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Introduction: Whereas it is commonly assumed that in learning science, 
representational competence is a critical prerequisite for the acquisition of 
conceptual knowledge, comprehensive psychometric investigations of this 
assumption are rare. We  undertake a step in this direction by re-analyzing 
the data from a recent study that found a substantial correlation between the 
two constructs in undergraduates in the context of field representations and 
electromagnetism.

Methods: In this pre-registered contribution, we re-analyzed the data (N  =  515 
undergraduate students; Mage  =  21.81, SDage  =  4.04) to examine whether the 
relation between representational competence and conceptual knowledge, 
both measured with psychometrically validated test instruments, is similar or 
varies between four samples from two countries. To this end, we  employed 
correlational analysis and scatter plots. Employing these methods, we examined 
whether a positive relation between representational competence and 
conceptual knowledge can be found and is of similar magnitude in all samples. 
We also employed multiple-group latent profile analysis to examine how the 
more detailed association between the two constructs varies or is similar across 
samples.

Results: We  found that the relation between the two constructs was positive 
in all four samples, but was stronger in the samples consisting primarily of 
engineering and physics students than in environmental sciences and teacher 
education-students. All latent profiles indicated that high representational 
competence is a prerequisite for high conceptual knowledge, but not vice 
versa. We  found little relation to learners’ gender and topic-specific learning 
opportunities in high school.

Discussion: These results indicate that the qualitative findings of a positive 
relation between representational competence and conceptual knowledge, 
with no evidence of learners that achieve high conceptual knowledge with 
low representational competence, generalize across different populations. 
We derive hypotheses for further moderating factors that can be examined in 
future research.
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1 Introduction

In science education, learners must combine information from 
multiple external representations such as charts, texts, formulae, or 
graphs to acquire knowledge (Treagust et al., 2017). The underlying 
ability to interpret and translate between different representations of 
scientific concepts, which is referred to as representational competence 
(Kozma and Russell, 2005), is accordingly commonly portrayed as a 
critical prerequisite for developing conceptual knowledge in science 
(Ainsworth, 2008; Corradi et  al., 2012). At least three presumed 
processes link different aspects of representational competence to 
conceptual knowledge acquisition. First, competence regarding a 
specific mode of representation (e.g., table, graph, or concrete 
representation) supports grasping how the different elements of a 
scientific concept interrelate (e.g., the different parts of a molecule; 
Stieff et al., 2016). Second, understanding how different representations 
translate into each other can help grasping the common underlying 
concept through comparing, contrasting, and self-explaining (Carolan 
et al., 2008). Third, representational competence supports problem 
solving, which in turn fosters conceptual understanding (Bowen and 
Bunce, 1997). Consequently, much research has examined how these 
two constructs interact during inquiry activities (e.g., Kohl et al., 2007; 
Nieminen et al., 2013; Scheid et al., 2019).

Recently, more targeted studies have tried to measure 
representational competence with elaborate psychometric instruments 
(Klein et al., 2017; Scheid et al., 2018). Klein et al. (2017) developed a 
two-tier instrument to assess representational competence in 
Kinematics, and Scheid et al. (2018) an open-answer instrument to 
assess representational competence in the topic of Ray Optics.

In the present study, we are concerned with the empirical relationship 
between representational competence and conceptual knowledge and, 
in particular, with the conditions that might influence the magnitude of 
this relationship. Although a strong positive relationship has been 
assumed by many researchers, it has been noted that the quantitative 
empirical evidence on this relationship is rather sparse and struggles with 
methodological issues (Chang, 2018; Edelsbrunner et al., 2023a). As 
Edelsbrunner et al. (2023b) note, instruments that have been used to 
measure these two constructs and their interrelations often have not been 
psychometrically validated, or suffer from contextual bias. Specifically, if 
instruments such as pen-and-paper tests that are assumed to measure 
the two constructs are both contextualized within the same topic (e.g., 
electromagnetism; Nieminen et al., 2013; Nitz et al., 2014; Scheid et al., 
2019), then the common relation between the two constructs cannot 
be disentangled from such common topical context.

A recent study by Edelsbrunner et al. (2023b) tried to overcome 
these issues by using an assessment instrument for representational 
competence with field representations (such as vector-field plots and 
field lines) that does not employ an explicit topical context. Using this 
instrument, the authors investigated the relation between 
representational competence with fields and conceptual knowledge 
about electromagnetism in university undergraduates from Germany 
and Switzerland. Encompassing students from four different 
universities, the authors found a substantial positive relationship, with 
a Pearson correlation estimate of r = 0.54, p < 0.001. In addition, the 
authors found that in a scatter plot, there were almost no students with 
high conceptual knowledge but low representational competence, 
whereas there appeared to be more students with high representational 
competence but low conceptual knowledge. From these results, the 
authors inferred the hypothesis that representational competence is a 

necessary yet insufficient prerequisite for developing conceptual 
knowledge (Edelsbrunner et al., 2023b).

In the present study, we  follow up on this hypothesis with an 
alternative model-based analytical approach. Specifically, whereas a 
scatter plot is an important and powerful visual tool, it does not 
prevent getting false impressions about patterns that might be driven 
by sampling error. Another reason for a model-based re-analysis is that 
the sample by Edelsbrunner et al. (2023b) encompassed four different 
student samples from different courses (teacher education, STEM and 
non-STEM study programs) at three different universities. The authors 
analyzed the students from all four samples within the same models, 
potentially hiding important information regarding the generalizability 
of their findings. The overall pattern might be  unreliable if, for 
example, it is underlain by Simpson’s paradox (e.g., Kievit et al., 2013). 
This paradox describes situations in which, on the level of a whole 
population (i.e., the common population underlying all four samples 
by Edelsbrunner et al., 2023b), a pattern is visible that might actually 
not exist or even be reversed within the distinct sub-samples forming 
the larger population. More specific analyses on the level of 
sub-samples are needed to unravel the generalizability of the findings.

In the context of physics education, such sub-samples might 
be  defined by variables such as gender, topic-specific learning 
opportunities in the classroom, or individual preferences for specific 
learning content that can be expected to affect learning in a number of 
ways. Regarding gender, females seem to perform worse than boys on 
tests of conceptual knowledge across various physics topics (e.g., 
Hofer et al., 2018; Madsen et al., 2013; OECD, 2009). Among the 
manifold explanations provided for this gender effect are missing 
female role models (e.g., Chen et al., 2020; Mullis et  al., 2016) or 
underlying subject-specific gender differences in motivational-
affective variables such as interest and self-concept (e.g., Jansen et al., 
2014; Kang et al., 2019; Patall et al., 2018). Although, so far, we do not 
know much about gender differences in representational competence, 
female students seem to struggle more with visual graphical 
representations (e.g., Chan and Wong, 2019; Hegarty and Kriz, 2008; 
Tam et al., 2019) and different types of mathematical-graphical tasks 
(e.g., axis tasks; Lowrie and Diezmann, 2011) than male students do. 
Gender differences in spatial abilities (e.g., Reinhold et  al., 2020) 
might at least in parts explain such findings (see Heo and Toomey, 
2020). Concerning the relation between conceptual knowledge and 
representational competence, Nieminen et al. (2013) reported more 
problems on the part of female students to infer the same facts from 
tasks differing in the representational formal.

As regards topic-specific learning opportunities in the classroom, 
we  can expect experiments to be  especially effective in promoting 
understanding of fields and electromagnetism (see de Jong, 2019; 
National Research Council, 2012; Sandoval et  al., 2014; Vilarta 
Rodriguez et al., 2020). In physics education, student experiments allow 
learners to observe physical phenomena and explore their dependence 
on physical quantities. An important tool helping students to acquire 
the physical concepts underlying observations are external 
representations. They can help students in acquiring knowledge by 
visualizing non-visible fundamentals and causes of the observed 
phenomena (Olympiou et al., 2013). Usually, external representations 
of physical concepts such as vector fields are presented before or after 
experimentation. Teachers provide students with explanations and 
visual-graphical models which represent aspects that cannot be directly 
observed. Such learning opportunities involving guided experimentation 
have proven successful in terms of conceptual understanding (Hardy 
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et al., 2006; Van der Graaf et al., 2020). Whether students in the different 
samples did guided student experiments in the field of electromagnetism, 
whether they watched the teacher conduct such experiments or whether 
they did not have this learning opportunity at secondary school at all 
can hence be expected to influence students’ conceptual knowledge and 
representational competence as well as their relation.

Finally, sub-samples might be  determined by systematic 
differences in individual preferences for specific learning content as 
reflected in the choice of a specific study program. There is evidence 
that interest and prior knowledge are substantially and linearly related 
(Tobias, 1994). In line with this finding, various studies have 
documented systematic differences on cognitive variables between 
students in specific study programs. Comparing (among others) 
physical sciences, math/computer science, engineering, humanities, 
and social sciences majors, Lubinski and Benbow (2006), for instance, 
found considerable differences in terms of mathematical, verbal, and 
spatial ability, with physical sciences students being the only ones with 
positive manifestations on all three measures.

The four samples are from two different countries, namely 
Germany and Switzerland, which have similar track-based educational 
systems. Country will not be examined as a covariate in the present 
analysis because there is no reason to expect country-level effects on 
the relation between and magnitude of students’ conceptual knowledge 
and representational competence, since they are assumed to depend on 
learning opportunities varying on the teacher-or school-level as well as 
on individual experiences and preferences. We do not expect systematic 
differences between Germany and Switzerland on these variables.

2 The present study

In the present study, we  examined the generalizability of the 
findings by Edelsbrunner et al., 2023b across all four samples from 
their study. Building on the fact that they published their data set for 
re-use (the published data set is available from the repository of 
Malone et al., 2021), we re-analyzed these data. The major reason to 
use this data set was that the present study and its research questions 
had been triggered by this study and data. In addition, it is the only 
study so far that has used psychometrically validated instruments to 
assess both representational competence and conceptual knowledge 
that are not embedded within the same context, preventing topical 
bias (Edelsbrunner et al., 2023b). Whereas this implied that our study 
and research questions were bound to the variables available within 
this data set, the data set offered potential for various informative 
research questions which to the best of our knowledge had not been 
addressed so far. Based on this data set, we  hence addressed the 
following research questions:

 (1) Do we  find a positive linear correlation between 
representational competence and conceptual knowledge in 
each of the four samples?

To answer this research question, we estimated linear correlations 
of the relation between the two constructs in all four samples 
separately. Based on extensive literature emphasizing the importance 
of representational competence for acquiring conceptual knowledge 
(e.g., Nitz et al., 2014), we expected a positive linear correlation in all 
four samples:

H1: A positive linear association between representational 
competence and conceptual knowledge exists in all four samples.

 (2) Do we find comparable linear associations between representational 
competence and conceptual knowledge in all four samples?

To answer this research question, we compared the four samples 
with regard to their linear correlation estimates of the relation between 
the two constructs. This was an exploratory research question aiming 
at unraveling potential similarities and differences in the magnitude 
of the association between the two constructs across samples, so 
we did not have hypotheses regarding this question.

After examining research questions (1) and (2), we  produced 
scatter plots individually within all four samples. These should help us 
visualize the data patterns underlying the estimated correlations to 
discuss differences and similarities across samples.

Research questions (3) to (5) were also exploratory, with the aim to 
generate hypotheses for future research. Here, we applied a method to 
identify different combinations of conceptual knowledge and 
representational competence systematically occurring in each of the four 
samples. These different combinations, for example, high representational 
competence and low conceptual knowledge, are referred to as latent 
profiles. The corresponding research questions are as follows:

To what degree do latent profiles of representational competence 
and conceptual knowledge show similar or different patterns across 
the four different samples?

 (3) To what degree is the pattern of low representational 
competence but high conceptual knowledge, but not vice versa, 
visible in all four samples?

 (4) Do gender, topic-specific learning opportunities, and individual 
preferences for specific learning content (as reflected in the 
choice of study program) explain differences and similarities 
between the four samples?

 (5) To answer research questions (3) to (5), we applied multiple 
group latent profile analysis (e.g., Morin et al., 2016). In this 
analysis, latent profiles of representational competence and 
conceptual knowledge can be extracted and compared across 
the four samples.

Although this research is predominantly exploratory, a 
preregistration can be helpful for exploratory research to ensure that 
researcher degrees of freedom in selecting and presenting analysis and 
their results are controlled (Dirnagl, 2020; Nosek et  al., 2018). In 
addition, although latent profile analysis is predominantly used as an 
exploratory tool, there are central decisions such as the process leading 
to determining the number of latent profiles that are guided by multiple 
fit criteria and subjective considerations (Edelsbrunner et al., 2023a). In 
preregistering the approach to determining the number of latent profiles, 
we can ensure that we keep to a priori criteria that have been agreed 
upon in peer-review and clearly mark and discuss any deviations thereof.

3 Method

3.1 Sample

This was a secondary analysis based on the sample by 
Edelsbrunner et  al., 2023b. The theoretical background, research 
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questions, and analytic approach were pre-registered in Edelsbrunner 
and Hofer (2023). Re-analysis the sample encompassed N = 515 
undergraduate students from three different universities in Germany 
and Switzerland. The main sample characteristics are provided in 
Table  1. For detailed descriptions of the sampling strategy, see 
Küchemann et al. (2021).

3.2 Assessment instruments

The authors used a newly developed measure of conceptual 
knowledge about electromagnetism, encompassing 12 single-choice 
items, each featuring between five and 10 distractors (internal 
consistency of ω = 0.92), and another newly developed measure of 
representational competence with fields that also encompassed 12 
items (ω = 0.86). This instrument was utilized to evaluate students’ 
comprehension of vector-field plots (4 items) and field-line 
representations (4 items), as well as their ability to translate between 
the two (4 items). Out of these items, 10 are presented in a single-
choice format, offering 4 to 5 answer options, with one correct answer 
for each. The other two items follow a multiple true-false format and 
were marked as correct if students selected all appropriate answer 
options. More detailed psychometric characteristics of the two 
instruments are provided in Edelsbrunner et al. (2023b), and further 
details regarding the instrument for representational competence in 
Küchemann et al. (2021). We used sum scores of items solved from 
each instrument, which in both cases reach from 0 to 12 points.

As covariates, we  used gender, topic-specific learning 
opportunities, and individual preferences for specific learning content. 
All variables were assessed in online questionnaires. For gender, 
participants could indicate female, male, or diverse. We  did not 
include participants with diverse gender in the statistical models, as 
these were only n = 6 across all four samples, undermining reliable 
parameter estimation, but we included them in all descriptive analyses 
for which this was possible.

As an indicator of topic-specific learning opportunities, 
we administered a question on which participants indicated whether 
their teachers had used the conductor swing-experiment in their 
Physics classes, or not. In this experiment, a conducting piece is put 
within the magnetic field of a magnet. Current is then activated that 
flows through the conductor, initiating a second electromagnetic field. 
Through the two magnetic fields’ crossing directions, a Lorentz Force 
results, causing the conductor piece to swing. The Lorentz Force is a 
standard topic in German and Swiss Physics education. The conductor 

swing-experiment, by providing students with a visible phenomenon 
relating to magnetic fields and the Lorentz force, is supposed to foster 
students’ conceptual understanding of electromagnetism and fields 
(Donhauser et al., 2020). We therefore collected information on this 
question asking participants whether, in high school, their teachers 
had used the conductor swing-experiment as a demonstration 
experiment (implemented by the teacher), as a student experiment 
(implemented by the students themselves), or not at all. In a fourth 
answer option, the participants could indicate that they could not 
remember whether this experiment was part of their Physics 
education. This variable thus has four categorical answer options: 
Experiment not implemented, implemented as student experiment, 
implemented as teacher experiment, or cannot remember.

As a final covariate, we considered students’ fields of study. This 
serves as an indicator of individual preferences for specific learning 
content. We used two dummy variables to group students into the 
non-exclusive categories of teacher education student (n = 422) vs. 
non-teacher education (n = 93), and STEM (n = 305) vs. non-STEM 
student (n = 210).

4 Results

4.1 Research question 1: do we find a positive 
linear correlation between representational 
competence and conceptual knowledge in 
each of the four samples?

To examine the first research question, whether a positive linear 
association between representational competence and conceptual 
knowledge exists within all samples, we estimated bivariate correlations 
between the sum scores on the two instruments through maximum 
likelihood-estimation within the Mplus software package version 8.5 
(Muthén and Muthén, 2017). We set up a multigroup model in which 
the variance–covariance matrix is fitted as a structural equation model 
separately within each sample but parameters can be constrained or 
freely estimated across the four samples to test for equalities (Hoyle, 
2023). We did not test for measurement invariance as this was not of 
interest to our research questions (Robitzsch and Lüdtke, 2023) and 
we consider students’ knowledge scores as formative index variables 
rather than reflective latent variables (Edelsbrunner, 2022; 
Edelsbrunner et  al., 2023a). In order to standardize students’ sum 
scores for both constructs, we defined single-indicator dummy-latent 
variables with unit variance and a fixed factor loading of one. By 

TABLE 1 Characteristics of participants in the four samples.

Teacher education 
SU (N  =  188)

Engineering TUK 
(N  =  149)

Environmental sciences 
ETH (N  =  98)

Physics ETH 
(N  =  80)

Gender (% m/f/diverse) 29/71/0 85/14/1 28/29/3 67/29/3

Mean age (SD) 20.75 (3.82) 20.72 (2.36) 21.10 (1.60) 19.74 (2.96)

Years of physics at school (SD) 4.45 (1.69) 5.57 (1.90) 3.11 (1.27) 4.08 (1.48)

University Saarland University TU Kaiserslautern ETH Zurich ETH Zurich

Study semester (SD) 1.19 (0.97) 1.58 (1.38) 3.12 (0.51) 1.18 (1.59)

Most frequent field of study Teacher education (100%) Mechanical engineering (40%), 

electrical engineering (28%)

Environmental sciences (57%) Physics (55%)
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constraining the error variance in students’ scores to 0, all their variance 
was represented in the respective latent variable standardized with a 
variance of 1. We estimated the covariance of these two latent variables 
within each group, which through the standardization represented the 
correlation estimate between the two constructs (Hoyle, 2023).

To test hypothesis 1 and decide whether correlations were present 
in all four samples, we  inspected bootstrapped 90% confidence 
intervals based on 10,000 bootstrap draws for the covariance between 
the two constructs (DiCiccio and Efron, 1996).

If a bootstrapped 90% confidence interval within a sample lies 
fully above 0, we  conclude that a positive correlation between 
representational competence and conceptual knowledge is present 
within the respective sample. If the confidence intervals in all four 
samples are above 0, we interpret this as support of hypothesis 1. If 
either or all confidence intervals include 0 or are fully below, 
we interpret this as a lack of evidence for hypothesis 1. The results, 
which are summarized in Table 2, indicate that positive correlations 
were present in all four samples, supporting our hypothesis.

4.2 Research question 2: do we find 
comparable linear associations between 
representational competence and 
conceptual knowledge in all four samples?

To examine the second research question, whether we  find 
comparable linear associations between representational competence 
and conceptual knowledge in all four samples, we  used parameter 
constraints to test the covariance parameters between the two 
constructs for equality between the four samples. We first set all four 
covariance parameters to equality and compared the fit of this model to 
that of the model in which the covariance was allowed to vary between 
all four samples. We used p < 0.10 as a cut-off to decide whether the 
assumption of parameter equality holds. If the likelihood ratio test was 
significant at p < 0.10, we inspected which of the samples contributed 
most to the significant result and freed that sample’s parameter to 
deviate from the others. This was done until we yielded a model with a 
non-significant likelihood ratio test and overall good model fit.

As shown in Table 3 the model with one correlation freed, i.e., the 
correlation estimate for the Engineering TUK sample, resulted in a 
non-significant likelihood ratio test. However, inspection of the 
sample-specific statistics suggested testing a third model with the 
correlation estimates of the Teacher Education SU and the 
Environmental Sciences ETH samples, on the one hand, and the 
Engineering TUK and the Physics ETH samples, on the other hand, 
fixed to the same estimates. This model showed the best model fit and 
resulted in correlation estimates of r = 0.365 (SE = 0.030) for the first 
pair and r = 0.572 (SE = 0.028) for the second pair.

After examining research question 2, we produced scatter plots to 
examine the exact nature of the relation between representational 
competence and conceptual knowledge within the four samples. This 
helps interpret similarities and differences in this correlation across 
samples. In these scatter plots (Figure  1), we  see the similarities 
between the Teacher Education SU and the Environmental Sciences 
ETH samples, and the Engineering TUK and the Physics ETH 
samples, with, on average, lower manifestations of conceptual 
knowledge for the first two samples. The two samples Teacher 
Education SU and Environmental Sciences ETH both show a 
quadratic relation that appears to be close to zero up to about seven 
points of representational competence but is positive thereafter. The 
two samples Engineering TUK and Physics ETH show just very small 
quadratic shapes and the linear association in these two samples seems 
to begin earlier, at about four points of representational competence.

4.3 Research questions 3–5

To examine research questions 3–5, we  conducted (multiple 
group) latent profile analyses. This statistical method allows capturing 
patterns such as the one observed by Edelsbrunner et al. (2023b, i.e., 
low representational competence and high conceptual knowledge) in 
explicit model parameters. A latent profile analysis allows clustering 
individuals based on observed patterns of means and variances on one 
or more variables (Hickendorff et  al., 2018). The two clustering 
variables in our study were students’ mean scores on the 
representational competence-test and on the conceptual knowledge-
test. In the latent profile analyses, systematically different patterns of 
means and variances across these variables were modelled in a data-
driven manner. These patterns were then represented in a latent 
categorical variable that represents the patterns as different latent 
profiles. We first determined the number of latent profiles in each 
sample individually by increasing the number of profiles from 1 to 7 in 
a step-wise manner. We specified latent profiles differing in means and 
variances across the two indicator variables. The number of profiles 
was determined based on the AIC, AIC3, BIC, aBIC, and the VLMR-
likelihood ratio test with a significance criterion of p < 0.10 
(Edelsbrunner et al., 2023a; Nylund-Gibson and Choi, 2018). The AIC 
in many cases points to a higher number of profiles than the BIC, with 
the AIC3 and the aBIC in between (Edelsbrunner et al., 2023a). In 
these cases or in case the VLMR-test is in disagreement with the other 
indices, we determined whether the additional profiles shown by the 
AIC, or by one of the other indices, are informative by relying on our 
content knowledge (Marsh et al., 2009). More in-depth descriptions 
of the different steps to determine the number of profiles in latent 
profile analyses are provided by Ferguson et al. (2020) and Hickendorff 
et al. (2018).

4.3.1 Research question 3: to what degree do 
latent profiles of representational competence 
and conceptual knowledge show similar or 
different patterns across the four different 
samples?

As the fit indices depicted in Figure  2 show, across all samples, 
solutions with four profiles provided the best fit according to the aBIC and 
the AIC, whereas the BIC and CAIC pointed to the two profiles-solutions 
and the AIC3 predominantly to the three profiles-solutions. The VLMR 

TABLE 2 Bootstrapped correlations in all four samples.

Samples Estimate S.E. 90% CI

Teacher Education SU 0.367 0.043 [0.293; 0.435]

Engineering TUK 0.576 0.026 [0.532; 0.617]

Environmental 

Sciences ETH
0.362 0.044 [0.286; 0.433]

Physics ETH 0.545 0.078 [0.402; 0.661]
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indicated two profiles in the Teacher Education SU sample but three 
profiles in the other samples. Overall, the combined information from 
these fit indices spoke for three profiles in all of the samples (Figure 3).

After determining the number of profiles within each sample, 
we extended the latent profile analyses to a multiple group-model. 
In the multiple group-extension, profiles can be extracted within 
each sample individually but within the same model estimation 
process (Morin et al., 2016). This allows fixing parameters or letting 
them vary across samples, to test whether one or more parameters 
(mean-and variance estimates of profiles, or relative profile sizes) 
differ or are similar across samples. Based on this analytic approach, 
we examined the comparability and specific patterns of the latent 
profiles in the four samples. Based on the depiction of all 12 resulting 
profiles in Figure 4, we inspected which profile parameters appeared 
similar or different between the samples and then fixed those to 
equality that we judged to be similar from a theoretical perspective.

Based on the profiles’ estimates and commonalities, we decided to 
restrict the mean and variance parameters of the following profiles to 
equality: The parameters of the Teacher Education SU Profile 3 and 
Environmental Science ETH Profile 3, as well as those of Teacher 
Education SU Profile 2 and Engineering TUK Profile 1. For all other 
profiles, at least one of the profile means appeared too far away from 
all other profiles to be restricted to equality.

After fixing parameters to equality, we  tested the respective 
restriction through a likelihood ratio test (Satorra and Bentler, 2010). 
This test produced a result of Chi2(8) = 4.06, p = 0.852, indicating that the 
equality restrictions did not significantly deteriorate model fit and are 
thus acceptable. After implementing these constraints and re-estimating 
the model, another two profiles yielded very similar estimates. We also 
constrained those two profiles to equality, which again yielded a 
non-significant p-value (p = 0.156). We therefore remained with these 
restrictions of overall four profiles of which each described the same 
patterns occurring in two different samples, and another four profiles 
that could only be found in one of the samples, yielding overall seven 
different kinds of profiles across the four samples. The resulting profiles, 
depicted in Figure 5, are the final profiles in the four samples.

4.3.2 Research question 4: to what degree is the 
pattern of low representational competence but 
high conceptual knowledge, but not vice versa, 
visible in all four samples?

We next interpreted the resulting profiles to judge to which 
extent we can find the pattern described in Edelsbrunner et al. 

TABLE 3 Information criteria across the three models.

Models AIC BIC aBIC Likelihood 
ratio test 
p-value

All correlations fixed 12,718 12,807 12,753 0.000

One correlation freed 12,699 12,794 12,737 0.143

Two correlations freed 

but fixed to the same 

estimate

12,696 12,790 12,733 0.926

FIGURE 1

Scatter plots of relation between representational competence and conceptual knowledge in the four samples. Linear lines present regression slopes 
from a linear model incl. 90% confidence intervals estimated in R (v4.4.1, R Core Team, 2021), non-linear lines best fit from a general additive model.
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(2023b) of students showing high conceptual knowledge only 
with high representational competence. We  abstained from 
statistical standardization techniques for bringing both variables 
on the same scale for interpretations (e.g., z-standardization, 
robust scaling) since the assessment instruments for both 
constructs have been developed by content experts and didacts. 

Consequently, we preferred leaving the scores on both variables 
on their raw scales (i.e., 0–12 items solved) since from an 
educational perspective, the items cover the central points of 
understanding according to expert judgments on both 
instruments. We decided to apply the simple criteria to interpret 
representational competence-or conceptual knowledge-scores as 

FIGURE 2

Relative model fit indices for models with different numbers of profiles in the four samples.

FIGURE 3

Latent profiles in the models on the four individual samples.
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very low for profile estimates below 3, as low for profile estimates 
below 6, as high for profile estimates above 6, and as very high 
for estimates above 9. The resulting profile labels according to 
these criteria are presented in Figure 5. As visible from Figure 5, 
all profiles from all samples followed the observation in 
Edelsbrunner et al. (2023b): There was no profile of learners with 
very low or low representational competence, but high or very 
high conceptual knowledge.

4.3.3 Research question 5: do gender, 
topic-specific learning opportunities, and 
individual preferences for specific learning 
content (as reflected in the choice of study 
program) explain differences and similarities 
between the four samples?

After extracting and comparing the profiles, we added the four 
covariates to the model via Lanza’s approach (Asparouhov and 

FIGURE 4

Estimated profiles from all four samples in multigroup latent profile analysis.

FIGURE 5

Final profiles in the four samples after equality constraints. Percentages refer to estimated proportions of learners in each profile within each sample, in 
the order sample 1  =  Teacher Education SU, sample 2  =  Engineering TUK, sample 3  =  Environmental Sciences ETH, sample 4  =  Physics ETH. Linetypes 
indicate level on representational competence according to quantitative category thresholds described in text (solid  =  low, long-dashed  =  high, short-
dashed  =  very high), point shapes indicate level on conceptual knowledge (round  =  very low, quadratic  =  low, diamond  =  high, triangle  =  very high). 
Error bars indicate 90% confidence intervals.
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Muthén, 2014; Lanza et al., 2013) to examine whether the profiles in 
the four samples relate to different mean values on students’ gender 
(male = 0, female = 1), topic-specific learning experiences 
(0 = conductor swing experiment not conducted, 1 = conducted as 
teacher experiment, 2 = conducted as student experiment, 3 = cannot 
remember), and individual preferences for specific learning content 
(two variables; non-teacher = 0, teacher student = 1; non-STEM = 0, 
STEM = 1). We again relied on p-values <0.10 to draw hypotheses for 
future research regarding the different profiles’ correlates. Note that 
this procedure is only available in single-group latent profile analysis. 
We therefore constrained the latent profile parameters to the estimates 
from Figure 5 in each of the four samples and conducted four covariate 
analyses, one for each of the samples. The results from these analyses 
for the first covariate, the proportion of males in each profile within 
each sample, are presented in Figure 6.

Whereas none of the comparisons between any two profiles are 
significant at p < 0.10, there is a pattern in Figure 6 across all samples 
that the more proficient profiles both in representational competence 
(profiles ordered according to labels indicating increasing levels on 
this variable from left to right) and in conceptual knowledge (also 
ordered from left to right, as secondary variable) contained higher 
proportions of males.

The results from the second covariate, the differences in the 
amount of STEM learners across the different profiles, are presented 
in Figure 7.

Whereas none of the comparisons between two profiles are 
significant at p < 0.10, there are descriptive patterns in the Teacher 
Education SU and the Physics ETH samples that students studying a 
STEM subject are in the more proficient profiles. This pattern is not 
visible in the Environmental Science ETH and the Engineering 
TUK samples.

For the last covariate, topic-specific learning opportunities, a clear 
trend was visible (Figure 8): All profiles scoring very low on conceptual 
knowledge showed high proportions of learners who had not worked 
on the conductor swing experiment in school, independently of their 
level of representational competence (e.g., two right panels in second 
row). Those with an at least low level of conceptual knowledge 
indicated much more frequently that they had conducted the 
conductor swing experiment as a teacher or student experiment.

5 Discussion

This study confirmed a positive relation between conceptual 
knowledge and representational competence in all four samples, in 
line with previous assumptions (Chang, 2018; Edelsbrunner et al., 
2023b). By comparing four different samples, we identified a stronger 
relationship in the samples consisting primarily of engineering and 
physics students than in environmental sciences and teacher 
education-students (r = 0.365 compared to r = 0.572). Students in 
engineering and physics-related samples, on average, show higher 
representational competence and conceptual knowledge, which are 
more strongly related (cf. Reinhold et al., 2020). Only up to about four 
points of representational competence (still considered as low), the 
two knowledge types seem to be rather unrelated. After that, higher 
representational competence goes hand in hand with higher 
conceptual knowledge. In the teacher education and environmental 
sciences-related samples, the (weaker) positive correlation becomes 
apparent only with about seven points of representational competence. 
Accordingly, those students seem to require a rather high level of 
representational competence as a basis to develop conceptual 
knowledge. From this finding, we derive the hypothesis for future 
research that some learners require less representational competence 
as a basis to develop conceptual knowledge and are better at exploiting 
their representational competence to develop conceptual knowledge 
than others.

In line with the overall finding that conceptual knowledge stays 
at a very low level until a certain threshold level (lower or higher, 
depending on the sample) of representational competence is 
reached, all the final latent profiles indicated that high 
representational competence is a prerequisite for high conceptual 
knowledge, but not vice versa. This pattern was (moderately) 
reversed in only one of the 12 independently estimated profiles in 
the four samples. This profile, with high representational 
competence and very high conceptual knowledge estimates, 
detected in the Engineering TUK sample, consisted of more males 
of which more had undergone the conductor swing experiment as 
an actual student experiment. As is the case for other intertwined 
types of knowledge such as conceptual and procedural knowledge 
in mathematics, bidirectional relations are most likely (e.g., Crooks 

FIGURE 6

Proportion of males in each of the profiles across the four samples.

https://doi.org/10.3389/feduc.2024.1459603
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Edelsbrunner and Hofer 10.3389/feduc.2024.1459603

Frontiers in Education 10 frontiersin.org

and Alibali, 2014; Rittle-Johnson, 2017). While representational 
competence seems to be an important prerequisite for developing 
conceptual knowledge in the range assessed with the instruments 
used in this study, at higher levels of proficiency, bidirectional 
relations and also more interdependent development of the two 
types of knowledge can be expected. The reversed profile found in 
the Engineering TUK sample—as well as the almost parallel profile 
characterized by very high proficiency on both measures in the 
Physics ETH sample—might be indicative of such effects for high-
proficiency sub-groups. By using instruments measuring and 

differentiating also in higher proficiency ranges, future research 
could test those assumptions.

While we  did find some differences between the Teacher 
Education SU and the Environmental Sciences ETH samples, on the 
one hand, and the Engineering TUK and the Physics ETH samples, 
on the other hand, the investigated covariates gender, topic-specific 
learning opportunities, and individual preferences for specific learning 
content (as reflected in the choice of study program) did not help to 
explain large variation in differences and similarities in the profiles 
between the samples. The detected patterns, however, were in line with 

FIGURE 7

Proportion of STEM students in each of the profiles across the four samples.

FIGURE 8

Proportion of learners with different conductor swing-experiences in each of the profiles across the four samples.
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our expectations, suggesting a higher proportion of females in lower-
proficiency profiles (Hofer et al., 2018; Madsen et al., 2013; Nieminen 
et  al., 2013), a higher proportion of STEM students in higher-
proficiency profiles (Lubinski and Benbow, 2006; Reinhold et  al., 
2020), and a presumably positive influence of prior own experiences 
with the swing experiment on higher-proficiency profiles membership 
(Hardy et al., 2006; Van der Graaf et al., 2020). The effects of specific 
learning opportunities or training interventions could be examined in 
controlled experiments in follow-up studies.

The slightly different patterns found across the four samples might 
indicate self-selection effects as well as effects of differences in the 
study programs. Study programs help students to develop specific 
specialized skills, such as spatial skills in the course of an architecture 
(Berkowitz et al., 2021) or engineering study program (e.g., Uttal et al., 
2013; Zorn and Gericke, 2020). In addition to increased spatial skills, 
representational competence, conceptual knowledge, and the ability 
to connect the two types of knowledge can be expected to be practiced 
more extensively in some study programs (especially within STEM 
fields) than in others. Longitudinal analyses that are fit to capture 
knowledge development over time as a function of different learning 
environments can shed more light on underlying processes.

6 Limitations

The cross-sectional nature limits the interpretation of the results 
of the present study. Other limitations concern the rather small 
diversity in the samples investigated regarding age and educational 
level, for instance. Although there was no evidence for country-level 
effects, we neither considered more than two countries nor several 
universities within countries, restricting any interpretations on the 
level of country-specific educational systems. Finally, we are not aware 
of theories or studies that would allow us to judge the generalizability 
of the current findings. The generalizability of the findings to other 
topics in physics and other domains associated with representational 
competence still needs to be scrutinized. This could, for example, 
be achieved by assessing representational competence and conceptual 
knowledge across different topics within domains, as well as across 
multiple domains, to disentangle the common and specific variation 
of representational competence, as well as the stability of its relation 
with conceptual knowledge, across these potential sources of variation.

Despite those limitations, the present study allows to derive some 
tentative implications for educational practice. We emphasize that this 
study relies on cross-sectional observational data, making confounding 
very likely, and the present parameters estimates should not 
be interpreted to represent causal relations. We relate our findings to 
prior theories and findings (Nitz et al., 2014; Scheid et al., 2018, 2019) 
in order to derive practical implications, but longitudinal research with 
strong designs and well-selected covariates to increase the validity of 
causal conclusions (Dumas and Edelsbrunner, 2023), as well as 
experimental designs are required to infer new information regarding 
causality. We propose as a first step to include strong covariates in 
future studies based on theoretical models of causal dynamics (Dumas 
and Edelsbrunner, 2023), considering principles of causal inference that 
improve the chance that estimated relations are causal (Bailey et al., 
2024). As a further step, longitudinal studies observing both constructs 
repeatedly during schooling or targeted science education activities 
might provide more valid insight into their mutual developmental 
dynamics, and in experimental intervention studies, for example 

representational competence could be trained to examine whether this 
prepares students for future acquisition of conceptual knowledge 
(Edelsbrunner et  al., 2024). For educators and learners aiming at 
conceptual knowledge development, a first important step might be to 
ascertain a certain level of representational competence. As a second 
step, instead of teaching representational competence and conceptual 
knowledge in isolation, explicitly pointing at the connections and 
practicing the interpretation and application of different representations 
in the context of conceptual learning might be worthwhile. To be able 
to formulate specific recommendations for different sub-groups based 
on their characteristics, more research is needed.

To conclude, our results indicate that the qualitative findings of a 
positive relation between representational competence and conceptual 
knowledge, with the former as a basis for developing the latter, 
generalize across different populations with some slight but relevant 
differences warranting further research.
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