher (Koriakin et al., 2017). Exam wrappers, tasks which 
involve the student identifying the cause of the error, have been 
shown to be effective tools for improving student understanding 
specifically in university STEM courses (Hodges et al., 2020). Post-
exam reflection is a strategy used in self-regulated learning as a way 
for students to examine their preparation for an exam and 
subsequent performance on the exam. This allows for students to 
identify strategies that were helpful in preparation for the exam, 
note strategies that were ineffective, recognize what went well on 
the exam, and determine an appropriate study plan for the future. 
Engaging in this level of reflection is an aspect of self-regulated 
learning and was the initial motivation for our study.

Self-regulated learning has been of interest to scholars for decades. 
Cognitive psychologists (e.g., Pintrich, 2000; Schunk and Zimmerman, 
2012; Zimmerman, 2002) developed models of self-regulated learning 
which were then further built upon by mathematics education 
researchers (De Corte et al., 2011; De Corte et al., 2000), who showed 
that awareness of metacognition and use of learning strategies predict 
math performance. Further, Schneider and Artelt (2010) expanded 
upon this work showing that these learning strategies can be taught at 
primary and secondary levels. Until recently mathematics educators 
who focused on metacognition, such as Garofalo and Lester (1985), 
primarily focused on metacognition within the problem-solving 
process. Thus our literature review highlights three areas: self-
regulation models, metacognition, and a cyclic problem-
solving model.

Self-regulation models

Models of self-regulation from Pintrich (2000) and Zimmerman 
(2002) involve the learner doing work before a task, during a task, 
and reflecting after a task. Prior to a task, a learner analyzes what 
will be  needed to complete the task, which involves assessing 
content knowledge, thinking about the context in which the task 
will be completed, and making judgments about the importance 
and also the difficulty of the task. Both Pintrich and Zimmerman 
refer to this as forethought. Essentially, a self-regulated learner 
establishes goals and makes self-judgments about their abilities 
needed for the task which subsequently impacts the learner’s 
motivation. As Zimmerman describes, “Forethought refers to 
influential processes that precede efforts to act and set the stage for 
[engaging with a task]” (p. 16).

Following forethought, a learner engages with the task. While 
Pintrich identifies two distinct components of the task engagement 
phase, namely monitoring and control (p. 545), Zimmerman combines 
these into the performance phase of self-regulation. While engaging 
with a task, the self-regulated learner has an awareness of the 
knowledge that they possess and the knowledge they lack that is 
necessary to complete the task. In addition, the learner considers the 
actions needed to complete the task by monitoring “their time 
management and effort levels” which allows them to “attempt to adjust 
their effort to fit the task” (Pintrich, 2000, p. 467). These aspects of 
self-control and self-observation are the primary components that 
affect a learner’s attention and action while engaged with a task 
(Zimmerman, 2002).
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Once a task is completed, a self-regulated learner reflects on the 
forethought and performance phases. During this self-regulation 
phase the learner reflects on their preparation for the task as well as 
their engagement with the task. Both Zimmerman and Pintrich note 
the importance of this phase of self-regulation influencing the next 
cycle of pre-task planning to post-task reflection. For example, a 
learner who performed poorly on a task may, upon reflection, plan to 
seek help in advance of the next task. Additionally, a learner may 
identify ways in which their setting or time management could 
be adjusted for future task engagement. Such a framework provides a 
way to organize our understanding of how learners are engaged in our 
courses as well as a way to characterize learners’ behaviors around 
coursework, and a key component of self-regulation is metacognition 
(Pintrich, 2000).

Metacognition

Metacognition impacts how students will interact with content in 
the future. Flavell (1979) defined metacognition as “knowledge and 
cognition about cognitive phenomena” (p.906) and identified four 
such phenomena as: metacognitive knowledge, metacognitive 
experiences, tasks, and task-associated actions. Researchers (e.g., 
Credé and Kuncel, 2008; Ohtani and Hisasaka, 2018; Pintrich and De 
Groot, 1990; Schneider and Artelt, 2010; Schunk and Zimmerman, 
2012) recognized that metacognitive activities contribute to 
productive learning, and researchers have generally focused on how 
metacognition can be taught in the classroom (Donker et al., 2014; 
Schneider and Artelt, 2010). Activities that have been used to develop 
metacognition include such tasks as learning strategy surveys to raise 
student awareness of their use of study strategies as well as post exam 
wrappers to help students identify ways they could prepare differently 
to avoid making similar mistakes on tests in the future (Soicher and 
Gurung, 2017; McGuire et al., 2015).

Cyclic problem-solving framework

While self-regulated learning (SRL) models provide a way to 
understand how learners prepare for, engage with, and reflect upon 
learning a skill through repeated practice, Carlson and Bloom (2005) 
framework captures metacognitive aspects of a an expert 
mathematician’s process during a distinct problem-solving task and 
provides a tool we can use to analyze how learners engage with tasks. 
Carlson and Bloom present problem-solving as a four-stage process 
(orienting, planning, executing, checking); their framework connects 
the cognitive and metacognitive demands of problem-solving. They 
unpack the mathematicians’ use of resources, application of heuristics, 
and behaviors related monitoring during the four stages of the 
problem-solving process.

Broadly speaking, the expert identifies a problem’s initial state and 
goal state and establishes a plan to execute to move from the initial 
state to the goal state (Carlson and Bloom, 2005; Polya and Conway, 
1957). When mathematicians are presented with a problem to solve, 
there is typically a period of time where they orient themselves to the 
problem. Behaviors that arise during the orienting phase of the 
problem-solving process include making sense of the problem, 
organizing given information, and constructing images related to the 

problem (Carlson and Bloom, 2005). Identifying what the problem is 
asking, similar to setting a goal in the SRL forethought phase, is part 
of the orienting process. Once they are oriented to a problem, the 
expert then moves onto planning, where they outline steps for solving 
the problem. This may involve identifying formulas, tools, or other 
resources needed to achieve the identified goal. Planning requires 
establishing a course of action to be carried out during the executing 
phase. Lastly, checking, involves assessing the accuracy of the work 
and returning to a previous phase as needed until the identified goal 
is reached. As Carlson and Bloom (p. 63) note: “When the checking 
phase resulted in a rejection of the solution, the solver returned to the 
planning phase and repeated the [planning-executing-checking] cycle.”

Other problem-solving frameworks do exist. For example, Polya 
and Conway (1957) presents a problem-solving framework that is not 
specific to expert problem-solvers with similar phases (Understand the 
problem, Devise a plan, Carry out the plan, Look back). Further, 
Mairing (2017) as well as Gallagher and Infante (2022) applied Polya’s 
model to novice problem-solvers. However, this model, like others 
(Garofalo and Lester, 1985; Schoenfeld, 1985), is static rather than 
cyclic like that of Carlson and Bloom’s framework. Although Garofalo 
and Lester (1985) applied metacognition and Polya and Conway 
(1957) problem-solving framework to algebra problems, their model 
is not cyclic. In addition, while College Algebra problems may not 
be perceived by many as “novel” (Carlson and Bloom, 2005, p. 69), 
we have found in our work that College Algebra students often engage 
with exam problems as if they were novel. For example, some students 
who had been regularly practicing factoring quadratic expressions of 
the form 2ax bx c+ +  where a, b, and c are nonzero integers, perceived 

2 8x x+  to be different and thus required a different approach. Thus, 
problems that may be perceived as routine to experts, these problems 
are challenging to students.

Methods

In this section we first describe the larger study context and course 
activities that led to the current project. This paper builds upon 
previous work that began examining students’ classifications of 
mistakes as being simple or not simple (Ryals et al., 2020). We began 
with thematic analysis (Clarke and Braun, 2017) on students’ first 
exam problem responses. The themes that emerged were reflective of 
behaviors that aligned with those present in Carlson and Blooms’s 
problem-solving framework. We  adapted Carlson and Bloom’s 
problem-solving framework to analyze students’ perceptions of 
mistakes as simple or not simple. Note that researchers tended to use 
the term “errors,” while students tended to use the term “mistakes.” 
We use the two terms interchangeably.

After taking an exam and identifying the reasons for their errors 
on that exam, students participated in interviews where they were 
asked to classify their mistakes as simple or not simple. The reason for 
asking this question of students was due to students on their exam 
reflections making comments such as, “I thought I did well but I made 
simple mistakes to get this grade,” “I made simple careless mistakes,” 
and “I believed I would do better but I had small mistakes” (all when 
reflecting upon the first exam). This led us to inquire not only about 
students’ reasons for errors but also if they identified those errors as 
being simple or not simple. We see our work as a bridge between self-
regulation and problem-solving literature.
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After describing the data collection for the current project, we detail 
our coding scheme using Carlson and Bloom’s (2005) cyclic problem-
solving framework. We  will also provide examples of our coding 
scheme which present as phases of the problem-solving framework.

Context and data sources

This study takes place in a College Algebra course at a large (over 
30,000 enrolled students), Southwestern, public, Hispanic-Serving 
Institution. College Algebra can be a first mathematics course for STEM 
majors at this institution, unless they place into a higher course, such as 
Precalculus or Calculus I. Broadly, major course topics include linear 
equations and inequalities, quadratic equations, linear and quadratic 
functions, rational expressions, and applications of these topics. At the 
time of this study, the course met 3 days each week in sections of size 
60–70 students. College Algebra has a support course, College Algebra 
Support (CAS), for a subset of College Algebra students who are 
identified through multiple measures (e.g., high school grades, college 
entrance exams) by the university as having weaker prerequisite 
backgrounds. This support course (at some institutions referred to as a 
co-requisite course) meets in smaller sections of size 30 and provides 
additional practice on College Algebra content. In addition, CAS 
instructors focus on helping students develop effective study strategies. 
During the fall 2019 semester, approximately 420 students were enrolled 
in one of seven sections of College Algebra. Thirty-one students were 
enrolled in one of two sections of CAS. Both CAS sections were taught 
by the same instructor, who also taught one of the seven lecture sections 

of College Algebra. This instructor was experienced in teaching both 
College Algebra and CAS. All students in CAS were invited to participate 
in this IRB-approved study. The data obtained in this study is from those 
students who consented to participate. Data sources from CAS students 
included work from their first College Algebra exam, responses on a 
post-exam analysis worksheet, and interviews. The student work printed 
here was rewritten to avoid identification by handwriting.

Metacognitive coursework

As previously stated, the CAS course served multiple purposes, 
including just-in-time content support, discussion of study strategies, 
and metacognitive development activities. A metacognitive activity 
motivated this study and led to student interviews. Specifically, 
following each exam, students filled out an exam analysis worksheet 
(Figure 1) where they classified the errors on their exams. Exams were 
scheduled for two-hour blocks and consisted of open response and 
multiple-choice questions. Exam 1 had 13 open response questions 
and 8 multiple choice questions. A student’s solution to an exam 
problem could have multiple errors; different errors, even if from the 
same problem, were listed individually.

Interviews

Following completion of the exam analysis worksheet, students 
were invited to participate in a voluntary interview. Students were 

FIGURE 1

Exam analysis worksheet.
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incentivized to participate in the interviews with a one-on-one exam 
review session with the interviewer following the interview. Eight CAS 
students volunteered. Interviews, which lasted approximately 30 min, 
consisted of students being asked to discuss their exam errors, 
referencing their exam analysis worksheet during the interview as 
needed. In particular, students identified the type of mistake they 
made, classified it as simple or not simple for each error, and then 
explained why they made that classification. Then, at the end of the 
interview, students summarized their definitions of simple and not 
simple mistakes. Students were not provided with definitions of simple 
and not simple; this was something they decided on their own, as 
we were trying to understand their perceptions of mistakes being 
simple or not simple.

While exam review was intended to occur after each interview, the 
interviewer ended up reviewing problems with students as they 
discussed their errors and how to correct them. This process grew 
organically as students were trying to understand their mistakes, why 
they made them, and how they could be corrected. Students were then 
able to classify their mistakes as simple or not simple, once they had a 
better understanding of their mistakes.

Classifying errors

In our analysis, we first classified mistakes as simple or not simple 
for both students and researchers. Students’ classifications were made 
during interviews. Separately and prior to interviews, researchers 
looked at student work and classified each of the errors made by 
students as simple or not simple. While students used their own 
reasoning to classify their mistakes, the research team identified a 
simple mistake as one that “could be made accidentally, would likely 
not be repeated, or violated a mathematical convention rather than a 
rule (i.e., not reducing coefficients),” whereas a not simple mistake 
emerges from a “lack of conceptual understanding” (Ryals et al., 2020). 
Table 1 provides three examples of student work with researcher’s 
classifications as simple or not simple. Following the interviews, the 
research team then determined the problem-solving phase in which 
student errors occurred based on two pieces of data: student work and 
student interviews.

Problem-solving framework
Since some of the data was collected in the form of student 

interviews after an exam (i.e., post-task), much of the responses were 
reflective in nature and provided insight about students’ problem-
solving process. Carlson and Bloom (2005) cyclic problem-solving 
framework focuses on the problem-solving behaviors of expert 
problem-solvers when they were presented with “problems” they did 
not know how to solve by familiar or routine procedures. As described 
by Wickelgren (2012), an algebra student’s first step of the solution is 
a complete understanding of the given information; this occurs in 
Carlson and Bloom (2005) orienting phase. A student then identifies 
an operation or plan to solve the problem. Once a strategy for solving 
is identified, a student would need to execute that plan. Lastly, though 
not a common practice for students in this particular study, students 
might have a strategy for checking their solution.

The problems given to the College Algebra students on their exam 
were not “novel” like those Carlson and Bloom (2005, p. 69) presented 
to their expert problem solvers. However, we can still characterize 

their approach to problems with consideration for a problem’s initial 
state and goal state (Wickelgren, 2012). Further, to achieve an outcome 
or solution, these students still do engage in problem solving phases 
that align with Carlson and Bloom’s model. The cyclical nature of the 
model also fits for a variety of learners and has been applied to novice 
problem solvers (Gallagher and Infante, 2022; Mairing, 2017; Garofalo 
and Lester, 1985). While we recognize that Polya and Conway (1957) 
problem-solving phases are not restricted to experts, we were seeking 
out a framework that was cyclic in nature, as that better aligns with the 
self-regulation models (Zimmerman, 2002; Pintrich, 2000; Schunk 
and Zimmerman, 2012) that guided our initial work.

Problem-solving phases
Carlson and Bloom (2005) characterizations of problem-solving 

phases allowed us to identify in which phases particular errors 
occurred. We determined that setting a goal for a specific problem 
turned out to be a key component of a student successfully completing 
the orienting phase. To clearly identify whether the student error took 
place during the orienting, planning, executing, or checking phases, 
the initial state and goal state of the particular problem type was first 
determined by the researchers.

Orienting mistakes were related to the initial state, goal state, 
and problem type. In order to not be an orienting mistake, students 
must have accurately determined all three: initial state, goal state, 
and problem type. If a student was unsure of what a problem was 
asking, we  classified such a mistake as an orienting mistake. 
Mistakes classified as occurring in the planning phase were made 
when a student understood what a problem was asking but did not 
successfully identify a viable approach to solving the problem. 
When students demonstrated a correct overall approach to solving 
the problem, we then moved on to examine their execution of their 
plan. Executing errors occurred when a student recognized the 
correct formula or process required but implemented it incorrectly, 
such as recognizing difference of squares and knowing the formula 
to factor difference of squares but carrying out the formula 
incorrectly. Errors that did not fall in the orienting or planning 
phase were either executing or checking errors, and the distinction 
between these two phases was made by the student discussing (or 
not) answer validation or examining their execution steps. If a 
student explicitly referred to checking their work in some way 
without being prompted by the interviewer, then an error would 
be classified as occurring in the checking phase rather than the 
executing phase.

Final coding structure with examples
The final coding framework utilized for this study is provided in 

Table  2. As we  have already stated, student explanations were 
examined in parallel with student work. Student work alone was not 
sufficient for identifying the problem-solving phase in which an error 
occurred, and we discuss several examples that illustrate this point.

Orienting versus planning
A factoring question on the exam provides us with examples 

(Figures 2, 3) contrasting orienting and planning. Students were 
asked to completely factor a difference of squares. In this exam 
problem, researchers identified the initial state as a difference of 
squares. The goal state was a correctly factored product of two 
binomials. While using a memorized formula for factoring a 
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difference of squares was not required, the overall plan required was 
to apply an appropriate factoring method. Thus correct orientation 
required recognizing that the problem was a difference of squares 
factoring problem. For example, both C (Figure 2) and AY (Figure 3) 
made mistakes on problem 10 and their work did not appear to 
be much different from each other. However, upon examining their 
reasons for their respective mistakes provided in interviews, it could 
be determined that Student AY’s error occurred during orienting, 
while C’s error occurred during planning. Student C explained that 
they needed to spend more time on the problem to recognize which 
factoring method was appropriate for the problem, but at the time of 
the exam they said that they did not realize they could have gone 

further noting “I guess I did not completely answer the question… 
if I knew that I had-I had more ahead, then I probably would have 
done it.” Further Student C was confident that they could do such a 
problem in the future. In contrast, Student AY explained that they 
did not “know factoring at all” and “did not even know what 
[difference of squares] was.” These are examples of why looking only 
at the student work was not sufficient for identifying problem-
solving phases in which errors occurred. Student explanations and 
discussion provided details that could not be captured with student 
work alone and allowed us to better understand nuances in student 
mistakes and in what stage of the problem-solving process these 
errors occurred.

TABLE 1 Example classifications of simple and not simple mistakes.

Student Work Simple/Not simple classification

Researchers: Not simple

Student AY: Not simple

What happened:

Student AY mixed up rules of exponents with getting a 

common denominator. They moved the “-5” and “-7” to their 

respective numerators and made them “+5” and “+7.” This 

then resulted in each term having the same denominator. This 

indicates a lack of understanding of the structure of the terms 

and how rules of exponents are applied.

Researchers: Not simple

Student J: Simple

What happened:

Student J did not know how to approach the problem. They 

struggled to work with the negative exponents and forgot 

some of the rules with exponents. This indicates a mistake that 

is deeper than a copy or convention. This indicates an error 

that is more conceptual in nature.

Researchers: Simple

Student MF: Simple

What happened:

Student MF did not completely reduce the constant 

coefficients.
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Planning versus executing
Students were given a true/false statement with instructions to 

simplify the left side of the equation to justify their answer. Researchers 
identified the problem type as simplification using exponent rules, the 
initial state as a fraction involving the product of multiple variables 
raised to different powers, and the goal state as a simplified fraction 
with the overall plan being to expand the numerator, expand the 
denominator, and then cancel. Again we compare Student C (Figure 4) 
and Student AY (Figure  5). Both students made errors in using 
exponent rules, though their mistakes were coded differently. Student 
C had two errors. The first was a copy error (forgot to write an 
additional 3z term on their second line of their work) which student 
C and the authors classified as simple. C’s second mistake is forgetting 
that ( )04x  is equal to 1 (Figure 4), stating “Umm I just said I made a 
copy error and then I made a mistake in my algebra because I did not 
remember that ( )04  is 1.” We coded this second error as an executing 
error, as Student C had a plan that, if executed correctly, would get 
them to the desired result. Student AY, on the other hand, was unsure 
of how to use exponent rules. In fact, Student AY viewed the rules as 
something to be memorized and did not fully understand what was 
happening conceptually. They explained their own mistake, shown in 
Figure 5, quite differently.

I know there’s some instances where you are supposed to add 
them but I  just-I do not remember which instances that 
you actually like bringing the power like 3 to 9 instead of adding 
to 5. I feel like simple because it’s memorizing rules of exponents.

Student AY did not know the correct rule of exponents to apply 
nor how they worked mathematically. Because of this Student AY 
could not formulate a correct plan. They did not have a plan for how 
to distribute or how to reduce terms, thus their mistake was coded as 
a planning error. This distinction could only be made when examining 
student work with their reasoning.

Executing versus checking
Checking did not come up often, and was only applied if a student 

discussed that they had indeed checked their work. For example, when 
asked to completely factor 8x2y-2xy + 12xy-3y, both Student J and 
Student MF had a final answer of (2xy + 3y)(4x-1). Student MF did 
not recognize that they could keep factoring, while Student J stated 
that they checked their work and thought that this final answer would 
be acceptable. Thus, Student MF’s error was coded as executing, while 
Student J’s error was coded as occurring during the checking phase. 
The checking code applied only when the students brought up 

checking based on how they described their errors in the interviews. 
Students either expressed not checking their work or not catching the 
mistake while checking.

It should be noted that student work on a problem could contain 
multiple errors. If the initial errors began in the orienting or planning 
phase, then subsequent errors were not classified in additional phases, 
as there were fundamental knowledge issues that prevented a student 
from progressing successfully out of that phase. For example, if a 
student did not know that a problem required factoring (such as in 
Figure 4), and were thus not successfully oriented to the problem, 
we did not then classify additional mistakes as occurring in planning 
or executing phases. However, if a student successfully oriented to and 
planned for a problem, then it was not unusual for there to be more 
than one executing mistake in that problem.

Results

Simple and not simple mistakes across all 
phases and all students

Some patterns emerged between students’ classification of simple/
not simple and problem-solving phase (research question 1). Figure 6 
shows the classification of mistakes by students and illustrates the 
phase in which those mistakes occurred. Students generally classified 
orienting mistakes as not simple, making comments such as “I kind of 
just like did not know what was going on” and “Um I really I did not 
know it.” In contrast, checking mistakes were classified as simple. 
Researchers’ classifications (Figure 7) of simple/not simple were in 
greatest alignment with students in these two phases of problem-
solving (research question 2).

Students did not consistently classify planning errors as simple or 
not simple, and their classifications did not necessarily align with the 
researchers’ classifications of those mistakes. As with orienting, 
researchers generally saw errors made in the planning phases as being 
predominantly not simple, as errors made in either of these phases are 
typically tied to lack of conceptual understanding. However, students 
who classified their planning mistakes as being simple often attributed 
them to memorization issues or stated something to the effect of “Now 
that I’ve seen it, I know how to do it.” When students were unsure of 
what strategy to use, they classified their mistakes as not simple.

The mistakes that occurred during the executing phase, 
however, were more nuanced in that they involved both simple and 
not simple mistakes. A student could make a copy error (simple) 
during execution, or they could make a conceptual error (not 

TABLE 2 Final version of coding framework.

Orienting → Planning → Executing → Checking

Successful

The student understands the initial state, goal 

state, and problem type.

Once a student is successful oriented, 

they identify a viable approach to 

solving the problem.

The student has the correct approach to 

solving the problem and implements the 

plan with no mistakes.

[Unable to document if the answer 

was correct.]

Unsuccessful

The student is unable to identify one or more 

of the initial state, goal state, and problem type.

The student is unable to identify a 

viable solution to solving the problem.

The student is unable to completely carry 

out the process for solving the problem.

The student attributes mistakes from 

another phase not being caught.

Adapted from Carlson and Bloom (2005).
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simple) during the execution phase if that error concerned 
concepts outside the scope of orienting or planning for that 
problem. For example, Figure  4 shows that Student C had two 
executing errors: (1) the student evaluated ( )04x  as 4x rather than 
1; and (2) the student had a typo where they forgot to write a 
fourth 3z term in the denominator of the second step of their work 
(but they had it in the previous step). It should be noted that the 

data presented in Figures  6, 7 are total mistakes in a 
particular phase.

For executing mistakes that researchers perceived to be  not 
simple, but students considered to be simple, a common refrain from 
students to justify this classification was “now that I have seen the 
problem worked, I can do it.” Some students attributed their simple 
execution mistakes to memorization issues. However, in both cases, 

FIGURE 2

Student C’s work on problem 10 (planning phase error).

FIGURE 3

Student AY’s work on problem 10 (orienting phase error).

FIGURE 4

Student C’s work on problem 3 (executing phase error).
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researchers identified these mistakes as not simple as they often 
involved a depth of understanding that seemed to be missing for the 
student (e.g., Student C’s first executing error in Figure 4).

Table 3 includes each students’ course grade as well as frequencies 
of each student’s classification of mistakes on exam 1. For example, the 
row that corresponds to Student MF shows that Student MF had 9 
mistakes that occurred in the executing phase. Student MF identified 
7 of these mistakes as being simple and 2 being not simple. It can 

be seen from Table 3 that Students MM, C, and AY have the most 
mistakes and thus their data comprises most of the data shown in 
Figures 6, 7.

We next briefly describe three specific students: one with a high 
final grade (A), one with a low final grade (D), and finally one with a 
B. Each of these students’ perceptions regarding what made a simple 
mistake were very different. Among the eight students we interviewed, 
these three capture the different behaviors and characteristics 

FIGURE 5

Student AY’s work on problem 3 (planning phase error).

FIGURE 6

Classification of errors by students.
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we  found through our analysis of the 8 students. Specifically, 
we discuss Student R, Student C, and Student RG.

The case of Student R
Student R’s classification of simple and not simple mistakes 

aligned well with the researchers. Student R earned a final grade of A 
in the course. Student R had only five mistakes on exam 1. Both 
student R and the researchers were in agreement, identifying four of 
these mistakes as simple and one as not simple. The simple mistakes 
occurred in the executing and checking phases, and the not simple 
mistake was in the orienting phase. This parallels Figure 7, where 
researchers identified simple mistakes as occurring more often in 
executing and checking phases and not simple mistakes occurring 
more often in orienting and planning stages. Student R seemed to 
be more metacognitive than other students and took ownership of 
their mistakes. They studied regularly and noted when they had to 
spend more time “to think about it [the problem]” and were persistent 
in working problems, “for like 30 min” until they were satisfied with 
their work. In addition, they described their problem-solving process 
as being cyclic:

I just have to like really like think about the problems a lot, and a 
lot of times I don’t know how to do the problem when I first see 
it, it’s not always like oh I know exactly how to do that! It’s like a 
ok, look at it, three or four times you know, then I like, I do it a 
few times, then I leave the problem, then I come back to it, like 
I hope that other problems like make me remember how to do it.

Student R recognizes that they will not always know how to solve 
a problem, but notes that they read and attempt problems multiple 
times in order to identify an appropriate strategy. In some cases, they 
may have to move on to other problems to try to identify a connection 
between the problems they are trying to solve.

The case of Student C
In contrast, Student C’s definition of simple and not simple did 

not align well with researchers. The authors identified mistakes that 
were conceptual in nature or indicated a lack of understanding as not 
simple. Student C had a final grade of D in the course. Out of 15 errors 
on exam 1, Student C identified 8 of these errors as simple; whereas, 
researchers identified only 1 as simple. In other words, researchers 
identified 14 of Student C’s 15 mistakes as being not simple. Student 
C and the researchers did agree that the 2 orienting errors were not 
simple. However, researchers classified Student C’s 8 planning errors 
as not simple, which differed from Student C’s view that 5 of these 
planning errors were simple. Student C thought all 5 of the errors in 
executing were simple, but researchers thought only 1 of those 5 errors 
were simple. Student C had no errors in checking. Student C attributed 
not simple mistakes to not engaging with a problem type enough, 
making statements such as “if I would practiced more” and “I guess 
I  did not put in the effort to like practice it on my own” and “if 
I practiced, I’d probably would not forget, like, the basics.”

The case of Student RG
Student RG had a final grade of B, and they classified all of their 

mistakes as simple. While Student RG had mistakes in every phase, 
most of their errors were in executing. Researchers classified all of 
RG’s orienting errors and three out of five execution errors as not 
simple. Student RG was quite confident and believed that their 
mistakes were preventable with little time or effort as long as someone 
showed them in advance how to work relevant problems. A common 
refrain from Student RG was essentially “now that I see it I’ll be able 
to correct it” and “We went over it. You told me. Not really the kind of 
mistake that I  would make twice.” However, Student RG had 
previously been shown exam-type problems during class. Further, 
they had repeated mistakes on their exam, which indicated a lack of 
understanding to the research team. To researchers, it seemed as if 

FIGURE 7

Classification of errors by researchers.
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Student RG did not have an awareness of what they did know and did 
not know.

Simple versus not simple: (dis) agreement 
between researchers’ and students’ 
perspectives

Within each phase of the problem-solving process, students were 
asked to classify their errors as being simple or not simple. How 
students characterized their errors did not always align with how 
researchers would have classified students’ errors. The researchers 
recognized that some errors were deeper than just a copy error and 
could likely occur again. However, students did not often recognize 
this. In the next sections we answer the second research question by 
describing the agreement (or lack thereof) between us, the researchers, 
and students within each phase of the problem-solving process.

Orienting

Orienting is the first phase in the problem-solving process, and if 
a student gets stuck at this stage, they may not have much to write 
down or end up making a guess at how to approach the problem. 
Students recognized when they had orienting issues and often 

characterized these mistakes as being not simple. Thus, there was 73% 
agreement among students and researchers about errors that occurred 
in this phase. Orienting requires accurate interpretation of the 
problem in order to know what strategies are needed to solve it. If 
proper orienting fails, a student usually does not get very far in solving 
the problem or may leave the problem blank.

Statements such as “I kind of just like did not know what was 
going on” and “Um I really I did not know it” were made by students 
who identified orienting errors as not being simple. Student RG, as 
previously discussed, was an exception as they characterized all their 
mistakes, including those in the orienting phase, as simple. Most often, 
though, for errors in the orienting phase, students noted that they did 
not know what to write down or did not have much to write down.

Planning

Like with errors in the orienting phase, we  identified all 
planning mistakes as being not simple. In contrast, the students 
were split between simple and not simple. There was only 42% 
agreement between students and researchers classification of simple 
and not simple in the planning phase. Students who identified 
planning mistakes as being simple, attributed this distinction to 
either a memorization issue or stated that now that they have seen 
how to do the problem, they could do it in the future on their own. 

TABLE 3 Course grades and students’ classification of exam 1 mistakes for each problem-solving phase.

Student (course 
grade)

Orienting Planning Executing Checking

Student R (A)

Simple

Not simple

0

1

0

0

3

0

1

0

Student RG (B)

Simple

Not simple

2

0

0

0

5

0

1

0

Student MF (B)

Simple

Not simple

0

0

0

0

7

2

1

0

Student J (B-)

Simple

Not simple

0

2

4

0

2

1

1

0

Student TY (B-)

Simple

Not simple

0

1

0

1

7

3

0

0

Student MM (D)

Simple

Not simple

0

4

1

2

5

3

0

0

Student C (D)

Simple

Not simple

0

2

5

3

5

0

0

0

Student AY (F)

Simple

Not simple

1

2

4

4

4

0

0

0
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Some students even said their mistakes were simple even though 
they did not know what specific strategy was required to solve a 
problem. For example, Student J stated that one of their planning 
mistakes was simple because “if I  would have remembered the 
equation and then remembered the step, it would have been simple.” 
However, we identified these mistakes as not being simple as the 
students were missing fundamental ideas or strategies for 
approaching the problems.

In Figure 8 Student C’s work on problem 5 can be seen. This error 
occurred in the planning phase. While the error looks initially like an 
execution error, we classified it as a planning error. The goal of this 
problem is to expand the product of three binomials. This requires a 
student recognizing that goal and, in order to achieve that goal, to 
multiply exactly two of the binomials and then multiply the third with 
the result. In this case, Student C began multiplying everything at 
once, which is a planning error. Student C identified this mistake as 
being simple because they could have done it but “overthought” what 
was needed for the problem, making it “more complicated” for 
themselves. In contrast, Student C identified the planning error on 

problem 4 (Figure 9) as being not simple because they did not know 
what strategy to use, explaining:

Yeah. I started that step and I was like, “Nahh, that can’t be the 
answer”, so I crossed it out or tried. So I honestly-I didn’t know 
what I was doing. Ummm, I guess I did not completely answer the 
question like I had two different methods and I didn’t know which 
one to follow through.

Executing

Errors that were identified as occurring during executing were 
often seen as simple mistakes by students, but not necessarily so by 
researchers. Students and researchers agreed on simple/not simple for 
55% of the errors in the executing phase. For example, Student C 
made an executing error on exam problem 3 (Figure 4) and classified 
the mistake as simple. Student C actually had two errors in this 
problem: (1) a copy error from their first to second line of work, and 

FIGURE 8

C’s work on problem 5 (planning phase).

FIGURE 9

C’s work on problem 4 (planning phase).
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(2) not evaluating ( )04x  as 1. While there was agreement among 
researchers and Student C regarding the copy error (classifying it as 
simple), there was not agreement with regard to the second error. 
Student C identified this mistake as being simple. In contrast, 
we  identified this error as being not simple because of the 
misunderstandings regarding exponent rules and power of 0, which 
were concepts covered by the College Algebra course content. Student 
C identified this error as simple because they attributed it to a 
memorization issue.

Like Student C, Student RG also made an executing error on a 
similar problem (Figure 10) and classified the error as simple. RG’s 
final answer was not simplified completely, according to mathematical 
convention, but exponent rules were correctly applied; therefore, the 
researchers also classified the error as simple since the student had 
demonstrated the ability to simplify in previous problems and was not 
likely to repeat the error.

Most (81%) of the executing errors were identified by students as 
being simple. Whereas we classified about 40% of the errors as simple 
and 60% as not simple. On problems where students and researchers 
disagreed (i.e., students classified a mistake as simple, and researchers 
said not simple), most students attributed their errors to one or more 
of the following reasons

 • Should have studied the problem/topic more.
 • Have seen, have done, or knew the problem/topic before 

the exam.
 • Had the right idea/approach to the problem.
 • Made the problem harder; there was a simpler way.
 • Rushed through the problem.
 • Memorization issue.

In contrast, researchers viewed students’ mistakes as being not 
simple and resulting from significant misunderstandings or lack of 
understanding of concepts being assessed on the problems. For 
example, a student saying that they can work a problem now that they 
have been shown how to be not viewed as a simple mistake. Instructors 
worked problems similar to those on the exam during class prior to 
the exam, so students were shown how to work such problems and 
could still not successfully complete them on the exam. Thus, students 
were unable to demonstrate understanding. However, it is important 
to note that students do not recognize this subtlety. Student RG, for 
example, when discussing how to simplify a rational expression 
(Figure 11) stated “I feel like if I was to do a problem again, now 
I learned. We went over it. You told me. Not really the kind of mistake 

that I would make twice.” However, instructors did work multiple 
examples of these types of problems in class the day before the exam. 
For example, it can be seen from Student RG’s work that there are 
fundamental issues with how to grapple with subtraction of rational 
expressions and how to handle denominators for final answers.

Checking

Across the four phases, checking was the only phase for which both 
students and researchers completely agreed. Errors that students 
identified as occurring during the checking phase were agreed to 
be  simple mistakes. There were not many of these errors, as these 
students often did not bring up checking as an issue. There is the 
question of whether or not a student did check their work, and certainly 
researchers do agree that this is good practice. However, mistakes that 
occurred during checking were only considered if the student brought 
it up. Thus, issues around what is meant by checking and whether or 
not checking occurred is not within the scope of this paper.

Discussion

Agreement between students and researchers varied across the 
four problems solving phases. Researchers consistently coded 
orienting and planning mistakes as not simple. Students tended to 
agree with researchers on the classification orienting mistakes being 
not simple, but were more mixed with regard to planning mistakes. 
Students with letter grades of Ds and Fs, namely Students MM, C, and 
AY, tended to have more mistakes in orienting and planning phases of 
the problem-solving process. In addition, these lower performing 
students classified several of these mistakes as being simple. It is 
possible that these students have less awareness about their conceptual 
understanding of the content and may lack the metacognitive skills to 
recognize that conceptual mistakes are not simple. In contrast, the 
higher performing students (Students those with grades above a C) 
tended to have more of their mistakes in later problem-solving phases 
(executing and checking). This is not surprising and is reaffirmed by 
the problem-solving literature (Ovadiya, 2023; Granberg, 2016), as 
these students likely have stronger content knowledge and thus can 
make it further through the problem-solving process.

If students are struggling to know what a problem is asking or 
what method is required to solve a problem, then they may not be able 
to write down much and therefore are not well-positioned to receive 

FIGURE 10

Student RG’s work on problem 4 (executing phase).
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many points on these exam questions. As a result, these students are 
likely unable to earn the needed points to pass the class and lack the 
conceptual understanding needed to successfully progress to the next 
course. In contrast, students R, RG, and MG, all of whom received an 
A or B in the class, had errors primarily in the executing and checking 
phases. Generally, these students seemed to know what was needed to 
solve a problem, and what problems were asking them to do, but they 
may have struggled with carrying out the plan. Students who lack the 
metacognitive skills to successfully orient themselves to a problem, 
struggle with the planning phase.

We wonder if students whose definitions of simple mistakes that 
are more aligned with the researchers’ perspectives might be more 
likely to get a higher grade. Classifications of simple and not simple by 
students R, MF and TY were closely aligned with researchers’ 
classifications; student R received an A, student MF earned a B, and 
student TY received a B-. It is possible these students have a higher 
performance because they have more awareness about their errors - 
where they occur and how to address them. In contrast, student C did 
not align well with the researchers and performed poorly. This 
observation again suggests that metacognitive awareness influences test 
performance (Toraman et  al., 2020; Ajisuksmo and Saputri, 2017; 
Vadhan and Stander, 1994). Thus, as research suggests, homework 
support should include training in accurately identifying mistakes and 
planning how to prevent making those same mistakes in the future 
(Soicher and Gurung, 2017; McGuire et al., 2015). We see this as a 
future line of inquiry. It could be that there are belief differences in what 
types of understanding or knowledge is important for this course or 
type of assessment, and thus students may see certain errors as simple 
when researchers see them as not simple (Dawkins and Weber, 2017).

These results suggest that it might be beneficial for homework 
support to focus on helping students carry out the orienting and 
planning phases (Lerch, 2004). This could influence the design of 
support courses. It could also impact the approach instructors take 
during office hours and the questions tutors ask at math learning 
centers. Identifying the goal of the math problem in the orienting 
phase, and then choosing an appropriate strategy to solve the problem 
in the planning phase.

Limitations and future work

The study is limited to students who were underprepared for the 
College Algebra course, and from that population the sample is small: 
8 students with a total of 90 mistakes on the first exam. The majority 

of mistakes were made by students who performed the most poorly, 
which may have skewed the results (i.e., causing us to focus on the 
data in a particular way). It seems that students who made the most 
mistakes differed most from the researchers while students who made 
fewer mistakes classified mistakes more closely to the researchers.

Since our ultimate goal is to find ways for students to improve their 
study methods, coding with the problem-solving framework from the 
student perspective allows for us to better understand the student 
perspective regarding their work. As we consider ways to help students 
study more effectively, we need to continue to research ways that students’ 
views of mistakes may impact their study habits and performance in 
class. We wonder how students’ understandings of mistakes will help 
them develop metacognitive knowledge to learn from mistakes and then 
make changes to improve learning habits. We also wonder if the students 
whose perspectives are more aligned with the researchers’ view of simple 
mistakes may have stronger self-regulating behaviors.

We wonder about the possible impacts of students developing 
metacognitive strategies. As students develop metacognitive 
awareness of their mistakes, it may be that they will develop a more 
“cyclic” approach to problem-solving (like with Student R). Students 
who had multiple strategies, yet chose the wrong one, identified their 
mistake as simple. Perhaps the development of metacognitive 
strategies might help students return to a previous problem-solving 
phase if they are stuck, and if they might then identify mistakes of 
choosing the wrong strategy as not simple. In addition, the 
development of such skills and practices may lead to students 
checking their work more consistently. While there were few checking 
errors, this study did not gather data on how often students used 
checking when they answered a problem correctly. For those students 
who had mistakes, we saw that checking was not part of students’ 
regular problem-solving processes even when a check for the algebra 
problems seems fairly straightforward. For example, to check a 
factoring problem, students could multiply their answer. Future 
research could address how students’ use of the checking phase may 
be related to self-regulating behaviors as well as how students may 
develop a cyclic approach to their problem-solving practices.

It is likely that there are other factors, beyond metacognition, that 
influence students’ distinctions between simple and not simple. For 
example, Student RG’s labeling of most of their mistakes as simple may 
be a result of overconfidence. Similarly, students who identified most 
of their mistakes as not simple may feel a lack of confidence in their 
math ability. In a related study, it is suggested that self-efficacy and 
perseverance are related to students’ distinction of mistakes as simple 
or not simple (Ryals et al., 2022).

FIGURE 11

Student RG’s work on problem 12.
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While this study focused on how students’ classification of simple 
and not simple related to the problem solving phase in which the error 
occurred, a fundamental difference of interpretation between the 
researchers’ simple and students’ simple is seen in researcher’s simple 
mistake being an oversight and the student understands and the 
students’ simple being that “it is an easy thing to do, I just did not do 
it.” as J described in a planning mistake. This difference could 
be further explored in a future study.

Conclusion

In closing, it is important to remind the reader of why we should 
care about students’ perceptions of their errors. The most important 
implication for us was realizing that students’ perceptions of their 
errors were often not at all aligned with our perceptions of their errors. 
This realization is important to us because it allows us to better 
understand how students are identifying these mistakes and how their 
perceptions of their mistakes may differ from our perspectives. As a 
result, the help and support we offer to students may be misaligned 
with their needs. For example, we may make recommendations about 
test taking strategies that may not be suited for addressing their needs. 
Therefore, knowing students’ perceptions of their mistakes helps us 
better understand how we might support them as learners and better 
situate them for success in the future.
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