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Embracing LLM Feedback: the 
role of feedback providers and 
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Feedback is an integral part of learning in higher education and is increasingly 
being provided to students via modern technologies like Large Language Models 
(LLMs). But students’ perception of feedback from LLMs vs. feedback from educators 
remains unclear even though it is an important facet of feedback effectiveness. 
Further, feedback effectiveness can be negatively influenced by various factors; 
For example, (not) knowing certain characteristics about the feedback provider 
may bias a student’s reaction to the feedback process. To assess perceptions 
of LLM feedback and mitigate the negative effects of possible biases, this study 
investigated the potential of providing provider-information about feedback providers. 
In a 2×2 between-subjects design with the factors feedback provider (LLM vs. 
educator) and provider-information (yes vs. no), 169 German students evaluated 
feedback message and provider perceptions. Path analyses showed that the LLM 
was perceived as more trustworthy than an educator and that the provision of 
provider-information led to improved perceptions of the feedback. Furthermore, 
the effect of the provider and the feedback on perceived trustworthiness and 
fairness changed when provider-information was provided. Overall, our study 
highlights the importance of further research on feedback processes that include 
LLMs due to their influential nature and suggests practical recommendations for 
designing digital feedback processes.
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1 Introduction

Feedback is a central component of learning in (higher) education (Hattie and Timperley, 
2007; Wisniewski et al., 2020) and can influence different outcomes, such as a learner’s affective 
and motivational reactions as well as their performance (Henderson et al., 2019; Wisniewski 
et al., 2020). In this vein, feedback can promote the development of various skills, including 
written argumentation skills (Latifi et al., 2019; Fleckenstein et al., 2023). Argumentation skills 
become increasingly important in our society, as they allow for knowledge construction and 
perspective-taking and can guide learners when dealing with modern technologies (Federal 
Ministry of Education and Research, 2023; Redecker, 2017). In this context, (student) teachers 
have a unique role: They need to acquire argumentation skills themselves, and at the same time 
act as models and promote their students’ argumentation skills.
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While feedback that helps learners hone argumentative skills is 
critical in our technological society, interestingly, the rise of certain 
modern technologies is also affecting feedback environments. For 
example, artificially intelligent (AI) systems, more specifically large 
language models (LMMs), enormously impact feedback environments, 
as they can be implemented to provide immediate feedback to learners 
(Brown et al., 2020; Chiu et al., 2023) and thereby save educators time 
and resources (Cavalcanti et al., 2021; Kasneci et al., 2023; Wilson 
et al., 2021).

Yet, a feedback process is rather complex and does not only 
comprise the feedback message and the feedback provider: As 
summarized by Panadero and Lipnevich (2022), feedback 
encompasses characteristics of the message, implementation, student, 
context, and agents. All these aspects can influence the effectiveness 
of feedback, which is complex in itself. Henderson et  al. (2019) 
summarized three broad categories of feedback effectiveness: 
cognitive, affective, and relational. Thus, the feedback provider can 
potentially affect learners’ perceptions of the feedback and feedback 
provider and, in turn, affect learners’ performance. Because feedback 
processes are continuously developing and the complexity of 
feedback interactions partly explains why the effectiveness of 
feedback is highly variable (Panadero and Lipnevich, 2022; 
Wisniewski et al., 2020), the question arises as to whether differences 
exist in learners’ cognitive, affective, and/or relational reactions 
toward feedback provided by a human versus an AI-system, 
particularly an LLM.

Whether feedback is effective for a learner depends not only on 
the original feedback provider but also the providers’ individual 
characteristics, like expertise (Lechermeier and Fassnacht, 2018; 
Lucassen and Schraagen, 2011; Winstone et al., 2017). To prevent 
learners from having socially biased responses to feedback providers, 
anonymous feedback processes are often considered. However, such 
anonymity does not always prevent bias (e.g., Panadero and Alqassab, 
2019). Further, for educators or LLMs, providing feedback 
anonymously can be rather unrealistic, because learners know whose 
classes they take, and data protection laws require at least minimal 
information about algorithms and their implementation. Therefore, 
here we investigate the opposite of anonymity: We explored whether 
providing additional information about the feedback provider (‘s 
characteristics) can promote feedback effectiveness.

Specifically, in a 2×2 between-subjects design with the factors 
feedback provider (educator vs. LLM) and provider information (yes vs. 
no), we investigated how to minimize learners’ biases related to the 
feedback provider by shedding light on the questions alluded to above: 
How might learners’ perceptions of feedback providers and the 
feedback itself vary based on (1) whether the provider is an educator 
or an LLM, and (2) whether information about the provider 
is available?

2 Theoretical Background

2.1 Defining and contextualizing feedback

Feedback is indispensable in educational contexts and is seen as a 
promising strategy to improve various learning outcomes (Hattie and 
Timperley, 2007; Wisniewski et al., 2020). Particularly, written and 
elaborated feedback (in contrast to corrective feedback) plays a crucial 

role in promoting higher-order learning outcomes like argumentation 
skills (Van Der Kleij et al., 2011).

As generally defined, feedback includes information about several 
components from several sources that works best if learners actively 
engage with it (Lipnevich and Panadero, 2021, p. 25). Thus, feedback 
is not only about the feedback message itself. As summarized by 
Panadero and Lipnevich (2022), feedback constitutes characteristics 
of the message, implementation, student, context, and agents involved. 
All these elements are crucial for the feedback process and influence 
its effectiveness. Due to this complexity, the factors that negatively 
influence feedback effectiveness are hard to pin down, even though 
they exist (Kluger and DeNisi, 1996; Winstone et al., 2017; Wisniewski 
et al., 2020).

In this study, we  consider the feedback provider as possible 
(negative) factor influencing feedback effectiveness, particularly 
because modern technology has made it, so feedback is now not only 
provided by humans, e.g., educators, but by AI-systems (Chiu et al., 
2023). Furthermore, feedback processes are inherently social (Ajjawi 
and Boud, 2017), and learners’ social biases, e.g., those stemming from 
the feedback provider, seem to be worth closer investigation, as they 
have not been thoroughly researched so far (Panadero and 
Lipnevich, 2022).

2.2 AI-systems as new feedback providers

One of the most important factors influencing the effectiveness of 
feedback seems to be  the feedback provider (Ilgen et  al., 1979; 
Panadero and Lipnevich, 2022; Winstone et  al., 2017), which has 
hardly been researched (Lechermeier and Fassnacht, 2018; Panadero 
and Lipnevich, 2022). Traditionally, educators have been learners’ sole 
feedback providers, but next to practical reasons such as the lack of 
resources to provide adequate feedback to learners, educators’ 
hierarchy above learners, specifically related to their authority, 
expertise, and experience, can hinder the effectiveness of feedback. 
The hierarchy can, for example, prevent learners from asking for 
clarifications (Carless, 2006; Winstone et al., 2017), and educators’ 
feedback is seldom questioned (Lechermeier and Fassnacht, 2018), 
perhaps due to their expert status (Metzger et al., 2016). Overall, the 
interaction between the educator as the feedback provider and the 
learner as the feedback recipient seems to play a crucial role in 
feedback processes.

While educators are the traditional feedback sources for learners, 
(generative) AI-systems, e.g., LLMs, that offer feedback are emerging 
(Bozkurt, 2023; Chiu et  al., 2023). Such modern technologies are 
increasingly implemented, for example, in educational administration, 
as chatbots, or even in assessment (Chiu et al., 2023). AI-systems 
rapidly developed (Zawacki-Richter et al., 2019), and now, thanks to 
technological developments in natural language processing, LLMs can 
give feedback on (short) textual answers [e.g., ArgueTutor 
(Wambsganss et al., 2021], AcaWriter [Knight et al., 2020), or even 
ChatGPT (OpenAI, 2023)]. Automated feedback itself is not new, but 
thus far was pre-programmed and less dialogic (e.g., Azevedo and 
Bernard, 1995). Compared with that, LLMs are AI-systems that have 
been trained on huge amounts of data and are capable of analyzing 
existing patterns in language and imitate as well as understand human 
language (Brown et al., 2020; Kasneci et al., 2023). Users can thus 
easily interact with LLMs by using their own natural language 
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(Kasneci et al., 2023). This interaction highly resembles a human-
human – or educator-student – interaction. In this vein, building on 
Reeves and Nass (1996), even though LLMs are clearly non-human, 
people tend to ascribe them human characteristics (e.g., trust) based 
on similar cues (e.g., expertise). There is evidence that LLM-and 
instructor-feedback align (Dai et  al., 2023). However, LLMs can 
be biased by their developers, the training data, and/or any learning 
that occurs during the LLM’s lifecycle (i.e., aspects determining the 
LLM’s competence). This can lead to the LLM’s output, i.e., the 
feedback being false, biased, or untransparent (see Chang et al., 2023). 
These flaws can affect trust users have in the AI-system (Grassini, 
2023; Kaur et al., 2022). All in all, the implementation of LLMs in 
(higher) education contexts has huge potential. In fact, educators are 
increasingly supported by LLMs to provide feedback to students, 
because these can, for example, promote self-regulated learning or 
save educators time and resources (Cavalcanti et al., 2021; Kasneci 
et al., 2023; Wilson et al., 2021).

One prerequisite of effective feedback interactions is the 
flawlessness of the human-computer/AI interaction. A flawless 
interaction requires AI-literate users (for more information see, for 
example, Long and Magerko, 2020) that trust the LLM and, at the 
same time, feel agentic and able to reflect on their use of the system 
(Khosravi et al., 2022). Additionally, to lead to progress, the interaction 
should be  humanlike and empathetic (Grassini, 2023), a given in 
interactions with LLM (see above).

When assessing texts to provide feedback, both humans and 
AI-systems rely on their experience, but their approach differs: 
AI-systems have a clear statistical approach, e.g., they come to a 
decision on structure by counting paragraphs and length (e.g., Yang 
et  al., 2023), which resembles a rubric. In this process, (most) 
AI-systems neglect the actual content and do not reliably provide 
correct information (Grassini, 2023). Humans, on the other hand, 
more intuitively evaluate the text, even if they use rubrics which could 
make them less credible. Alongside investigating the functionality and 
reliability of AI-systems, research on AI-systems in higher education 
(Chiu et  al., 2023; Grassini, 2023), e.g., as providers of elaborate 
feedback, should be examined, as this development has the potential 
to influence the effectiveness of feedback (Panadero and 
Lipnevich, 2022).

2.3 Feedback effectiveness

As mentioned above, feedback providers and their characteristics 
can influence the effectiveness of feedback. Similar to the feedback 
process itself, the effectiveness of feedback is complex: It encompasses 
cognitive, affective, and relational aspects as summarized by 
Henderson et al. (2019). Thus, effective feedback not only involves 
learners using it and improving their performance (i.e., cognitive 
aspect), but effective feedback also requires the provider to be seen as 
trustworthy and/or the feedback message to be perceived as fair (i.e., 
relational and affective aspects). This view on feedback effectiveness, 
in line with the definition of feedback, highlights the often overlooked 
fact that learners, as the recipients of feedback, are active recipients, in 
that they actively engage with the feedback (Lipnevich et al., 2016; 
Lipnevich et al., 2021; Tsai, 2022; Winstone et al., 2017). Thus, how 
learners perceive the various elements (i.e., MISCA elements) of the 
feedback process, like the feedback provider and the feedback itself, is 

thus crucial for their engagement with the feedback (Van der Kleij and 
Lipnevich, 2021; Strijbos et al., 2021).

2.3.1 The Importance of feedback message 
perceptions

As learners are in the center of the feedback process (Panadero 
and Lipnevich, 2022), a crucial element that determines the 
effectiveness of such a process is how the learners perceive the 
feedback. Feedback message perceptions include cognitive, provider-
cognitive, motivational, and/or affective reactions (Strijbos et al., 2021, 
p. 2) and, thus, ‘capture how students comprehend, perceive, and value 
a feedback message and how they experience and receive feedback’ 
(Van der Kleij and Lipnevich, 2021, p.  349). Feedback message 
perceptions are part of the effectiveness of feedback, as they determine 
how learners engage with the feedback (Van der Kleij and Lipnevich, 
2021). As aspects of feedback effectiveness, feedback message 
perceptions can be influenced by any element of the process, i.e., the 
message, implementation, student, context, or agents (Panadero and 
Lipnevich, 2022). In this vein, learners’ perceptions of feedback can 
be influenced by the feedback provider and their characteristics (Van 
der Kleij and Lipnevich, 2021). For example, Dijks et  al. (2018) 
investigated how the (peer) feedback provider’s perceived expertise 
affected the feedback recipients’ perceptions and found a positive link 
between these two, concluding that learners might be biased by their 
knowledge about the feedback provider. Similarly, Strijbos et al. (2010) 
also found evidence that (peer) feedback providers’ expertise 
influences perceptions of feedback. Thus, it seems likely that the 
feedback provider as well as knowledge about their characteristics 
influence how learners perceive feedback.

2.3.2 The importance of trustworthy feedback 
providers

Because AI-systems will be implemented in educational contexts 
more and more to support educators and learners (Bozkurt, 2023; 
Chiu et al., 2023), it is crucial to examine how learners will react to 
these providers considering their different (power) relationships (see 
2.2). Particularly important is understanding the extent to which 
learners trust the feedback provider (Carless, 2012; Davis and 
Dargusch, 2015; Ilgen et al., 1979; Winstone et al., 2017), as this is a 
prerequisite that helps learners decide whether to use the feedback 
(Boud and Molloy, 2013; Carless, 2006; Holmes and Papageorgiou, 
2009; Carless, 2012; Davis and Dargusch, 2015). For example, 
feedback from trustworthy sources positively relates to feedback 
acceptance and motivation (see Lechermeier and Fassnacht, 2018).

For humans, trust constitutes perceived benevolence, integrity, 
and expertise (Hendriks et al., 2015). Since AI-systems are evaluated 
like humans, the same criteria can be applied to them (Reeves and 
Nass, 1996). Generally, the development of trust in the context of 
feedback is facilitated by the learner’s perception of certain 
characteristics about the feedback provider, such as their expertise, 
experience, or status (Hoff and Bashir, 2015; Lechermeier and 
Fassnacht, 2018; Lucassen and Schraagen, 2011; Van De Ridder et al., 
2015). Further, trustworthiness can also be  influenced by such 
observable cues (Kaplan et al., 2023).

While these concepts apply equally to humans and AI-systems, 
the development of trust in each of them differs (see Madhavan and 
Wiegmann, 2007). For humans, as the relationship between two 
people progresses, trustworthiness usually increases (Hoff and Bashir, 
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2015). By contrast, AI-systems often enjoy a positivity bias initially, 
meaning that people trust the system in the beginning due to, for 
example, its label (Langer et  al., 2022) or assumed abilities and 
objectivity (Swiecki et al., 2022). In this vein, a previous study by Ruwe 
and Mayweg-Paus (2023) found that AI-systems were perceived as 
more trustworthy as humans after a first interaction. Learners’ 
interactions with AI-systems are also affected by the quality of the 
system (Cai et  al., 2023), whereby students often have certain 
expectations toward AI-systems (like ChatGPT) which the system 
may or may not meet, thereby affecting learners’ behavior toward the 
system (Strzelecki, 2023). In education settings, both teachers and 
students have tended to meet AI-systems with skepticism (Chiu et al., 
2023), as many are unsure about the benefits of AI (Clark-Gordon 
et al., 2019; Shin et al., 2020). In these cases, trust can develop with 
increasing interaction as learners get to know the system (Cai et al., 
2023; Nazaretsky et al., 2022; Qin et al., 2020). Overall, the best-case 
scenario for such human-AI interactions is for people to have fruitful 
experiences with an AI-system and trust it just enough that they 
neither over-nor under-rely on the system’s decisions (Parasuraman 
and Riley, 1997).

In this vein, the concept of AI literacy (Ng et al., 2021) becomes 
important: To use an AI-system effectively, users need to understand 
the system, but this is difficult because the capabilities and 
functionalities of AI have developed faster than users’ comprehension 
of them (Zawacki-Richter et al., 2019). Since the ability to comprehend 
an AI-system is crucial for increasing trust (Nazaretsky et al., 2022; 
Qin et al., 2020), researchers have suggested that transparency and 
explainable AI (xAI) be employed (Cai et al., 2023; Khosravi et al., 
2022; Memarian and Doleck, 2023), thereby improving trust and 
understanding and, in turn, interactions between humans and AI.

2.4 Providing information about the 
feedback provider

In (peer) feedback processes, anonymity is often considered 
beneficial to avoid social biases, but it does not always have the desired 
effects (e.g., Lu and Bol, 2007; Panadero and Alqassab, 2019). When 
working with educators or AI-systems, implementing anonymity is 
rather unrealistic: Learners know whose classes they take, and data 
protection laws require at least minimal information about algorithms. 
Furthermore, as mentioned above, users often want information about 
AI-systems for transparency reasons (Khosravi et al., 2022; Memarian 
and Doleck, 2023). Therefore, one approach might be to investigate 
the opposite of anonymity, namely whether giving additional 
information about a feedback provider actually promotes 
feedback effectiveness.

In the context of AI-systems, having information about the 
feedback provider (the AI-system) can be seen as an external aspect 
that affects situational trust (Hoff and Bashir, 2015) and is comparable 
to explainable AI (xAI). xAI aims at supporting users ‘to understand 
how, when, and why predictions are made’ (Kamath and Liu, 2021, 
p.  2), such that these explanations can establish trust and 
understanding as well as promote the use of AI-systems (Hoff and 
Bashir, 2015; Khosravi et  al., 2022; Memarian and Doleck, 2023; 
Vössing et al., 2022). Therefore, the information about an AI-system 
can potentially influence whether and how the output of the system, 
e.g., feedback, is actually used by the user, e.g., the learner. However, 

providing information that is overwhelming or confusing reduces 
users’ understanding and can, thus, hamper transparency (Khosravi 
et  al., 2022). One promising approach might be  to offer users 
non-technical, global explanations about the general functioning, i.e., 
the competence, of the AI-system (Brdnik et al., 2023; Khosravi et al., 
2022), such that learners can determine how the AI works, how it may 
affect them, and whether it is trustworthy (Holmes et al., 2021), even 
though there is no one-size-fits-all explanation in educational settings 
(Conijn et al., 2023).

Not only does having information about (the characteristics of) 
an AI-system increase trust in it, having information about human 
experts and their individual characteristics also increases trust in them 
and the information they provide, particularly in online contexts 
(Harris, 2012; Metzger, 2007; Flanagin et al., 2020). As outlined above, 
this is true for educators, whose perceived expertise (among other 
characteristics) influences the effectiveness of feedback (see 2.2 
and 2.3.2).

2.5 Feedback literacy to improve feedback 
processes?

In the context of this study, feedback literacy might play an 
important role because feedback literacy is said to diminish biases in 
learners’ reception of feedback (Carless and Boud, 2018). Additionally, 
feedback literacy involves strong critical thinking and reflection skills, 
and these skills are also essential for effectively dealing with the 
challenges brought by modern technologies like AI-systems (Alqahtani 
et al., 2023; Casal-Otero et al., 2023; Federal Ministry of Education and 
Research, 2023; Ng et  al., 2021). According to Carless and Boud 
(2018), feedback literacy encompasses appreciating feedback, making 
judgments based on feedback, managing affect resulting from 
feedback, and taking action from feedback. Thus, one could assume 
that feedback-literate learners might manage their affective reaction to 
the feedback provider and prevent negative influences from getting in 
the way of engaging with the feedback information.

2.6 Hypotheses

Building on the literature outlined above, we aimed to investigate 
the effect of providing provider-information about feedback providers 
as a way to avoid the pitfall of negative perceptions (in terms of feedback 
message and feedback provider perceptions) hindering feedback 
effectiveness, and we did this while also considering learners’ feedback 
literacy. We are thus asking whether providing background information 
about the feedback provider (i.e., educator vs. AI-system) influences 
learners’ perceptions of the feedback as well as the feedback provider, 
as these perceptions are known to influence the effectiveness of 
feedback. The framework underlying the study is illustrated in Figure 1. 
The study was pre-registered (see: https://aspredicted.org/N3H_JQ8).

We outlined (see 2.4) that having information about feedback 
providers influences not only the learner’s perceived trustworthiness 
of the feedback provider, but it also influences their perception of the 
feedback information itself. Those arguments led to our first hypothesis:

H1: We assume there will be a main effect of having provider-
information about the feedback provider on learners’ perceptions of 
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(a) the feedback and (b) the feedback provider (i.e., trustworthiness) 
compared to when learners have no information about the providers.

In 2.3.2, we  briefly outlined the differences and similarities 
between humans and AI-systems regarding trustworthiness. 
We assume that even though educators are the traditional sources of 
feedback and hold a certain status, AI-systems still benefit from 
positivity bias. Accordingly, we derived our second hypothesis:

H2: We assume that (a) feedback from an LLM will be perceived 
more positively than feedback from a human and that (b) learners’ 
perceptions of the LLM as a feedback provider will be  more 
positive than their perceptions of a humans as a feedback provider.

Since certain characteristics of the feedback provider also play a 
role (see 2.2), our third hypothesis involves the interaction between the 
feedback provider and their corresponding provider-information:

H3: We  assume that having provider-information will more 
positively influence learners’ perceptions of (a) the feedback and 
(b) the feedback provider when this information is provided for 
the human than when it is provided for the LLM.

Lastly, some learner attributes influence whether and how much 
learners engage with the feedback process, such as feedback literacy (see 
2.5). Because feedback literacy encompasses competences that allow a 
less biased evaluation of feedback, we explored whether feedback literacy 
affected learners’ reactions to the feedback to the and feedback provider.

3 Method

3.1 Participants and design

Using G*Power (Faul et al., 2009) for MANOVA Special Effects/
Interactions with α = 0.05, β = 0.95, and a medium-sized effect, a total 
sample of 65 participants was estimated. Participants were recruited 

via different channels (e.g., postings in the learning management 
system, using networks). In total, N = 462 German-speaking students 
(studying to be teachers) began participation in the study; N = 169 
students finished the study, and their data were included in the 
analysis (included sample was 68.6% female, 0.18% diverse/not 
specified; Mage = 24.85, SDage = 6.74; 54.4% at bachelor’s degree level; 
95.9% German native speakers).

The 2×2 between-subjects study with the factors feedback provider 
(educator vs. AI-system) and provider-information (yes vs. no) was 
implemented online (unipark.com by Questback EFS Survey). 
Participants were randomly assigned to one of the four 
experimental conditions.

3.2 Measures

3.2.1 Trustworthiness
Participants’ perceptions of the feedback providers’ 

trustworthiness were assessed with the Muenster Epistemic 
Trustworthiness Inventory (METI; Hendriks et  al., 2015). The 16 
items of the METI can be  summarized in three subscales (i.e., 
expertise (seven items, α ≥ 0.94), integrity (five items, α  ≥ 0.82), 
benevolence (four items, α ≥ 0.80)). The items were assessed on a 
seven-point semantic differential scale (using antonyms, e.g., 
1 = professional vs. 7 = unprofessional (expertise), 1 =  honest vs. 
7 =  dishonest (integrity), 1 =  responsible vs. 7 =  irresponsible 
(benevolence)).

3.2.2 Feedback message perceptions
To assess how participants evaluated the feedback, the Feedback 

Perceptions Questionnaire (FPQ; Strijbos et al., 2021) was applied. 
The 18 items were assessed on a 10-point bipolar scale ranging from 
1 = fully disagree to 10 = fully agree. They are distributed across five 
subscales: fairness, α  ≥ 0.87 (e.g., I  would be  satisfied with this 
feedback), usefulness, α ≥ 0.91 (e.g., I would consider this feedback 
useful), acceptance, α  ≥ 0.83 (e.g., I  would accept this feedback), 
willingness to improve, α ≥ 0.87 (e.g., I would be willing to improve 

FIGURE 1

Illustration of the conceptual framework of the study.
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my performance), and affect, α ≥ 0.85 (e.g., I would feel satisfied/
content if I received this feedback on my revision).

3.2.3 Feedback literacy
For assessing participants’ feedback literacy, we employed five 

subscales of Zhan’s (2022) student feedback literacy scale: processing 
(e.g., ‘I am  good at comprehending others’ comments’, α ≥ 0.76), 
enacting (e.g., ‘I am good at managing time to implement the useful 
suggestions of others’, α ≥ 0.68), appreciation (e.g., ‘I have realized that 
feedback from other people can make me recognize my learning 
strengths and weaknesses’, α ≥ 0.76), readiness (e.g., ‘I am always ready 
to receive hypercritical comments from others’, α ≥ 0.81), and 
commitment (e.g., ‘I am always willing to overcome hesitation to 
make revisions according to the comments I get’, α ≥ 0.70). The 20 
items (four items each) were assessed on positively packed six-point 
Likert-type scales ranging from 1 (= strongly disagree) to 6 (= 
strongly agree).

3.2.4 Control variables
To control for potential further influences of the participants’ 

characteristics (particularly on perceptions of the AI-system), 
we included demographic variables and collected information about 
participants’ experience with AI-systems (Kaplan et al., 2023). We had 
participants estimate their competence, experience, expertise, 
performance, and previous interactions with AI-systems in 
educational contexts (e.g., ‘I have sufficient competences to use an 
AI-system in educational contexts’) on a five-point Likert scale 
ranging from 1 = completely disagree to 5 = completely agree.

Furthermore, we wanted to gain insights into a potential positivity 
bias on the participants’ side. Therefore, we developed four items in 
accordance with Hoff and Bashir’s (2015) model to assess whether 
participants have dispositional, learned, internal or external situational 
trust in AI-systems (α ≥ 0.79).

3.3 Procedure

After providing their informed consent and demographic 
information, participants received an introduction to the scenario: 
They saw a screenshot of a seemingly realistic interaction between an 
educator or an LLM and a learner depending on their experimental 
group (see Figures 2, 3). The screenshots in Figures 2, 3 show the 
educator and LLM conditions with provider-information. This 
information (on top of the screenshot) was missing in the no provider-
information conditions. The human-human interactions were 
oriented on a common learning management system, while the 
human-AI interactions were oriented on ChatGPT (OpenAI, 2023). 
The feedback solely referred to structural, not contextual issues, and 
the feedback was designed to be neither positive nor negative. The fit 
between the text and the feedback was pilot tested (see below).

Building on research on xAI (see 2.4), the provider-information 
for the LLM was solely textual (Conijn et al., 2023) and addressed the 
LLM’s performance while not being too overwhelming (Khosravi 
et al., 2022). The provider-information was oriented on Conijn et al.’s 
(2023) global explanations but shortened and adapted. The provider-
information about the human feedback provider described their 
expertise and was designed to align with the provider-information of 
the LLM.

After reviewing the screen with the feedback (and, for the 
corresponding conditions, the provider-information), participants 
were then asked to quantitatively and qualitatively give their 
perceptions of the feedback and the feedback provider as well as 
estimate their feedback literacy. More details on the procedure can 
be seen in Figure 4.

Prior to the experiment, we pilot tested the materials and the 
study with five people with educational backgrounds (60% female, 
Mage = 43.20, SDage = 22.05). The pilot tests verified the 
comprehensibility and design of the study and all of its materials.

3.4 Ethics statement

The study complied with APA ethical standards for research with 
human subjects as well as the EC’s data protection act. All participants 
provided their informed consent and were debriefed about the 
purpose at the end of the survey. Dropping out was possible at any 
time without having to provide a reason. Participants were reimbursed 
with 10 €.

3.5 Statistical analyses

Using the lavaan package (Rosseel, 2012) in R studio (R Core 
Team, 2022), we  built saturated path models (equivalent to 
regression analyses) to test our theoretically grounded model as 
outlined before and illustrated in Figure 5. We included dummy 
variables for our independent variables, using educators and no 
provider-information as the reference categories. Furthermore, 
we  used a robust estimator (MLM) to account for minimal 
skewness in our data (Rosseel, 2012). We built one model with the 
overall means and one with the subscales for each hypothesis and 
set an α level of 0.05. The descriptive values of the dependent 
variables across the experimental groups can be  found in 
Figures 6, 7.

Accordingly, we built three models to test our hypotheses as stated 
above (see 2.6): Model A included the feedback provider and the 
provider information as independent variables and the overall values 
of feedback message and feedback provider perceptions as the 
dependent variables (see Supplementary Appendix Table A1). Instead 
of looking at the overall values, model B included all subscales as 
dependent variables (see Supplementary Appendix Table A2). These 
subscales remained the dependent variables in model C while 
including the feedback provider as independent variable and adding 
provider information as moderating variable (see 
Supplementary Appendix Table A3).

3.5.1 Manipulation checks
We assessed several other variables to get more insights into 

our setting and the experimental manipulations. The participants 
evaluated the setting as realistic (M = 2.36,1 SD = 1.38), reasonable 
(M = 2.50, SD = 1.32), appropriate (M = 2.76, SD = 1.42), and 

1 The items were assessed as antonyms ranging from 1 = positive manifestation 

to 7 = negative manifestation.
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suitable (M = 2.87, SD = 1.38). The majority of participants (82.1%) 
did not think about a specific or known person or AI-system. 
Participants who received the provider-information agreed that 
they found it rather helpful (M = 4.542, SD = 1.59), clear (M = 4.44, 
SD = 1.58), and adequate (M = 4.29, SD = 1.48); They rather 
disagreed that the provider-information was overwhelming 
(M = 2.90, SD = 1.45), confusing (M = 2.92, SD = 1.64), and 
distracting (M = 2.78, SD = 1.43). This indicates a good quality of 
the explanations (Brdnik et al., 2023; Conijn et al., 2023; Khosravi 
et al., 2022).

Finally, we assessed participants’ content knowledge and their 
experience with, attitude toward, and trust in AI-systems in feedback 
contexts. Participants’ knowledge about the topic of the argumentative 
text was low (M = 1.61, SD = 0.84). According to participants’ self-
evaluations, their competence (M = 2.82, SD = 1.73), knowledge 
(M = 3.15, SD = 1.86), and experience (M = 2.24, SD = 1.70) with 
AI-systems in feedback contexts were rather low, but they estimated 
their performance in such a setting as average (M = 3.93, SD = 1.34). 
Their expectations toward an AI-system in such a setting were rather 
high (M = 4.08, SD = 1.75).

There were no differences between the experimental groups 
except for experience [F(1, 167) = 4.19, p ≤ 0.05, R2 = 0.02], where 

2 The items were assessed on a scale from 1 = completely disagree to 

7 = completely agree.

the educator group (M = 2.50) reported more experience with 
AI-systems in feedback settings than the AI group (M = 1.96). 
There were no differences between the experimental groups 
regarding their attitudes toward AI-systems in feedback settings, 
which were rather positive (M = 4.31, SD = 0.91). This could 
indicate a slight positivity bias toward AI-systems in 
feedback contexts.

4 Results

4.1 Hypothesis 1 – Main effect of 
provider-information

While there was no effect on trustworthiness, the availability of 
provider-information had a direct association with feedback message 
perceptions. We found that having provider-information improved 
participants’ feedback message perceptions overall (β = 0.53, p ≤ 0.05, 
model A, Figure 8) and positively influenced participants’ affective 
reactions to the feedback (β = 0.79, p ≤ 0.01, model B, Figure 9). The 
effect of provider-information and feedback providers was small 
according to Cohen (1988)3 (see Figures 8, 9).

3 The benchmarks for R2 are small effect = 0.02, medium effect = 0.13, large 

effect = 0.26.

FIGURE 2

Screenshot of experimental manipulation (educator x provider-information).
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4.2 Hypothesis 2 – Main effect of feedback 
provider

There was no evidence of significant associations between the 
feedback provider and feedback message perceptions. Nonetheless, 
the feedback provider was associated with trustworthiness: The LLM 
was perceived as more trustworthy than the educator overall (β = 0.58, 
p ≤ 0.001, model A, Figure 8) as well as on all three subscales (model 
B, Figure  9) expertise (β = 0.74, p ≤ 0.001), benevolence (β = 0.62, 
p ≤ 0.001), and integrity (β = 0.39, p ≤ 0.05).

4.3 Hypothesis 3 – Interaction effect of 
feedback provider and 
provider-information

We did not find a significant interaction effect of feedback provider 
and provider-information on the overall scores of feedback message 
perceptions and trustworthiness. Looking at the subscales, we found 
that the effect of the feedback provider on fairness changed when 
adding provider-information (see model C, Figure 10): The interaction 
of feedback provider and provider-information was significant 
regarding fairness (β = 1.24, p ≤ 0.05) and expertise (β = 1.24, p ≤ 0.05). 
Follow-up t-tests revealed that without provider information, there was 
a significant difference between LLMs (M  = 7.07, SD  = 2.13) and 

FIGURE 3

Screenshot of experimental manipulation (LLM x provider-information).

FIGURE 4

Illustration of the procedure of the study.
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FIGURE 5

Illustration of the theoretical background of the path models based on the literature review.

 -

 0.50

 1.00

 1.50

 2.00

 2.50

 3.00

 3.50

 4.00

METI METI_Exp METI_Ben METI_Int

Overall LMM Educator Info No Info LMM+Info Educator+Info LMM-Info Educator-Info

FIGURE 6

Overview over descriptive values of trustworthiness across all experimental groups. + Info, meta-information provided; − Info, no meta-information 
provided; METI, Muenster epistemic trustworthiness inventory; Exp, expertise; Ben, benevolence; Int, integrity.
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educators (M = 8.06, SD = 2.10) regarding fairness (t = 2.52, p ≤ 0.05, 
d = 0.53). When adding provider-information, this effect vanished 
(MLLM = 8.25, MEducator = 8.06, t = − 0.44, p = 0.66, d = 0.09). In addition, 
there was a significant difference in participants’ perceptions of the 
feedback providers’ expertise without provider-information 
(MLLM = 3.34, MEducator = 2.19, t = − 4.46, p ≤ 0.001, d = 0.94), and this 
disappeared when provider-information was provided (MLLM = 2.62, 
MEducator = 2.31, t = −1.29, p = 0.201, d = 0.28).

Overall, the models illustrating the interaction of the feedback 
provider and provider-information explain more variance than those 
excluding the interaction: When including the moderation, 2.4% more 
variance of fairness could be explained, and 2.9% more variance of 
expertise could be explained. These indicate small effects (Cohen, 1988).

4.4 Exploratory analysis

Finally, we explored potential effects of feedback literacy on the 
associations under investigation. While neither model showed that 
feedback literacy significantly moderated the effects of feedback 
provider and provider-information on feedback message perceptions 
and trustworthiness, after running MANOVAs we found significant 
effects on overall feedback message perceptions and trustworthiness 

as well as on some subscales. Accordingly, with increases in feedback 
literacy, we  found increases in feedback message perceptions 
[Figure  11; F(1, 167) = 10.61, p ≤ 0.01, R2 = 0.05] but decreases in 
trustworthiness [Figure  12; F(1, 167) = 8.22, p ≤ 0.01, R2 = 0.04]. A 
closer look at the subscales revealed the same pattern as in Figures 11, 
12. The effects on expertise [F(1, 167) = 3.83, p = 0.052] and acceptance 
[F(1, 167) = 3.81, p = 0.053] were not significant though, meaning that 
feedback literacy did not influence these two subscales. Overall, the 
data show that feedback literacy does play a role in explaining learners’ 
perceptions of feedback and of feedback providers.

5 Discussion

To summarize, we  found evidence that the type of feedback 
provider and the presence of provider-information about the feedback 
provider influence the effectiveness of the feedback, which was 
operationalized as learners’ perceptions of the feedback and the 
feedback provider. Furthermore, we  found evidence that feedback 
literacy plays an important role for feedback effectiveness. First, 
feedback providers and corresponding provider-information were 
directly associated with learners’ perceptions of the feedback and 
feedback providers. While an LLM was perceived as more trustworthy 
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FIGURE 7

Overview over descriptive values of feedback message perceptions across all experimental groups. FPQ, feedback perceptions questionnaire; FA, 
fairness; AF, affect, AC, acceptance; WI, willingness to improve; US, usefulness.

FIGURE 8

Illustration of model A. Significant associations highlighted in black.
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than educators, the presence of provider-information improved 
participants’ perceptions of the feedback. Second, the presence of 
provider-information influenced the effect of the feedback provider: 
Without provider-information, feedback from an educator was 
perceived as fairer than from an LLM, but when the provider-
information was present, AI-feedback was perceived as fairer. Similarly, 
there was a significant difference in trustworthiness regarding expertise 
without provider-information, such that an LLM were perceived as 
more trustworthy. Yet, when provider-information was present, the 
LLM and educator were perceived as similarly trustworthy regarding 
their expertise. Finally, we explored the role of feedback literacy and 
found that it did influence the way learners reacted to the feedback 
process. We found that with increases in feedback literacy, participants’ 
perceptions of the feedback improved, while the perceived 
trustworthiness of the feedback providers decreased.

5.1 Hypothesis 1 – Main effect of 
provider-information

The first hypothesis was confirmed with respect to the effect of 
having provider-information on learners’ perceptions of the feedback 
message (H1a). In line with the literature, the type of feedback 
provider as well as having knowledge about them influenced how 
learners reacted to feedback and, thus, how they perceived it. In the 
complex feedback process, various elements influence the effectiveness 
of feedback, including having access to any information that improves 
the relationship between the learner and the feedback provider 
(Panadero and Lipnevich, 2022; Winstone et  al., 2017). Another 
reason that feedback message perceptions were positively influenced 
by provider-information could be that the presence of the provider-
information improved transparency. As a whole, provider-information 
might help learners understand the feedback message (see 2.4).

In contrast, the second part of the first hypothesis (H1b) was not 
confirmed: There was no effect of provider-information on 
participants’ perceptions of the feedback provider, i.e., trustworthiness. 
This is a surprising finding, particularly because provider-information 
moderated the effect of the feedback provider on trustworthiness (see 
Hypothesis 3). Supposedly, provider-information that gives insights 
into the expertise and competence of the feedback provider should 
be  beneficial for how the provider is perceived. Possibly, the 

provider-information presented in this study did not sufficiently 
emphasize the characteristics of the feedback provider that informed 
participants about their trustworthiness, such as expertise, experience, 
and status (Hoff and Bashir, 2015; Lechermeier and Fassnacht, 2018; 
Lucassen and Schraagen, 2011; Van De Ridder et al., 2015). In this 
vein, regarding provider-information, there is no one-size-fits-all 
(Conijn et  al., 2023) – which also becomes evident below in the 
discussion on Hypothesis 3. Conclusively, the rather global 
information we  provided may not be  suitable to increase 
trustworthiness. In addition, participants’ individual characteristics 
could help explain the lack of an effect. These characteristics are 
crucial in context with trustworthiness (Kaplan et al., 2023). Keeping 
in mind the trust trajectories (see 2.3.2), the positivity bias we found 
(see Hypothesis 2), could be  undermined by the additional 
information. With the additional information about the LLM as 
provider, trust in it decreases while this information adds to the 
trustworthiness of educators. The perceptions of the providers are 
thus approximating.

Overall, we can conclude that provider-information about the 
feedback provider influenced participants’ reactions to the feedback 
process, i.e., the effectiveness of feedback.

5.2 Hypothesis 2 – Main effect of feedback 
provider

In line with our assumption, the type of feedback provider 
influenced participants’ perceptions of them (H2b). More specifically, 
the LLM was perceived as more trustworthy than the educator, a 
finding that confirms the results of one of our previous studies (Ruwe 
and Mayweg-Paus, 2023). Overall, the literature agrees that the feedback 
provider influences the effectiveness of the feedback (Panadero and 
Lipnevich, 2022; Winstone et al., 2017). The fact that an LLM was again 
perceived as more trustworthy than a human can be explained by our 
sample’s characteristics: The participants in this study did not have 
much experience with AI-systems, but they had high expectations of 
them and rather positive attitudes. This could indicate a potential 
positivity bias, which our data confirms. According to the positivity 
bias, people have high initial trust in AI-systems due to various 
prejudices, and this decreases after repeated interactions with the 
system (see 2.3.2).

FIGURE 9

Illustration of model B. Only significant associations are displayed. Covariances Shown in Table 1.
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On the other hand, our assumption that the feedback provider 
influenced participants’ perceptions of the feedback (H2a) was not 
confirmed. In previous studies (e.g., Dijks et al., 2018; Strijbos et al., 
2010) the expertise of the feedback provider, i.e., a key characteristic 
of the feedback provider, was found to influence feedback message 
perceptions. Even though a key characteristic of the feedback provider 
is closely related to the feedback provider themself, they are not the 
same thing, which could explain the absence of a significant 
association here. Particularly, against the background of provider-
information having a moderating effect (H3a), this explanation might 
be true, as the purpose of the provider-information was to emphasize 
the characteristics of the feedback provider.

In conclusion, feedback providers influence the effectiveness of 
feedback in terms of learners’ reactions to the feedback process, and 
this finding agrees with the literature on characterizing the feedback 
provider as an important influence on feedback effectiveness (e.g., 
Panadero and Lipnevich, 2022; Winstone et al., 2017).

5.3 Hypothesis 3 – Interaction of 
provider-information and feedback 
provider

For fairness, we found evidence against the assumed relationship 
(H3a): The educator’s feedback was perceived as less fair than feedback 
generated by an alleged LLM when provider-information was present. 

Without provider-information, feedback from the educator was 
perceived as fairer than that of the LLM. As outlined above, information 
about the specific characteristics of a feedback provider seems to 
influence how learners perceive the feedback (Dijks et al., 2018; Strijbos 
et al., 2010). Furthermore, this finding is in line with literature about 
xAI, which aims at increasing transparency and fairness (see 2.4). Still, 
it is interesting that the educator did not benefit from the presence of 
provider-information regarding the perceived fairness of their 
feedback. Possibly, the content of the provider-information could have 
affected whether the educator was seen as objective.

The assumed relationship of provider-information on 
trustworthiness (H3b) was confirmed: Trustworthiness regarding the 
educator’s expertise increased when provider-information was 
present and, thus, approached the same level as trust in the LLM’s 
expertise. Thus, the presence of provider-information benefited the 
educator’s trustworthiness. This finding may be  related to the 
positivity bias and the varying trust trajectories between humans and 
AI-systems: People are predisposed to trust an AI-system initially, but 
once they interact with it more, their trust decreases. On the contrary, 
trust in humans increases with repeated interactions. In this vein, 
providing information about the educator could have sped up the 
process of getting to know the feedback provider and, subsequently, 
led to higher trust. For AI-systems, it would be interesting to compare 
different explanations and different systems, because the 
characteristics of the system, its training data, and its developers can 
influence how users perceive the system (Kaur et al., 2022).

5.4 Exploratory analysis on the role of 
feedback literacy

Our exploratory investigation of whether participants’ feedback 
literacy affected their perceptions revealed interesting insights. 
Potentially, feedback literacy might allow learners to neither over-nor 
under-rely on feedback (providers) and accurately receive and engage 
with the feedback.

Increases in feedback literacy went hand in hand with increases in 
feedback message perceptions. Thus, feedback literacy did support 

TABLE 1 Covariances of significant outcome variables.

Outcome variables Covariance

Affect ~ ~ Benevolence −0.96

Affect ~ ~ Expertise −0.92

Affect ~ ~ Integrity −0.83

Benevolence ~ ~ Expertise 0.65

Benevolence ~ ~ Integrity 0.63

Expertise ~ ~ Integrity 0.85

FIGURE 10

Illustration of model C. Only significant associations are displayed.
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learners in evaluating the feedback and planning their engagement with 
it. On the other hand, increases in feedback literacy also went hand in 
hand with decreases in trustworthiness of the feedback provider. This 
decrease in trustworthiness along with the increase in feedback message 
perceptions could mean that learners with higher feedback literacy 
engage with feedback in a way that is more independent of the feedback 
provider. Thus, these learners may rely less on potential biases related 
to the feedback provider and are more focused on the feedback itself.

5.5 Theoretical implications

Building on these findings, here we draw theoretical implications. 
Overall, the study confirmed that feedback processes are complex, and 
their elements are intertwined. This complexity does not disappear 
when AI-systems like LLMs are involved, and such systems bring their 
own complex backgrounds. It is worth diving deeper into feedback 
processes involving AI-systems and looking at the various relations in 
more detail.

Regarding provider-information, the results showed that its effect 
depends on the feedback provider. In this context, more research on 
what types of provider-information work for whom is important. 
We thus agree with authors like Conijn et al. (2023), who have stated 

that there is no one-size-fits-all explanation. In this vein, provider-
information is closely related to the feedback provider, leading to 
interesting questions: Why do the effects of provider-information and 
feedback providers differ regarding feedback effectiveness? For future 
research, it would be  interesting to investigate the underlying 
mechanisms and the value that learners place on the different elements 
of the feedback process.

Finally, we  point toward the importance of feedback literacy. 
Further research should investigate how to promote feedback literacy 
or how to activate it in feedback processes to avoid biased feedback 
interactions. In this context, research on further provider-competences 
that allow reflective engagement with feedback (processes) seems 
promising and inevitable.

5.6 Practical implications

Our findings can also be used to infer practical implications. First, 
giving provider-information about feedback providers should 
be considered, as this information improves learners’ perceptions of 
the feedback and also influences the effect of the feedback provider. In 
this vein, it is important to consider that the effects of provider-
information might differ with different content and for different 

FIGURE 11

Plots of relationships between feedback literacy and feedback message perceptions. FPQ, feedback perceptions questionnaire; FA, fairness; AF, affect; 
AC, acceptance; US, usefulness; WI, willingness to improve.
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feedback providers. Another aspect to strongly consider is how 
personal factors, e.g., the personal relationship between the learner 
and the feedback provider, influence trustworthiness. Second, 
positivity biases and stereotypes toward AI-systems should 
be considered when implementing them in feedback processes. No 
learner should blindly trust AI-systems. This leads directly to our third 
implication, which is that feedback literacy should be promoted to 
encourage learners to engage with the feedback (process) in a reflective 
manner. Conclusively, the importance of a trustworthy relationship 
between students and feedback providers should be emphasized. Such 
relationships should be based on trust and enable an open and critical 
engagement with the feedback process.

5.7 Limitations

For various reasons, the results and implications derived from 
this study should be interpreted with caution. The sample is quite 
specific and encompassed only German (speaking) students training 
to be  teachers. These participants had varying individual 
characteristics (like different levels of feedback literacy) that 
influenced their responses, and their culture also influenced their 
trustworthiness assessments, particularly in the context of 

AI-systems (Kaplan et al., 2023). The transferability of the findings 
to other feedback scenarios is further limited by the feedback 
message that was specifically related to the argumentative structure 
and not to the content. Furthermore, we mentioned that personal 
relationships are critically important in feedback processes, and their 
power should not be  underestimated. Yet, since the data were 
collected in a fictional study where personal relationships were not 
relevant, field studies could derive different results. In this vein, 
another limitation related to the methodology is that the subscale 
‘Enacting’ used for assessing feedback literacy may not have been 
reliable. Furthermore, this study only covered a small snippet of the 
feedback process, including the design of the process as well as the 
effectiveness of feedback. Since feedback environments are 
(increasingly) complex, it is important to look at effects of the specific 
aspects of individual feedback interactions.

5.8 Conclusion

To conclude, our study found a difference in participants’ 
perceptions of the feedback and the feedback provider, and these 
differences at least partly depend on the feedback provider and whether 
provider-information was present. While provider-information 

FIGURE 12

Plots of relationships between feedback literacy and trustworthiness.
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was associated with increases in feedback message perceptions, 
we found a link between feedback providers and their trustworthiness 
in a way that benefitted LLMs. Furthermore, provider-information 
moderated the effect of the feedback provider on the effectiveness 
of feedback. Finally, our findings suggest that feedback literacy 
might play an important role in supporting learners when they 
reflectively engage with the feedback process. Based on these findings, 
we outlined many potential starting points for future research and also 
offered recommendations for practitioners regarding the design of 
feedback processes.
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